铁电薄膜的极化疲劳机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁电薄膜存储器具有高存取速度、高密度、抗辐射和不挥发等特点,引起了人们广泛的研究兴趣。应用于非挥发性存储器的铁电薄膜必须满足极化反转多次(≥1012)而不发生存储单元失效的要求。铁电薄膜的极化疲劳是导致存储单元失效的最重要的因素之一,人们进行了大量的研究来探寻极化疲劳的机理,然而至今仍没有一个令人满意的物理模型。
     本论文的工作主要是通过总结分析铁电薄膜极化疲劳的典型实验现象和已有的各种解释,提炼出极化疲劳的微观物理图像,建立合理的极化疲劳模型。
     研究了PZT铁电薄膜的极化疲劳机制。铁电薄膜的极化疲劳是一个多种因素共同参与的复杂过程,而以往的模型大多只考虑一种因素主导而忽略了其他的因素。本文在综合考虑氧空位向界面层的跃迁汇聚、电子注入还原高价阳离子产生新的氧空位以及局部相分解(LPD,Local phase decomposition)三种因素的基础上得出了极化疲劳过程的基本物理图像,认为铁电薄膜与电极界面附近氧空位浓度的增加和LPD是相互促进的。将电荷注入以及LPD理论引入到Dawber-Scott模型中,建立了一个综合考虑多种因素的解析形式的PZT薄膜极化疲劳模型。结合新建立的综合模型讨论了低介电常数界面层在疲劳过程中的作用,认为界面层对疲劳的产生起关键作用。运用该模型分析了不同松弛时间、电压、频率以及温度下的疲劳特性。在与已报道的实验结果进行对比后发现,模型计算结果与实验数据具有很好的一致性。
     研究了铋层类钙钛矿结构铁电薄膜的极化疲劳问题。本文从两种材料晶体结构的差异出发,总结了Bi2O22+层影响疲劳特性的三个方面。将Bi2O22+的三种作用引入到PZT薄膜极化疲劳的模型中,将其扩展为适用于铋层类钙钛矿结构铁电薄膜的疲劳模型。利用扩展模型分析了电压、频率、温度以及材料的介电常数和畴结构等因素对疲劳特性的影响。将理论模拟结果与文献报道的实验现象进行对比,验证了引入铋氧层作用的合理性。
Ferroelectric random access memories(FRAM) attract extensive interest due to high speed, low cost, low power, excellent radiation hardness and nonvolatile information storage. To FRAM, the ferroelectric thin films have to withstand up to 1012 switching cycles without cell failure. Polarization fatigue is one of the most central causes lead to device failure. Though extensive work has been performed to understand the mechanism of fatigue, there is not a full-accepted physical model.
     In this study, we attempt to abstract the microcosmic physical image and propose a model for fatigue in ferroelectric thin films by analyzing the classic experimental findings and all kinds of explanations.
     Fatigue mechanism of PZT thin films is investigated. Fatigue in ferroelectric thin films is a complex process caused by many kinds of factors. Previous models tend to include single major factor ignoring others. Based on the oxygen vacancies electro-migration to interfacial layer, generation of new vacancies due to deoxidization of high valence cations by injected charges and local phase decomposition(LPD) a physical image of polarization fatigue is derived. An analytical model is proposed by incorporating the switch-induced charge-injection mechanism and the local phase decomposition theory into the oxygen vacancy electro-migration model. The effects of the low permittivity interfacial layer on the fatigue property are analysed with this model. We conclude the interfacial layer is a crucial reason for polarization fatigue in ferroelectric thin films. The model can easily simulate the fatigue behavior of various ferroelectric thin films under different relaxation times, voltages, frequencies and temperatures.
