家蚕无鳞片翅突变体scaleless产生机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
翅面被覆鳞片是鳞翅目昆虫的主要特征之一;鳞片对于鳞翅目昆虫具有重要的生理意义,而鳞片构成的各种翅面图案具有特定的发育机制和进化模式,因此鳞翅目昆虫的鳞片在昆虫生理学、发育生物学以及生物进化,甚至害虫防治上都具有重要的研究价值。本文以家蚕无鳞片翅突变体scaleless(sl)为材料,从形态学、细胞生物学和分子生物学角度对突变体的产生机理进行了研究,力图阐明无鳞片翅突变表型的发生机理;并为鳞翅目昆虫鳞片的发育机制提供理论参考。
     首先从探明家蚕翅的生长发育机制入手,调查了五龄幼虫及蛹期翅原基(翅)的大小和形态变化,并建立了翅原基摘除和移植技术,为论文的深入研究提供实验和理论基础。翅原基在五龄前期生长缓慢,变态前生长最快;蛹期翅芽大小基本不变,但伴随有鳞片的形成和色素沉积过程。家蚕幼虫期的造血器官紧密附着在翅原基上,形成造血器官-翅原基复合体。五龄早期将4个造血器官-翅原基复合体全部摘除,家蚕幼虫仍能正常生长并发育成蛹和具有交配及产卵能力的蛾;同时其发育过程中血球总数仍呈增长趋势,但是明显低于正常蚕,由此推测化蛹变态中造血器官的崩解是变态的结果而不是其必要因素。全部造血器官-翅原基复合体摘除后配合使用MH或JHA均会增加熟蚕体内的血球数量,认为保幼激素在造血器官-翅原基复合体全部摘除的蚕体内有促进血球有丝分裂的作用。
     运用建立的翅原基(翅)解剖技术,分析了家蚕突变体scaleless的表型性状,发现其成虫翅面鳞片明显比野生型(WT)的少,并且所具有的少量鳞片比野生型的小且分叉少。五龄幼虫翅原基的相互移植实验证明决定这一突变性状的调控因子不存在于体液中,而是存在于翅原基自身内部。化蛹前scaleless的翅原基与WT的在形态和结构上没有明显差异,化蛹后WT家蚕的翅脉开始出现气管分叉并延伸进入翅面,2d蛹时已经可以看到翅脉之间的气管相互交织形成网状;但是scaleless家蚕蛹的翅脉中气管分叉少并且延伸不良。蛹期经过高氧分压处理可以部分挽回scaleless家蚕翅面的鳞片,使其成虫翅面鳞片明显增多。在幼虫五龄早期的翅原基表面划一道浅的刻痕使翅脉受伤,亦可形成成虫翅面鳞片少的表型。因此我们推测翅原基的翅脉中气管发育异常致使翅面细胞缺氧是导致scaleless鳞片变少的一个重要原因。
     进一步实验阐明了scaleless突变体家蚕细胞生物学方面的产生机理。AO/EB染色及Caspase-3/7活性分析结果显示在蛹的早期,翅面鳞片的发育伴随有细胞凋亡的参与。2d时大量翅面细胞凋亡,存活的细胞则整齐地排列在翅的表面。scaleless家蚕不同于野生型,其翅面大量细胞凋亡现象比WT出现的晚1天,且翅面细胞几乎全部死亡;并且Caspase-3/7的最大活性相当于WT的近10倍。同时有关凋亡小体和DNA片段化的实验结果也说明scaleless蛹期翅面细胞过度凋亡,从而产生了成虫翅面少鳞片的突变性状。
     AS-C基因与果蝇背板刚毛的发育有关;AS-C的同源体基因(ASH)B-ASH1也控制着蝴蝶翅面鳞片的形成。为了从分子生物学角度阐明家蚕scaleless突变体的产生机理,克隆并鉴定了家蚕的AS-C同源体基因。发现家蚕至少有四个ASH基因,分别命名为Bm-ASH1、Bm-ASH2、Bm-ASH3和Bm-ase;四个基因均具有明显的bHLH基序,并且前三个基因编码的蛋白质的C-端也具有16~17个氨基酸组成的保守区,这些都符合AS-C同源体基因的特点。同源性比较和进化分析说明三
     个原神经基因中BIn-ASH1是最早分化形成的一个;Bm-ASH2和Bm-ASH3同源性最高,推测相对于Bm-ASH1形成较晚。用RT-PCR和实时荧光定量PCR检测了家蚕ASH基因在幼虫期不同组织器官及胚胎发育过程中的表达情况,发现Bm-ASH1和Bm-ASH2表达范围最广,胚胎发育过程中也有较高的表达量;而Bm-ASH3表达特异性相对较高,因此推断其形成较Bm-ASH2为晚,即Bm-ASH3是四个家蚕ASH基因中最晚形成的一个。ase基因主要在神经前体细胞中表达,因此Bm-ase表达范围较窄,组织中总体表达量较低。但同源比较和功能分析都不能将家蚕的三个原神经基因和果蝇的一一对应,因此其命名依然按照发现的先后顺序进行。
     通过半定量RT-PCR发现家蚕的吐丝期和蛹期,Bm-ASH1和Bm-ASH3基因在scaleless和WT家蚕中的表达时相几乎一致;Bm-ASH2只在0 d~2 d的WT蛹翅中表达,而scaleless中没有检测到表达信号。原位杂交结果也证明Bm-ASH2在scaleless蛹翅中不能正常表达。将WT及scaleless的Bm-ASH2基因起始密码子上游的启动子序列克隆并测序,发现scaleless的ATG上游1027 bp处有一段连续26 bp的缺失突变。利用家蚕细胞瞬时表达系统分析了Bm-ASH2基因启动子活性,发现scaleless比WT低得多,只与截去了其缺失的26 bp的979 bp WT启动子片段的活性相当。EMSA结果显示scaleless缺失的26 bp序列可以特异性结合某种核蛋白。遗传学实验则证明26 bp序列缺失与无鳞片翅突变表型紧密连锁。这些都说明scaleless的Bm-ASH2基因因启动子突变而使其不能正常转录和表达。利用瞬时表达系统使Bm-ASH2基因在scaleless早期蛹翅中表达,可以使翅面鳞片明显增多,进一步说明Bm-ASH2是家蚕翅面鳞片产生的关键因子。从而初步阐明了家蚕无鳞片翅突变体scaleless产生的分子机理。
The coating of scales on the surface of the wings is a basic characteristic of lepidopteran adults. Wing scales have important physical function to Lepidoptera, and patterns formed by multicolored scales not only have specifically developmental mechanisms, but also are a key innovation during lepidopteran evolution. So lepidopteran wing scales are valuable for the studies of insect physiology, developmental biology, biologic evolution, and even pest control. In this thesis, we studied the silkworm scaleless wings mutant(scaleless, sl) on morphological, cell biological and molecular biological levels, and tried to clarify the mechanism of the mutant and offer references for the studies on the development of lepidopteran wing scales.
