16S rRNA基因分子技术研究仔猪胃肠道菌群区系变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哺乳动物的胃肠道中栖息着大量的微生物,这些微生物在营养、免疫、抗感染等方面对宿主的健康发挥重要作用.仔猪因为要经历早期断奶这样一个特殊的生理阶段,因此,胃肠道微生物对其肠道的健康更显重要.本论文利用基于16S rRNA基因的分子技术研究了仔猪哺乳阶段至断奶后两周(35日龄)的胃肠道菌群区系变化.利用变性梯度凝胶电泳(Denaturing gradient gel electrophoresis,DGGE)指纹图谱及序列分析技术研究了断奶前、后仔猪胃、空肠和回肠的菌群变化,real-time PCR技术分析了其中一些优势菌群的数量变化;同时,对仔猪小肠食糜与肠壁中的细菌及乳酸杆菌菌群也进行了比较;采用代表性差异分析(Representational difference analysis,RDA)技术还比较了两株来自不同地区仔猪肠道的优势乳酸杆菌——Lactobacillus sobrius菌株;此外,还利用分子技术研究了口服L.sobrius S1后仔猪后肠菌群的变化;最后,基于不同可变区片段对不同乳酸杆菌的16S rRNA基因进行了序列比对分析,以解释一些分子技术的缺陷.
     1仔猪哺乳期和断奶后胃中总细菌和乳酸杆菌变化
     利用基于16S rRNA基因的PCR/DGGE技术研究了新生仔猪从7日龄至35日龄(断奶后两周)胃中细菌及乳酸杆菌的菌群变化.结果表明,哺乳阶段,仔猪胃食糜维持较低的pH值,断奶后,pH值显著上升;Dilution-PCR半定量分析发现,断奶前,仔猪胃中细菌数量很低,而断奶后,总细菌数量显著上升,乳酸杆菌数量则略有上升;DGGE图谱显示,断奶前胃中细菌条带较单一,优势菌为高迁移条带相关细菌,断奶后图谱中出现一些新的优势条带,而断奶前的优势条带消失;乳酸杆菌DGGE图谱相似性分析显示,断奶前、后仔猪胃中乳酸杆菌菌群变化较小.
     2断奶前、后仔猪胃和前肠菌群的变化
     本章研究了仔猪从哺乳至断奶后胃、空肠和回肠中菌群的变化.DGGE图谱分析显示,断奶前仔猪前肠图谱中的一些优势条带在断奶后消失,16S rRNA基因序列分析表明与这些条带相对应的细菌分别为L.reuteri,L.johnsonii和L.sobrius;此时,一些新的优势条带出现,序列分析对其鉴定表明,它们主要为Peptostreptococcusanaerobius,Moraxella cuniculi,Streptococcus suis和Porphyromonas catoniae.Real-timePCR定量分析表明,仔猪断奶后,前肠中乳酸杆菌和L.sobrius(断奶前的优势菌)在总细菌中的比例显著下降.同时,建立了S.suis特异性real-time PCR,它能够对猪肠道复杂菌群中的S.suis进行精确定量,最低检测浓度为每微升核酸样品10个16SrRNA基因拷贝数.该分析结果显示,断奶后3天仔猪胃中的S.suis数量达10~7数量级,而在哺乳阶段则未能检测到.
     3仔猪空、回肠食糜与肠壁中细菌及乳酸杆菌菌群比较
     利用16S rRNA基因分子方法比较了7日龄至35日龄仔猪空、回肠食糜与肠壁中细菌及乳酸杆菌菌群差异.DGGE分析显示,哺乳阶段仔猪空肠食糜的优势菌L.sobrius也在肠壁菌群中出现,而断奶后,空肠食糜中新出现的优势菌S.suis未在肠壁菌群中出现.这一结果在real-timePCR定量分析中也得到证实,所有肠壁样品均为检测到S.suis.比较食糜和肠壁乳酸杆菌菌群DGGE图谱发现,一些特殊条带只在肠壁样品中存在.然而,序列分析显示与这些条带最相近的细菌为alfa-proteobacteria(Brevundimonas vesicularis).对乳酸杆菌特异引物(Lab-0159)与特殊条带相关的细菌的相应序列进行比对发现,它们之间仅有1-2个碱基的错配.
     4代表性差异分析比较两株来自不同地区的猪源L.sobrius菌株
     代表性差异分析技术近来被引入用于比较高相似性菌株之间的基因组差异,该技术能够在菌株水平对两株细菌基因组进行差异分析.利用DGGE和序列分析技术研究发现来自不同地区的猪源Lactobacillus sp.S1和Lactobacillus sobrius 001~T菌株的16SrRNA基因全序列有很高相似性,大于99%.L.sobrius特异性引物也可以对这两株菌的16S rRNA基因的特定片段进行PCR扩增.代表性差异分析显示,这两株菌的基因组之间未有差异.以上结果说明,Lactobacillus sp.S1菌株也属于L.sobrius,并且推测这两株菌为同一菌株.