     Fatigue problem of bismuth layered structure perovskite thin films(BLTF) is investigated. Bismuth layer is the most important difference between PZT and BLTF in crystal structure. Bismuth layer may improve fatigue property in three aspects. We extend the PZT thin film fatigue model to BLTF by introducing the effects of bismuth layer in it. The voltage, frequency, temperature and dielectric permittivity dependent fatigue properties of BLTF are calculated with the extend model. The results are compared with various experiments. As a whole, the calculations of our model are in agreement with the experiments.
引文
[1]钟维烈.铁电体物理学[M].北京:科学出版社,1996:1-30.
    [2] M.E.莱因斯,A.M.格拉斯(钟维烈译).铁电体和有关材料的原理和应用[M].北京:科学出版社,1989:9-16.
    [3]王仁卉,郭可信.晶体学中的对称群[M].北京:科学出版社,1990:26-51.
    [4] Dawber M, Rabe K M, Scott J F. Physics of thin-film ferroelectric oxides[J]. Rev. Mod. Phys, 2005, 77(4):1083-1130
    [5] Scott J F. Application of modern ferroelectrics[J]. Science, 2007, 315:957-959.
    [6]刘梅冬,许毓春.压电铁电材料与器件[M].武汉:华中理工大学出版社,1990:14-17.
    [7]胡正军,王莉,徐东等.PZT压电薄膜在MEMS中的应用[J].微细加工技术,2001,(4):44-49.
    [8] Muralt P, Trolier-Mckinstry S. Thin film piezoelectrics for MEMS[J]. Journal of Electroceramics, 2004, 12:7-17.
    [9]夏冬林,刘梅冬,曾亦可.PZT铁电厚膜声纳换能器[J].电子元件与材料,2000,19(5):34-36.
    [10] Zinck C, Pinceau D, Defay E, et al. Development and characterization of membranes actuated by a PZT thin film for MEMS application[J]. Sensors and Actuators A, 2004, 115:483-489.
    [11]戴自璋.铁电薄膜材料的性能,应用和发展前景[J].陶瓷研究,1997,12(3):15-17.
    [12]付承菊,郭冬云.铁电存储器的研究进展[J].纳米器件与技术,2006,9:414-419.
    [13]邓亮,田漪.航空航天领域中有广泛应用前景的铁电薄膜[J].材料工程,1995,(3):2-15.
    [14] Scott J F(朱劲松等译).Ferroelectric Memories (铁电存储器) [M].北京:清华大学出版社,2004:23-24,114-117.
    [15]罗维根,丁爱丽.不挥发存储器的最新研究发展[J].无机材料学报,1996,11(1):19-23.
    [16]周益春.无铅铁电薄膜的制备、性能及其在存储器中的应用[R].湘潭:湘潭大学,2008.
    [17]翟亚红.铁电存储器的结构与设计[D].成都:电子科技大学,2005.
    [18]史田华.信息组织与存储[M].南京:东南大学出版社,2003:261-266.
    [19]刘敬松,张树人,李言容.铁电存储技术[J].物理与工程,2002,12(2):37-40.
    [20]刘治国,李爱东,吴迪等.存储器用铁电薄膜及电极材料的研究[J].物理,2007,36(1):20-25.
    [21] Masanori Okuyama, Yoshiro Ishibashi. Ferroelectric thin films[M].Berlin: Springer, 2005:77-88.
    [22]黄平.锶铋钛铁电陶瓷及薄膜的研究[D].天津:天津大学,2005.
    [23] Sinharoy S, Buhay H, Lamp D R, et al. Integration of ferroelectric thin films into nonvolatile memories[J]. J. Vac. Sci. Technol. A, 1992, 10(4):1554-1561
    [24]王华,任鸣放.铁电存储器及研究进展[J].桂林电子工业学院学报,2000,20(3):37-40.
    [25] Moazzami R. Ferroelectric thin film technology for semiconductor memory[J]. Semicond. Sci. Technol., 1995, 10: 375-390
    [26]王华,于军,周文利等.铁电场效应晶体管[J].电子元件与材料,2000,2:19-22.