     We carried out our studies beginning with the development of the wing discs/wings, in size and shape, during the 5th instar larval and pupal period. We found that the wing disc grew slowly in the prophase of the larva, while very fast just before metamorphism. We also found that pupa was a period of the wing buds perfecting, with wing scale formation and pigmentation. Hemopoietic organ is located tightly near or attach to the imaginal wing disc in the silkwom, Bombyx mori, and the two kinds of organs are customarily called by a joint name as hemopoietic organ-wing disc complex. We successfully extirpated the complexes of 5th instar larvae, and found that even when all of the complexes were extirpated, majority of the silkworms could still develop into moths normally. Using this technique, we studied the effects of the extirpation on the hemopoiesis of the silkworm, by investigating the change of density and total of hemocytes circulating in the final instar larval hemolymph. We found that mitosis could offer enough hemocytes for the development of the silkworms whose complexes were totally extirpated. And the collapse of the hemopoietic organs during wandering might be a consequence of metamorphosis, but not a prerequisite for pupation. Exogenous hormones could elevate the mitosis of circulating hemocytes in complexes totally extirpated silkworm; and during early spinning stage, complexes extirpation might cause a certain extent hemopoietic compensation of the remainders. The feasibility of the silkworm wing discs growing and developing in exotic site was proved by reciprocal transplantation technique. The results afforded us the background for the following studies.
     We investigated the morphology of scaleless and found that it had many fewer wing scales than wild type(WT), and that the remaining scales were smaller in shape with fewer furcations. Reciprocal transplantation of wing discs between scaleless and WT revealed that the WT wing disc could develop into a small wing with scales after transplantation into a scaleless larva; however, the scaleless wing disc developed into a small wing without scales in a WT larva. Upon dissection of WT and scaleless wing discs at different stages from the fifth instar larva to adulthood, no obvious differences were found before pupation. However, after pupation, tracheae produced from WT wing veins extended to the lacunae between the veins and formed a network on the second day after pupation, whereas this did not happen in scaleless. At the same time, no marked difference of the adult body tracheal development was found between the mutant and wild type. Furthermore, if the surface of a wing disc was cut and its veins injured, the resulting wing also had fewer scales than that of WT. Also, we found that higher partial pressure of O_2 could rescue the loss of scales in scaleless. These data suggest that the factors affecting the growth of scales were not produced in the hemolymph, but in the wing disc itself. It is also implied that wing scale development is dependent on the correct organization of tracheal system in the wing disc.
     We gave data to clarify the mechanism of the mutation of scaleless at the cell biological level. The results of AO/EB dying and Caspase-3/7 analysis showed that programmed cell death participates in the wing scale development during early pupal stage. On 2d, well ranged cells could be seen on the pupal wing, surrounded with vast dead ones. There were significant differences between that of sl and the wild type(WT) at each phase. Well-differentiated scale precursor cells did not form in sl when they had formed in WT. The peak of Caspase-3/7 activity in sl occured one day later than, and ten times as much as that in WT. Apoptotic bodies and DNA ladder studies also showed that there was excessive apoptosis in sl early pupal wing.
     AS-C(achaete-scute Complex) genes are associated with the development of Drosophila notum bristles, and a homolog of AS-C(ASH), B-ASH1, controls the formation of butterfly wing scales. In order to clarify the mechanism of the scaleless wings mutation of sl at the molecular level, we cloned and analyzed the AS-C homolog in Bombyx mori. Four genes, Bm-ASH1, Bm-ASH2, Bm-ASH3 and Bm-ase were cloned, and the proteins coded by the four genes had a typical bHLH motif each, and the former three also each had a 16-17 aa conservative region at the C-terminal. All of these indicated the four genes according with the characteristic of AS-C homolog. Homologous comparation and evolutional analysis showed that Bm-ASH1 formed earliest among the three preneural genes; while Bm-ASH2 and Bm-ASH3 were mostly homologous, and might both occur later than Bm-ASH1. We investigated the expression level in various larval organs and different embryo developmental ages using RT-PCR and realtime quantitative PCR methods. Bm-ASH1 and Bm-ASH2 were expressed in most of the organs and had a high expression level in proper embryo ages. Bm-ASH3 was more differential, so we deduced it formed at the most near time and gained special function. Bm-ase was also more special and the detected expression level was low. But neither homologous comparation nor functional analysis could correspond the three Bombyx preneural genes to those of Drosophila, so we still named the genes after their discoverd order.
     Both of the results of semi-quantative RT-PCR and in situ hybridyzation showed that Bm-ASH2 gene expressed abnomal in scaleless pupal wing. The gene expressed highly in 0 d-2 d WT pupal wing, but very low in scaleless. Sequencing results showed that there was a continuous absent mutation of 26 bp, 1 027 bp upstream of Bm-ASH2 initial code in scaleless genome. The transcriptional activity of scaleless's, Bm-ASH2 promoter was much lower than that of the WT, just the same as the truncated 979 bp promoter segment of WT without the 26 bp. EMSA result indicated that the 26 bp had a special binding nuclear protein. Genetic experiments also showed that the 26 bp sequence absent was tightly linked with the scaleless wings mutated phenotype. All of the results proved that the mutation in scaleless's Bm-ASH2 promoter caused the failure of Bm-ASH2 gene's transcription and translation. If artificially made the Bm-ASH2 gene expressed in early scaleless pupal wing with immediate expression system, the wing scales on the adult wing were increased significantly. So Bm-ASH2 gene is a key regulator for the formation of silkwom wing scales.
引文
1.雷朝亮,荣秀兰.普通昆虫学.北京:中国农业出版社;2003.
    2.板谷健吾.蚕体生理学.东京:明文堂;1936.
    3.吕鸿声.中国养蚕学.上海:上海科学技术出版社;1991.
    4.吕鸿声.昆虫病毒分子生物学.北京:中国农业科技出版社;1998.
    5.黄培堂等(译).PCR技术实验指南.北京:科学出版社;1998.
    6.黄培堂等(译).分子克隆实验指南(第三版).北京:科学出版社;2002.
    7.森精.新生物实验.东京:三省堂;1970.
    8.唐顺明,易咏竹,沈兴家,张志芳,李奕仁,何家禄.家蚕(苏·菊×明·虎)幼虫血清蛋白基因(BmLSP)启动子特性分析.科学通报2003,48:2261—2265.
    9.徐世清,木口宪尔,凌尔军,白井孝治,深本花菜,屠振力.重离子射线对家蚕幼虫造血功能的影响.蚕业科学2002,28:298-300.
    10.颜子颖,王海林(译).精编分子生物学实验指南.北京:科学出版社;1998.
    11.郑乐怡,归鸿.昆虫分类.南京:南京师范大学出版社;1999.
    12.浙江农业大学.蚕体解剖生理学.北京:农业出版社;1991.
    13.张志芳,秦俭.家蚕蛾透明翅的遗传学研究(初报).蚕业科学1991,17:186-187.
    14.赵巧玲,张志芳,何家禄.家蚕蛹体基因组DNA的快速制备方法.蚕业科学2000,26:63—64.
    15. Akai H., Kobayashi J., Takabayashi K., Chida I. Changes of ecdysteroid levels of Bombyx larvae after JH and ecdysterone treatments. J Seric Sci Jnp 1989, 58: 436-438.
    16. Akai H., Sato S. An ultrastructural study of the haemopoietic organs of the silkworm, Bombyx mori. J Insect Physiol 1971, 17: 1665-1676.
    17. Albert B., Bray D., Lewis J., al. e. Molecular biology of the cell. New York & London: Garland publishing, Inc; 1994.
    18. Alonso M. C., Cabrera C. V. The achaete-scute gene complex of Drosophila rnelanogaster comprises four homologous genes. EMBO J 1988, 7: 2585-2591.
    19. Artavanis-Tsakonas S., Simpson P. Choosing a cell fate: a view from the Notch locus. Trends Genet 1991, 7: 403-407.
    20. Aschkenazi S., Straszewski S., Verwer K. M., Foellmer H., Rutherford T., Mor G. Differential regulation and function of the Fas/Fas ligand system in human trophoblast cells. Biol Reprod 2002, 66: 1853-1861.