    [27]马良.铁电存储器工作原理和器件结构[J].电子与封装,2008,8(8):35-38.
    [28] Ito D, Fujimura N, Yoshimura T, et al. Influence of Schottky and Poole-Frenkel emission on the retention property of YMnO3-based metal/ferroelectric/insulator/semiconductor capacitors [J]. Journal of Applied Physics, 2003, 94(6): 4036-4041.
    [29]肖定全.铁电薄膜中的几个重要问题[J].功能材料,2003,5(34):479-481.
    [30] Warren W L, Dimos D, Pike G E, et al. Voltage shifts and imprint in ferroelectric capacitors[J]. Appl. Phys. Lett., 67(6):866-868.
    [31] Abe K, Komatsu S. Ferroelectric properties in epitaxially grown BaxSr1-xTiO3 thin films [J]. Journal of Applied Physics, 1995, 77(12): 6461-6465.
    [32] Hong S, Colla E L, Kim E, et al. High resolution study of domain nucleation and growth during polarization switching in Pb(Zr,Ti)O3 ferroelectric thin film capacitors [J]. Journal of Applied Physics, 1999, 86(1): 607-613.
    [33] Cao H X, Lo V C, Li Z Y. Simulation of flexoelectricity effect on imprint behavior of ferroelectric thin films[J]. Solid State Communications, 2006, 138:404-408.
    [34] Zhou Y, Chan H K, Lam C H, et al. Mechanisms of imprint effect on ferroelectric thin films[J]. Journal of Applied Physics, 2005, 98: 024111.
    [35] Ye Z, Tang M H, Zhou Y C, et al. Modeling of imprint in hysteresis loop of ferroelectric thin films with top and bottom interface layers[J]. Appl. Phys. Lett., 2007, 90:042902.
    [36] Colla E L, Hong S, Tayoor D V. Direct observation of region by region suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin film capacitors with Pt electrodes[J]. Appl. Phys. Lett, 1998, 72:2763-2765.
    [37]金红政.高介电钛酸锶钡薄膜的电子显微研究[D].北京:清华大学,2002.
    [38] Ramesh R, Chan W K, Wilkens B, et al. Fatigue and retention in ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O hereterostructures[J]. Appl. Phys. Lett., 1992, 61:1537- 1539.
    [39] Ramesh R, Gilchrist H, Sands T, et al. Ferroelectric La-Sr-Co-O/Pb-Zr-Ti-O/ La-Sr-Co-O heterostructures on silicon via template growth[J]. Appl. Phys. Lett., 1993, 63:3592-3594.
    [40] Eom C B, Dover R B, Phillips J M, et al. Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes[J]. Appl. Phys. Lett., 1993, 63:2570-2572.
    [41] Araujo C A-Paz, McMillan L D, et al. Fatigue-free ferroelectric capacitors with platinum electrodes[J]. Nature, 1995, 374:627-629.
    [42] Park BH, Kang B S, Bu S D, et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories[J]. Nature, 1999, 401:682-684.
    [43]朱劲松,李伟,陈恺等.钛酸铋系中与铁电性能有关的缺陷及其弛豫研究的进展[J].物理学进展,2006,26(3):351-358.
    [44] Larsen P K, Dormans G J M, Taylor D J, et al. Ferroelectric properties and fatigue of PbZr0.51Ti0.49O3 thin films of varying thickness: Blocking layer model[J]. J. Appl. Phys., 1994, 76:2405-2413.
    [45] Bratkovsky A M, Levanyuk A P. Abrupt appearance of the domain pattern and fatigue of thin ferroelectric films[J]. Phys. Rev. Lett., 2000, 84(14):3177-3180.
    [46] Dawber M, Scott J F. A model for fatigue in ferroelectric perovskite thin films[J]. Appl. Phys. Lett., 2000, 76:1060.
    [47] Scott J F, Dawber M. Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics[J]. Appl. Phys. Lett., 2000, 76:3801-3803.