    21. Beaulaton J. Hemocytes and hemocytopoiesis in silkworms. Biochimie 1979, 61: 157-164.
    22. Beldade P., Brakefield P. M. The genetics and EVO-DEVO of butterfly wing patterns. Nat Rev Genet 2002, 3: 442-452.
    23. Beuken E., Vink C., Bruggeman C. A. One-Step Procedure for Screening Recombinant Plasmids by Size. BioTechniques 1998, 24: 748-750.
    24. Biro L. P., Balint Z. S., Kertesz K., Vertesy Z., Mark G I., Horvath Z. E., Balazs J., Mehn D., Kiricsi I., Lousse V., et al. Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair. Phys Rev E 2003, 67: 021907.
    25. Blochlinger K., Bodmer R., Jack J., Jan L. Y., Jan Y. N. Primary structure and expression of a product from cut, a locus involved in specifying sensory organ identity in Drosophila. Nature 1988, 333: 629-635.
    26. Blough E., Dineen B., Esser K. Extraction of Nuclear Proteins from Striated Muscle Tissue. BioTechniques 1999, 26: 202-206.
    27. Bodmer R., Carretto R., Jan Y. N. Neurogenesis of the peripheral nervous system in Drosophila embryos. Neuron 1989, 3: 21-32.
    28. Botella L. M., Donoro C, Shchez L., Segarra C, Granadino B. Cloning and Characterization of the scute (sc) Gene of Drosophila subobscura. Genetics 1996, 144: 1043-1051.
    29. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 7: 248-54.
    30. Brand M., Jarman A. P., Jan L. Y., Jan Y. N. asense is a Drosophila neural precursor gene and is capable of initiating sense organ formation. Development 1993, 119: 1-17.
    31. Brunet J. E, Ghysen A. Deconstructing cell determination: Proneural genes and neuronal identity. Bioessays 1999, 21: 313-318.
    32. Brunetti C. R., Selegue J. E., Monteiro A., French V., Brakefield P. M., Carroll S. B. The generation and diversification of butterfly eyespot color patterns. Curr Biol 2001, 11: 1578-1585.
    33. Burland T. G DNASTAR's lasergene sequence analysis software. Methods Mol Biol 2000, 132: 71-91.
    34. Calkhoven C. E, Ab G Multiple steps in the regulation of transcription-factor level and activity. Biochem J 1996, 317: 329-342.
    35. Calleja M., Renaud O., Usui K., Pistillo D., Morata G, Simpson P. How to pattern an epithelium: lessons from achaete-scute regulation on the notum of Drosophila. Gene 2002, 292: 1-12.
    36. Calvez B. Progress of developmental programme during the last larval instar of Bombyx mori: relationships with food intake, ecdysteroids and juvenile hormone. J Insect Physiol 1981, 27: 233-239.
    37. Campos-Ortega J. A. The genetics of the Drosophila achaete-scute gene complex: a historical appraisal. Int J Dev Biol 1998, 42: 291-297.
    38. Carroll S. B., Gates J., Keys D. N., Paddock S. W., Panganiban G E., Selegue J. E., A. W. J. Pattern formation and eyespot determination in butterfly wings. Science 1994, 265: 109-114.
    39. Chan Y. M., Jan Y. N. Conservation of neurogenic genes and mechanisms. Curr Opin Neurobiol 1999, 9: 582-588.
    40. Chen H., Thiagalingam A., Chopra H., Borges M. W., Feder J. N., Nelkin B. D., Baylin S. B., Ball D. W. Conservation of the Drosophila lateral inhibition pathway in human lung cancer: a hairy-related protein (HES-1) directly represses achaete-scute homolog-1 expression. Proc Natl Acad Sci USA 1997, 94: 5355-5360.
    41. Chen Y., Yao B., Zhu Z., Yi Y., Lin X., Zhang Z., Shen G. A constitutive super-enhancer: homologous region 3 of Bombyx mori nucleopolyhedrovirus. Biochem Biophys Res Commun 2004, 318: 1039-1044.
    42. Chomczynsk P. One-hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal Biochem 1992, 201: 134-139.
    43. Cubas P., de Celis J., Campuzano S., Modolell J. Proneural dusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev 1991, 5: 996-1008.
    44. Dambly-Chaudiere C., Jamet E., Burri M., Bopp D., Basler K., Hafen E., Dumont N., Spielmann P., Ghysen A., Noll M. The paired box gene pox neuro: a determinant of poly-innervated sense organs in Drosophila. Cell 1992, 69: 159-172.
    45. de Celis J. F., Llimargas M., Casanova J. Ventral veinless, the gene encoding the Cf1 transcription factor, links positional information and cell differentiation during embryonic and imaginal development in Drosophila melanogaster. Development 1995, 121: 3405-3416.
    46. Deblandre G. A., Wettstein D. A., Koyano-Nakagawa N., Kintner C. A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos. Development 1999, 126: 4715-4728.
    47. Denecker G., Vercammen D., Declercq W., Vandenabeele P. Apoptotic and necrotic cell death induced by death domain receptors. Cell Mol Life Sci 2001, 58: 356-370.
    48. Dominguez M., Campuzano S. asense, a member of the Drosophila achaete-scute complex, is a proneural and neural differentiation gene. EMBO J 1993, 12: 2049-2060.
    49. Ebner A., Kiefer F. N., Ribeiro C., Petit V., Nussbaumer U., Affolter M. Tracheal development in Drosophila melanogaster as a model system for studing the development of a branched organ. Gene 2002, 287: 55-66.
    50. Felsenstein J. PHYLIP: Phylogentic inference package, version 3.6. edn. Washington: Department of Genome Sciences, University of Washington; 2002.
    51. Feng Z., Wu A. Z., Zhang Z., Chen C. C. GATA-1 and GATA-4 Transactivate Inhibin/Activin b-B-Subunit Gene Transcription in Testicular Cells. Mol Endocrinol 2000, 14(11): 1820-1835.
    52. Ferreiro B., Skoglund P., Bailey A., Dorsky R., Harris W. A. XASH1, a Xenopus homolog of achaete-scute: a proneural gene in anterior regions of the vertebrate CNS. Mech Dev 1993, 40: 25-36.
    53. Fichelson P., Gho M. The glial cell undergoes apoptosis in the microchaete lineage of Drosophila. Development 2003, 130: 123-133.
    54. Fisher A., Caudy M. The function of hairy-related bHLH repressor proteins in cell fate decisions. Bioessays 1998, 20: 298-306.
    55. Fujiwara H., Hojyo T. Developmental profile of wing imaginal discs of flugellos (fl), a wingless mutant of the silkworm, Bombyx mori. Dev Genes Evol 1997, 207: 12-18.
    56. Galant R., Skeath J. B., Paddock S., Lewis D. L., B. C. S. Expression pattern of a butterfly achaete-scute homolog reveals the homology of butterfly wing scales and insect sensory bristles. Curr Biol 1998, 8: 807-813.
    57. Garcia-Bellido A. Genetic analysis of the achaete-scute system of Drosophila melanogaster. Genetics 1979, 91: 491-520.
    58. Garcia-Bellido A., de Celis J. F. Developmental genetics of the venation pattern of Drosophila. Annu Rev Genet 1992, 26: 277-304.
    59. Gardiner E. M., Strand M. R. Hematopoiesis in larval Pseudoplusia includens and Spodoptera frugiperda. Arch Insect Biochem Physiol 2000, 43: 147-164.
    60. Ghabrial A., Luschnig S., Metzstein M. M., Krasnow M. A. Branching morphogenesis of the Drosophila tracheal system. Annu Rev Cell Dev Biol 2003, 19: 623-647.
    61. Ghiradella H. The structure and development of iridescent Lepidopteran scales: the Papilionidae as a showcase family. Entomol Soc Am 1985, 78: 252-264.
    62. Gho M., Bellaiche Y., Schweisguth F. Revisiting the Drosophila microchaete lineage: a novel intrinsically asymmetric cell division generates a glial cell. Development 1999, 126: 3573-3584.
    63. Ghysen A., Dambly-Chaudiere C. Genesis of the Drosophila peripheral nervous system. Trends Genet 1989, 5: 251-255.
    64. Ghysen A., Dambly-Chaudiere C. The specification of sensory neuron identity in Drosophila. BioEssays 1993, 15: 293-298.
    65. Ghysen A., Dambly-Chaudiere C., Jan L. Y., Jan Y. N. Cell interactions and gene interactions in peripheral neurogenesis. Genes Dev 1993, 7: 723-733.
    66. Gibert J. M., Simpson P. Evolution of cis-regulation of the proneural genes. Int J Dev Biol 2003, 47:643-651.
    67. Gompel N., Prud'homme B., Wittkopp P. J., Kassner V. A., Carroll S. B. Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 2005, 433: 481-487.
    68. Grens A., Mason E., Marsh J. L., Bode H. R. Evolutionary conservation of a cell fate specification gene: the Hydra achaete-scute homolog has proneural activity in Drosophila. Development 1995, 121: 4027-4035.
    69. Gu S. H., Chow Y. S. Stimulation of juvenile hormone biosynthesis by different ecdysteroids in Bombyx mori. Zool Stud 2003, 42: 450-454.
    70. Hacker G. The morphology of apoptosis. Cell Tissue Res 2000, 301: 5-17.
    71. Han S. S., Lee M. H., Kim W. K., Wago H., Yoe S. M. Hemocytic differentiation in hemopoietic organ of Bombyx mori larvae. Zool Sci 1998, 15: 371-379.
    72. Han S. S., Lee M. H., Yun T. Y., Kim W. K. Haemopoiesis in in vitro haemopoietic organ culture of Bombyx mori Larvae. Korean J Entomol 1995, 25: 281-290.
    73. Hassan B. A., Bellen H. J. Doing the MATH: is the mouse a good model for fly development? Genes Dev 2000, 14: 1852-1865.
    74. Herrmann M., Lorenz H. M., Voll R., Grunke M., Woith W., Kalden J. R. A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res 1994, 22: 5506-5507.
    75. Hoffmann J. A. Endocrine regulation of the production and differentiation of hemocytes in an orthopteran insect Locusta migratoria. Gen Comp Endocrinol 1970, 15: 198-219.
    76. Hojyo T., Fujiwara H. Reciprocal transplantation of wing discs between a wing deficient mutant (fl) and wild type of the silkworm, Bombyx mori. Dev Growth Differ 1997, 39: 599-606.