    [48] Colla E L, Taylor D V, Tagantsev A K, et al. Discrimination between bulk and interface scenarios for the suppression of the switchable polarization(fatigue) in Pb(Zr,Ti)O3 thin films capacitors with Pt electrodes[J]. Appl. Phys. Lett., 1998, 72:2478-2480.
    [49] Tagantsev A K, Stolichnov I, Colla E L, et al. Polarization fatigue in ferroelectric films:Basic experimental findings, phenomenological scenarios, and microscopicfeatures[J]. J. Appl. Phys., 2001, 90:1387-1402.
    [50] Jiang Q Y, Cao W W, Cross L E, et al. Electric fatigue in lead zirconate titanate ceramics[J]. J. Am. Ceram. Soc., 1994, 77(1): 211-215.
    [51] Lou X J, Zhang M, Redfern S A T, et al. Local phase decomposition as a cause of polarization fatigue in ferroelectric thin films[J]. Phys Rev Lett, 2006, 97(17):7601.
    [52] Lou X J, Zhang M, Redfern S A T, et al. Fatigue as a local phase decomposition: A switching-induced charge-injection model[J]. Phys Rev B, 2007, 75(22):4104.
    [53] Lupascu D C. Fatigue in ferroelectric ceramics due to cluster growth[J]. Solid State Ionics, 2006, 177:3161-3170.
    [54] Vijay D P, Desu S B. Electrode for PbZrxTi1-xO3 ferroelectric thin films[J]. J. Electrochem. Soc., 1993, 140(9):2640-2645.
    [55] Lee J J, Thio C L, Desu S B. Electrode contacts on ferroelectric PZT and SBT thin films and their influence on fatigue properties[J]. J Appl Phys, 1995, 78:5073.
    [56] Li R C, Jiang J H, Wu W, et al. Structural properties of Pb(Zr0.53Ti0.47)O3/YBa2Cu3O7-δheterostructures on SrTiO3 substrates[J]. J Mater Sci, 1998, 33(7):1783-1787.
    [57] Mihara T, Wantanabe H, Araujo C P. Polarization fatigue characteristics of sol-gel ferroelectric Pb(Zr0.4Ti0.6)O3 thin-film capacitors[J]. Jpn J Appl Phys, 1994, 33(7A):3996-4002
    [58] Paton E, Brazier M, Mansour S, et al. A critical study of defect migration and ferroelectric fatigue in lead zirconate titanate thin film capacitors under extreme temperatures[J]. Integrated Ferroelectrics, 1997, 18:29-37.
    [59]刘俊明,王阳.重温Pb(ZrxTi1-x)O3铁电薄膜极化疲劳问题[J].物理,2008,37(5):310-316.
    [60] Yuan G L, Liu J-M, Wang Y P, et al. Temperature-dependent fatigue behaviors of ferroelectric ABO3-type and layered peravskite oxide thin films[J]. Appl. Phys. Lett., 2004, 84(17):3352-3354.
    [61] Pawlaczyk C, Tagantsev A K, Brooks K, et al. Fatigue, rejuvenation and self-restoring in ferroelectric thin films[J]. Integr. Ferroelectr., 1995, 9:293-319.
    [62] Colla E L, Tagantsev A K, Kholkin A L, et al. DC-voltage and cycling induced recovery of switched polarisation in fatigued ferroelectric thin films[J]. Integr. Ferroelectr., 1995, 10:289-294.
    [63] Stolichnov I, Tagantsev A, Setter N, et al. Top-interface-controlled switching and fatigue endurance of (Pb,La)(Zr,Ti)O3 ferroelectric capacitors[J]. Appl. Phys. Lett., 1999,74(23):3352-3354.
    [64] Ramesh R, Chan W K, Wilkens B, et al. Structure and properties of ferroelectric PbZr0.2Ti0.8O3/YBa2Cu3O7 heterostructures[J]. J. Electro. Mater. 1992, 21:513-518.