    77. Horie Y., Inokuchi T., Watanabe K., Yanagawa H. On the haemolymph volume of the silkworm, Bombyx mori. J Seric Sci Jpn 1971, 40: 330-334.
    78. Jan Y. N., Jan L. Y. HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 1993, 75: 827-830.
    79. Jan Y. N., Jan L. Y. Genetic control of cell fate specification in Drosophila peripheral nervous system. Annu Rev Genet 1994, 28: 373-393.
    80. Janssen J. M., Monteiro A., Brakefield P. M. Correlations between scale structure and pigmentation in butterfly wings. Evol Dev 2001, 3: 415-423.
    81. Jasoni C. L., Walker M. B., Morris M. D., Reh T. A. A chicken achaete-scute homolog (CASH-1) is expressed in a temporally and spatially discrete manner in the developing nervous system. Development 1995, 120: 769-783.
    82. Jeanmougin E, Thompson J. D., Gouy M., Higgins D. G, Gibson T. J. Multiple sequence alignment with Clustal X. Trends Biochem Sci 1998, 23: 403-405.
    83. Jockusch E. L., Nagy L. M. Insect evolution: how did insect wings originate? Curr Biol. 1997 Jun 1;7(6):R358-61. 1997, 7: R358-361.
    84. Johnson J. E., Birren S. J., Anderson D. J. Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors. Nature 1990, 346: 858-861.
    85. Johnson J. E., Birren S. J., Saito T., Anderson D. J. DNA binding and transcriptional regulatory activity of mammalian achaete-scute homologous (MASH) protein revealed by interaction with a muscle-specific enhancer. Proc Natl Acad Sci USA 1992, 89: 3596-3600.
    86. Jonsson M., Mark E. B., Brantsing C, Brandner J. M., Lindahl A., Asp J. Hash4, a novel human achaete-scute homologue found in fetal skin. Genomics 2004, 84: 859-866.
    87. Kamsteeg M., Rutherford T, Sapi E., Hanczaruk B., Shahabi S., Flick M., Brown D., Mor G Phenoxodiol—an isoflavone analog-induces apoptosis in chemoresistant ovarian cancer cells. Oncogene 2003, 22: 2611-2620.
    88. Kango-Singh M., Singh A., Gopinathan K. P. The wings of Bombyx mori from larval discs exhibiting an early differentiated state: a preliminary report. J Biosci 2001, 26: 167-177.
    89. Kawasaki H., Iwashita Y. Development of wing disc in the fifth larval instar of Bombyx mori. J Seric Sci Jpn 1987, 52: 89-98.
    90. Kawasaki H., Iwashita Y. Differentiation of wing disc of the fifth larval instar of Bombyx mori in vitro culture condition. J Seric Sci Jpn 1987, 56: 65-71.
    91. Kawasaki H., Nagata M., Tsuchida K., Kanke E. Acquisition of competence for pupal development of the wing disc during the final feeding stage of Bombyx mori. J Seric Sci Jpn 1995, 64: 487-492.
    92. Koch P. B., Behnecke B., ffrench-Constant R. H. The molecular basis of melanism and mimicry in a swallowtail butterfly. Curr Biol 2000a, 10: 591-594.
    93. Koch P. B., Lorenz U., Brakefield P. M., ffrench-Constant R. H. Butterfly wing pattern mutants: developmental heterochrony and co-ordinately regulated phenotypes. Dev Genes Evol 2000b, 210: 536-544.
    94. Kumazawa K., Negita K., Hasegawa T., Tabata H. Fluorescence from cover and basal scales of morpho-sulkowskyi and papilio-xuthus butterflies. J Exp Zool 1996, 275: 00015-00019.
    95. Kurata S., Komano H., Natori S. Dissociation of Sarcophaga peregrina (flesh fly) fat body by pupal haemocytes in vitro. J Insect Physiol 1989, 35: 559-565.
    96. Ledent V., Paquet Q., Vervoort M. Phylogenetic analysis of the human basic helix-loop-helix proteins. Genome Biol. 2002, 3: research0030.1-0030.18.
    97. Lewin B. Genes VH. New York: Oxford University Press; 2000.
    98. Lewis E. B. A gene complex controlling segmentation in Drosophila. Nature 1978, 276: 565-570.
    99. Llimargas M., Casanova J. ventral veinless, a POU domain transcription factor, regulates different transduction pathways required for tracheal branching in Drosophila. Development 1997, 124: 3273-3281.
    100. Maddison D. R., Maddison W. P., Schulz K. S., Wheeler T., Frumkin J. The Tree of Life Web Project, http://tolweb.org 2001.
    101. Martin-Bermudo M. D., Gonzalez F., Dominguez M., Rodriguez I., Ruiz-Gomez M., Romani S., Modolell J., Jimenez F. Molecular characterization of the lethal of scute genetic function. Development 1993, 118: 1003-1012.
    102. Martinez C, Modolell J., Garrell J. Regulation of the proneural gene achaete by helix-loop-helix proteins. Mol Cell Biol 1993, 13: 3514-3521.