    [65] Chikarmane V, Sudhama C, Kim J, et al. Effects of post-deposition annealing ambient on the electrical characteristics and phase transformation kinetics of sputtered lead zirconate titanate (65/35) thin film capacitors[J]. J. Vac. Sci. Technol. A, 1992, 10(4):1562-1568.
    [66] Jiang A Q, Lin Y Y, Tang T A. Coexisting depinning effect of domain walls during the fatigue in ferroelectric thin films[J].Applied Physics Letters, 2006, 89(3):2906.
    [67] Jin H Z, Zhu J. Size effect and fatigue mechanism in ferroelectric thin films[J]. J. Appl. Phys., 2002, 92(8):4594-4598.
    [68] Stolichnov I, Tagantsev A, Setter N, et al. Degradation of asymmetrical Pt/SRO/PLZT/Pt capacitors: Role of Pt and oxide electrodes[J]. Integr. Ferroelectr., 1999, 26:311-321.
    [69] Stolichnov I A, Tagantsev A K, Colla E L, et al. Cold-field-emission test of the fatigued state of Pb(ZrxTi1-x)O3 films[J]. Appl. Phys. Lett., 1998, 73(10):1361-1363.
    [70] Stolichnov I A, Tagantsev A K, Setter N, et al. Dielectric breakdown in (Pb,La)(Zr,Ti)O3 ferroelectric thin films with Pt and oxide electrodes[J]. J. Appl. Phys., 2000, 87(4):1925-1931.
    [71] Scott J F, Araujo C A, Meinick B M, et al. Quantitative measurement of space-charge effects in lead zirconate-titanate memories[J]. J. Appl. Phys., 1991, 70(1):382-388.
    [72] Aoki K, Fukuda Y. Effects of La and Nb modification on fatigue and retention properties of Pb(Ti,Zr)O3 thin-film capacitors[J]. Jpn. J. Appl.Phys., 1997, 36:1195.
    [73] Ryder D F, Raman N K. Sol-gel processing of Nb-doped Pb(Zr,Ti)O3 thin films for ferroelectric memory applications[J]. J. Electron Mater, 1992, 21:971.
    [74] Bao Z H, Yao Y Y, Zhu J S, et al. Study on ferroelectric and dielectric properties of niobium doped Bi4Ti3O12 ceramics and thin films prepared by PLD method[J]. Mater. Lett., 2002, 56:861-866.
    [75]黄平,徐廷献.FRAM用铁电薄膜疲劳问题研究进展[J].材料导报,2006,20(1):9-13.
    [76]陈志武,程璇,张颖.铁电薄膜电疲劳研究进展[J].功能材料,2003,34(5):500-504.
    [77] Stolichnov I, Malin L, Colla E, et al. Microscopic aspects of the region-by-region polarization reversal kinetics of polycrystalline ferroelectric Pb(Zr,Ti)O3 films[J]. Appl. Phys. Lett., 2005, 86:012902.
    [78] Miller S L, Nasby R D, Schwank J R. Device modeling of ferroelectric capacitors[J]. J.Appl. Phys., 1990, 68(12):6463-6471.
    [79] Tagantsev A K, Landivar M, Colla E L, et al. Identification fo passive layer in ferroelectric thin films from their switching parameters[J]. J. Appl. Phys., 1995, 78(4):2623-2630.
    [80] Tagantsev A K. Mechanisms of polarization switching in ferroelectric thin films[J]. Ferroelectrics, 1996, 184:79-88.
    [81] Warren W L, Dimos D, Tuttle B A, et al. Polarization supression in PZT thin films[J]. J. Appl. Phys., 1995, 77(12):6695.
    [82] Taylor D V, Damjanovic D, Colla E L, et al. Fatigue and nonlinear dielectric response in sol-gel derived lead zirconate titanate thin films[J]. Ferroelectrics, 1999, 225:91-97.