    103. Massari M. E., Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 2000, 20: 429-440.
    104. Matsumoto T, Sakurai M. Studies on the blood of silkworm, Bombyx mor L. (IV) On the volume of the haemocytes in the blood of silkworm. J Seric Sci Jpn 1957, 26: 150-156.
    105. Matsunami K., Kokubo H., Ohno K., Xu P. X., Ueno K., Suzuki Y. Embryonic silk gland development in Bombyx: molecular cloning and expression of the Bombyx trachealess gene. Dev Genes Evol 1999, 209: 507-514.
    106. etzger R. J., Krasnow M. A. Genetic control of branching morphogenesis. Science 1999, 284: 1635-1639.
    107. Mita K., Kasahara M., Sasaki S., Nagayasu Y, Yamada T, Kanamori H., Namiki N., Kitagawa M., Yamashita H., Yasukochi Y, et al. The genome sequence of silkworm, Bombyx mori. DNA Res 2004,11:27-35.
    108. Mitsuhashi J. Primary culture of the hemocytopoietic organ of Papilio xuthus Linne. Applied Entomol Zool 1972, 7: 39-41.
    109. Modolell J., Campuzano S. The achaete-scute complex as an integrating device. Int J Dev Biol 1998, 42: 275-282.
    110. Morohoshi S. The developmental physiology of silkworm. Tokyo: Tokyo University publishers; 1976.
    111. Muler W. A. Developmental Biology. Berlin Heidelberg: Springer-Verlag; 1998.
    112. Nakahara Y., Kanamori Y., Kiuchi M., Kamimura M. In vitro studies of hematopoiesis in the silkworm: cell proliferation in and hemocyte discharge from the hematopoietic organ. J Insect Physiol 2003, 49: 907-916.
    113. Nijhout H. F. The development and evolution of butterfly wing patterns. Washington/London: Random House (Smithsonian Inst. Press); 1991.
    114. Nittono Y. Studies on the blood cells in the silkworm, Bombyx mori L. Bull Seric Exp Sta 1960, 16: 171-266.
    115. Nittono Y, Tomabechi S., Onodera N. Formation of hemocytes near imaginal wing discs in the silkworm, Bombyx mori L. (Preliminary note). J Seric Sci Jpn 1964, 33: 43-45.
    116. Obara Y, Miyatani M., Ishiguro Y, Hirota K., Koyama T, Izumi S., Iwami M., Sakurai S. Pupal commitment and its hormonal control in wing imaginal discs. J Insect Physiol 2002, 48: 933-944.
    117. Ohno S. Evolution by Gene Duplication. Berlin: Springer Verlag; 1970.
    118. Overton J. Microtubules and microfibrils in morphogenesis of the scale cells of Ephestia kuniella. J Cell Biol 1966, 29: 293-305.
    119. Overton J. The fine structure of developing bristles in wild type and mutant Drosophila melanogaster. J Morph 1967, 122: 367-380.
    120. Petit V., Ribeiro C, Ebner A., Affolter M. Regulation of cell migration during tracheal development in Drosophila melanogaster. Int J Dev Biol 2002, 46: 125-132.
    121. Pistillo D., Skaer N., Simpson P. scute expression in Calliphora vicina reveals an ancestral pattern of longitudinal stripes on the thorax of higher Diptera. Development 2002, 129: 563-572.
    122. Reed R. D. Evidence for Notch-mediated lateral inhibition in organizing butterfly wing scales. Dev Genes Evol 2004, 214: 43-46.
    123. Roch F, Baonza A., Martin-Bianco E., Garcia-Bellido A. Genetic interactions and cell behaviour in blistered mutants during proliferation and differentiation of the Drosophila wing. Development 1998, 125: 1823-1832.
    124. Roch F., Jimenez G, Casanova J. EGFR signalling inhabits Capicua-dependent repression during specification of Drosophila wing veins. Development 2002, 129: 993-1002.
    125. Sakurai S., Okuda M., Ohtaki T. Juvenile hormone inhibits ecdysone secretion and reponsiveness to prothoracicotropic hormone in prothoracic glands of Bombyx mori. Gen Comp Endocrinol 1989, 75: 222-230.
    126. Samakovlis C, Hacohen N., Manning G, Sutherland D. C, Guillemin K., Krasnow M. A. Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 1996, 122:1395-1407.
    127. Satake S. I. , Sakurai S., Kaya M. Hemolymph ecdysteroid titer and ecdysteroid-dependent developmental events in the last-larval stadium of the silkworm, Bombyx mori: role of low ecdysteroid titer in larval-pupal metamorphosis and a reappraisal of the head critical period. J Insect Physiol 1998, 44: 867-881.
    128. Sato S., Akai H. Development of the hemopoietic organs of the silkworm, Bombyx mori L.. J Seric Sci Jpn 1977, 46: 397-403.
    129. Schlatter R., Maier D. The Enhancer of split and Achaete-Scute complexes of Drosophilids derived from simple ur-complexes preserved in mosquito and honeybee. BMC Evol Biol 2005, 5: 67.
    130. Simonsen T. J. The wing vestiture of the non-ditrysian Lepidoptera (Insecta). Comparative morphology and phylogenetic implications. Acta Zool.(Stockholm) 2001, 82: 275-298.