    [83] Colla E L, Tagantsev A K, Taylor D V, et al. Fatigued state of he Pt-PZT-Pt system[J]. Int Ferroelectr, 1997, 18:19-28.
    [84]李翰如.电介质物理导论[M].成都:成都科技大学出版社,1990:15-33.
    [85] Robels U, Calderwood J H, Arlt G. Shift and deformation of the hysteresis curve of ferroelectrics by defects: an electrostatic model[J]. Journal of Applied Physics, 1995, 77(8):4002-4008.
    [86] Robels U, Arlt G. Domain wall clamping in ferroelectrics by orientation of defects[J]. J. Appl. Phys., 1993, 73(7):3454-3460.
    [87] Lohkamper R, Neumann H, Arlt G. Internal bias in acceptor-doped BaTiO3 ceramics: Numerical evaluation of increase and decrease[J]. J. Appl. Phys., 1990, 68(8): 4220-4224.
    [88] Yoo I K, Desu S B. Mechanism of Fatigue in Ferroelectric Thin Films[J]. Phys Stat Sol (a), 1992, 133(2):565-573.
    [89] Du X, Chen I.-Wei. Fatigue of Pb(Zr0.53Ti0.47)O3 ferroelectric thin films[J]. J. Appl. Phys., 1998, 83(12):7789-7798.
    [90] Jiang A Q, Lin Y Y, et al. Charge injection and polarization fatigue in ferroelectric thin films[J]. J. Appl. Phys., 2007, 102(7):4109.
    [91] Li J, Nagaraj B, Liang H, et al. Ultrafast polarization switching in thin-film ferroelectrics[J]. Appl. Phys. Lett., 2004, 84(7):1174-1176.
    [92] Harrison R J, Redfern S A T, Salje E K H, Dynamical excitation and anelastic relaxation of ferroelastic domain walls in LaAlO3[J]. Phys. Rev. B, 2004, 69:144101.
    [93] Parker C B, Maria J P, Kingon A I. Temperature and thickness dependent permittivity of (Ba,Sr)TiO3 thin films[J]. Appl. Phys. Lett., 2002, 81(2):340-342.
    [94] Sze S M. Physics of Semiconductor Devices[M]. New York: Wiley-Interscience, 2007:79-90.
    [95] Lente M H, Eiras J A. Interrelationship between self-heating and ferroelectric properties in PZT ceramics during polarization reorientation[J]. J. Phys.: Condens. Matter, 2000, 12:5939-5950.
    [96] Chen S Y, Chen I W. Temperature–time texture transition of Pb(Zr1-xTix)O3 thin films: II, heat treatment and compositional effects[J]. J. Am. Ceram. Soc., 1994, 77:2337-2344.
    [97] Castellano R N, Feinstein L G. Ion-beam deposition of thin films of ferroelectric lead zirconate titanate (PZT)[J]. J. Appl. Phys., 1979, 50(6): 4406-4411.
    [98] Tabata H, Kawai T, Kawai S, et al. Preparation of PbTiO3 thin films at low temperature by an excimer laser ablation technique[J]. Appl. Phys. Lett., 1991, 59(19):2354-2356.
    [99]陈富贵.PZT铁电薄膜的疲劳与老化特性研究[D].成都:电子科技大学,2005.
    [100] Yang F, Tang M H, Zhou Y C. Fatigue mechanism of the ferroelectric perovskite thin films[J]. Appl. Phys. Lett., 2008, 92:022908.
    [101] Wang Y, Wong K H, Choy C L. Fatigue problem in ferroelectric thin films[J]. Phys. stat. sol.(a), 2002, 191(2):482-488.
    [102] Wang Y, Wong K H, Wu W B. Polarization fatigue in ferroelectric thin films[J].Chin. Phys. Lett., 2002, 19(4):566-568.
    [103] Dimos D, Al-Shareef H N, Warren W L, et al. Photoinduced changes in the fatigue behavior of SrBi2Ta2O9 and Pb(Zr,Ti)O3 thin films[J]. J. Appl. Phys., 1996, 80(3):1682-1687.
    [104] Al-Shareef H N, Dimos D, Boyle T J. et al. Qualitative model for the fatigue-free behavior of SrBi2Ta2O9[J]. Appl. Phys. Lett. 1996, 68(5):690-692.
    [105] Zhang Z G, Liu J S, Wang Y N, et al. Fatigue characteristics of SrBi2Ta2O9 thin films prepared by metalorganic decomposition[J]. Appl. Phys. Lett., 1998, 73:788.
    [106] Zhang Z G, Liu J S, Wang Y N, et al. Structure and voltage dependence of ferroelectric properties of SrBi2Ta2O9 thin films[J]. J. Appl. Phys., 1999, 85(3):17 46-1749.
    [107] Wu D, Li A, Ling H, et al. Fatigue study of metalorganic-decomposition-derived SrBi2Ta2O9 thin films: The effect of partial switching[J]. Appl. Phys. Lett., 2000, 76(16):2208-2210.
    [108] Shulman H S, Damjanovic D, Seter N. Niobium doping and dielectric anomalies in bismuth titanate[J]. J. Am. Ceram. Soc., 2000, 83(9):528-532.
    [109] Yao Y Y, Song C H, Bao P. Doping effect on the dielectric property in bismuthtitanate[J]. J. Appl. Phys., 2004, 95(6):3126-3130.
    [110] Robertson J, Chen C W, Warren W L. et al. Electronic structure of the ferroelectric layered perovskite SrBi2Ta2O9[J]. Appl. Phys. Lett., 1995, 69(12):1704-1706.
    [111] Chu M W, Ganne M, Caldes M T, et al. X-ray photoelectron spectroscopy and high resolution electron microscopy studies of Aurivillius compounds: Bi4–xLaxTi3O12(x=0, 0.5, 0.75, 1.0, 1.5, and 2.0)[J]. J. Appl. Phys., 2002, 91(5):3178-3187.
    [112] Chu M W, Ganne M, Caldes M T. Et al. X-ray photoemission spectroscopy characterization of the electrode-ferroelectric interfaces in Pt/Bi4Ti3O12/Pt and Pt/Bi3.25La0.75Ti3O12/Pt capacitors: Possible influence of defect structure on fatigue properties[J]. Phys. Rev. B, 2003, 68, 14102.
    [113] Lee J K, Kim C H, Suh H S, et al. Correlation between internal stress and ferroelectric fatigue in Bi4-xLaxTi3O12 thin films[J]. Appl. Phys. Lett., 2002, 80(19):3593-3595.
    [114] Su D, Zhu J S, Wang Y N. Different domain structures and their effects on fatigue behavior in Bi3TiTaO9 and SrBi2Ta2O9 ceramics[J]. J. Appl. Phys, 2003, 93(8):4784-4787.
    [115] Park B H, Hyun S J, Bu S D, et al. Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12[J]. Appl. Phys. Lett., 1999, 74(13):1907-1909.
    [116] Sun H, Zhu J, Fang H. Large remnant polarization and excellent fatigue property of vanadium-doped SrBi4Ti4O15 thin films[J]. J. Appl. Phys., 2006, 100:074102.
    [117] Yuan G L, Liu J M, Baba-Kishi B, et al. Switching fatigue of ferroelectric layered-perovskite thin films: temperature effect[J]. Materials science and engineering B, 2005, 118:225-228.
    [118]苏东.层状钙钛矿材料畴结构的电镜观察及其对疲劳性能和铁电性能的影响研究[D].南京:南京大学,2004.
    [119] Guo D Y, Li M Y, Liu J, et al. Ferroelectric properties of Bi4-xLaTi3O12(x=0,0.75) thin films prepared by sol-gel method[J]. Materials science and engineering B, 2007, 142:135-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700