    131. Skaer N., Pistillo D., Gibert J. M., Lio P., Wulbeck C., Simpson P. Gene duplication at the achaete-scute complex and morphological complexity of the peripheral nervous system in Diptera. Trends in Genetics 2002, 18: 399-405.
    132. Skeath J., Carroll S. B. Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing. Genes Dev 1991, 5: 984-995.
    133. Sorrentino R. P., Carton Y., Govind S. Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev Biol 2002, 243: 65-80.
    134. Summers M., Smith G. A manual of methods for baculovirus vectors and insect cell culture procedures. Texas Agricultural Experiment Station bulletin 1987, no. 1555.
    135. Takayama E., Yoshida A. Color pattern formation on the wing of the butterfly Pieris rapae. 1. Cautery induced alteration of scale color and delay of arrangement formation. Dev Growth Differ 1997, 39: 23-31.
    136. Takayama E., Motoyama M., Yoshida A. Color pattern formation on the wing of a butterfly Pieris rapae. 2. Color determination and scale development. Dev Growth Differ 1997, 39: 485-491.
    137. Thompson J., Gibson T., Plewniak F., Jeanmougin F., Higgins D. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids. Res. 1997, 25: 4876-4882.
    138. Truman J. W., Riddiford L. M. Endocrine insights into the evolution of metamorphosis in insects. Annu Rev Entomol 2002, 47: 467-500.
    139. Tu Z. L., Kobayashi Y., Kiguchi K., Watanabe H., Yamamoto K. Effects of heavy-ion radiosurgery on the hemopoietic function of the silkworm Bombyx mori. J Radiat Res 2002, 43: 269-275.
    140. Tu Z. L., Shirai K., Kanekatsu R., Kiguchi K., Kobayashi Y., Taguchi M., Watanabe H. Effects of local heavy ion beam irradiation on the hemopoietic organs of the silkworm, Bombyx mori. J Seric Sci Jpn 1999, 68: 491-500.
    141. Usui K., Pistillo D., Simpson P. Mutual exclusion of sensory bristles and tendons on the notum of dipteran flies. Curr Biol 2004, 14 (12): 1047-1055.
    142. Van Doren M., Powell P. A., Pasternak D., Singson A., Posakony J. W. Spatial regulation of proneural gene activity: auto-and cross-activation of achaete is antagonized by extramacrochaetae. Genes Dev 1992, 6: 2592-2605.
    143. Wang J., Xia Q., He X., Dai M., Ruan J., Chen J., Yu G., Yuan H., Hu Y., Li R., et al. SilkDB: a knowledgebase for silkworm biology and genomics. Nucleic Acids Research, 2005, 33: D399-402.
    144. Weatherbee S. D., Nijhout H., Grunert L. W., Halder G., Galant R., Selegue J., Carroll S. B. Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Curr Biol 1999, 9: 109-115.
    145. Weintraub H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 1993, 75: 1241-1244.
    146. Wheeler S. R., Carrico M. L., Wilson B. A., Brown S. J., Skeath J. B. The expression and function of the achaete-scute genes in Tribolium castaneum reveals conservation and variation in neural pattern formation and cell fate specification. Development 2003, 130:4373-4381.
    147. Wülbeck C., Simpson P. The expression of pannier and achaete-scute homologues in a mosquito suggests an ancient role of pannier as a selector gene in the regulation of the dorsal body pattern. Development 2002, 129: 3861-3871.
    148. Xia A. H., Zhou Q. X., Yu L. L., Li W. G., Yi Y. Z., Zhang Y. Z., Zhang Z. F. Identification and analysis of YELLOW protein family genes in the silkworm, Bombyx mori. BMC Genomics 2006, 7:195.
    149. Xia Q., Zhou Z., Lu C., Cheng D., Dai F., Li B., Zhao P., Zha X., Cheng T., Chai C., et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 2004, 306: 1937-1940.
    150. Yamashita M., Iwabuchi K. Bombyx mori prohemocyte division and differentiation in individual microcultures. J Insect Physiol 2001, 47:325-331.
    151. Yoshida A., Aoki K. Scale arrangement pattern in a lepidopteran wing. 1. Periodic cellular pattern in the pupal wing of Pieris rapae. Dev Growth Differ 1989, 31: 601-609.
    152. Yoshida A., Noda A., Emoto J. Bristle Distribution Along the Wing Margin of the Small White Cabbage Butterfly (Lepidoptera: Pieridae). Ann Entomol Soc Am 2001, 94: 467-470.
    153. Younossi-Hartenstein A., Hartenstein V. The role of the tracheae and musculature during pathfinding of Drosophila embryonic sensory axons. Dev Biol 1993, 158: 430-447.
    154. Zelzer E., Shilo B. Z. Cell fate choices in Drosophila tracheal morphogenesis. BioEssays 2000, 22: 219-226.
    155. Zhang T. Y., Kang L., Zhang Z. F., Xu W. H. Identification of a POU factor involved in regulating the neuron-specific expression of the gene encoding diapause hormone and pheromone biosynthesis-activating neuropeptide in Bombyx mori. Biochem J 2004, 380: 255-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700