     5益生菌L.sobrius S1对仔猪后肠菌群的影响
     结合PCR-DGGE、16S rRNA基因序列分析及定量real-time PCR技术,研究口服益生菌L.sobrius S1菌株后仔猪从7至35日龄(断奶后两周)后肠菌群的变化.六窝新生仔猪被随机分成两组:对照组和处理组,处理组仔猪于7、9和11日龄口服S1菌液(活菌数5×10~9 CFU·ml~(-1)).分别于7、14、21、24和35日龄,每窝随机屠宰一头仔猪,收集肠道样品.比较不同日龄仔猪后肠菌群DGGE图谱表明,断奶后图谱中多数高迁移距离条带消失,至断奶后两周又逐渐出现.序列分析显示,这些高迁移距离条带主要为乳酸杆菌.平板计数以及定量real-time PCR分析也得到一致的结果.乳酸杆菌特异性PCR-DGGE分析显示,仔猪断奶后,L.amylovorus和L.sobrius从优势乳酸杆菌菌群中消失.通过比较处理组和对照组图谱发现,处理组在14日龄出现一特异条带,与其匹配的序列的最相似已知菌为Clostridium disporicum,相似性为95%;而35日龄时对照组有一特异优势条带,该条带被鉴定为猪链球菌,相似性为99%.L.sobrius特异性real-time PCR分析显示,断奶后3天该菌从仔猪结肠中消失,而处理组仔猪有更早出现该菌的趋势.
     6基于不同可变区片段比较乳酸杆菌间16S rRNA基因序列差异
     基于16S rRNA基因的PCR-DGGE技术已广泛用于各种环境中菌群生态的研究.近来,一些研究者发现该技术存在一些缺陷,如图谱中的单一条带常常被鉴定为几种细菌,而不同条带会被鉴定为同一种细菌.本研究中,以不同乳酸杆菌为例,分别在三个不同可变区片段比较了不同种乳酸杆菌的16S rRNA基因差异.结果表明,属于不同种的乳酸杆菌之间有相同的16S rRNA基因片段序列;不同可变区片段间,乳酸杆菌16S rRNA基因序列的俩俩间的同源性也有很大差异.两个Lactobacillusamylovorus相关克隆虽然有相同的V2-V3可变区,但是它们V6-V8可变区序列的距离为0.061.这些结果说明,DGGE的这一缺陷很大程度上是由细菌16S rRNA基因序列的自身特性所引起的;结果同时也提示,在设计用于DGGE的PCR引物时,除了考虑引物的特异性外,还应该注意所扩增出的不同细菌的产物序列之间的差异程度.
The mammalian gastrointestinal(GI) tract habors a dense and complex microbiota, which plays an important role in nutrition,immunity and physiology of host.More attention should be paid to the study on the GI microbiota of piglet since it will suffer the special physiological phase like early-weanlng.This present study was carried out to investigate the changes of microbioia in GI tract of piglets from 7 to 35(two weeks after weaning) days of age by using 16S ribosomal RNA(rRNA) gene based molecular methods. Changes in bacterial community composition in stomach,jejunum and ileum of piglets after weaning was investigated using denaturing gradient gel electrophoresis(DGGE),and real-time PCR assay was also used to quantitatively analyze changes in predominant bacterial community.Bacterial and Lactobacillus community between digestia and mucosa samples in jejunum and ileum of piglets were also compared in this thesis.Representational difference analysis(RDA) was used to compare two L.sobrius strains isolated from piglets in different area.16S rRNA-based methods were also used to monitor changes in the hindgut bacterial community of piglets after oral administration of L.sobrius S1.Finally,to explain the limitation of 16S rRNA gene-based methods,sequences alignment analysis was performed to compare 16S rRNA genes of different Lactobacillus spp.based on different variable region fragments.
     1 PCR-DGGE analysis of stomach total bacterial and lactobacilli community in sucking and weaned piglets
     Molecular methods based on the 16S rRNA gene were used to study bacterial and lactobacilli communities in stomach of neonatal piglets from 7 to 35(two weeks after weaning) days of age.The results showed stomach pH value was about 3.0 before weaning, while the pH value increased apparently after weaning.The semi-quantitative dilution-PCR showed that bacterial concentration in stomach of piglet was very low before weaning, while increased significantly after weaning.Compared with total bacteria,lactobacilli concentration increased slightly.The DGGE profiles from total bacteria in stomach showed the bands of samples before weaning were very simple and the predominant band belonged to far-migrating bacterium.After weaning,some new predominant bands appeared and the previous far-migrating bands disappeared simultaneously.The similarity of DGGE profiles from stomach lactobacilli showed weaning stress had no obvious effect on lactobacilli community.
     2 Changes of microbiota in stomach,jejunum and ileum of piglets after weaning
     Changes of bacterial community composition in stomach,jejunum and ileum of piglets after weaning(21 day) were investigated by 16S ribosomal RNA(rRNA) gene-based molecular methods.Dehaturing gradient gel electrophoresis(DGGE) profiles from bacterial community in foregut of piglets showed that,after weaning,predominant bands related to Lactobacillus spp.disappeared and substituted by some potential pathogenic species such as Peptostreptococcus anaerobius,Moraxella cuniculi,S.suis and Porphyromonas catoniae. Real-time PCR assay revealed that the percentages of lactobacilli and Lactobacillus sobrius relative to total bacteria were significantly lower in foregut samples of weaned piglets compared with the 21-day piglets.Here,we also described S.suis-specific real-time PCR assay,which can quantify S.suis in complex gastrointestinal microbiota with the 16S rRNA gene concentration higher than 10 copies per microliter DNA sample.This assay showed that S.suis predominated in stomach samples of weaned piglets with population levels up to 10~7 cells per gram of digesta,although this species was not detected in stomach of pre-weaning piglets.
     3 Comparison of bacterial and Lactobacillus community between digestia and mucosa samples in jejunum and ileum of piglets
     To investigate the differences of bacterial and Lactobacillus community between digesta and mucosa samples in jejunum and ileum of piglets from 7 to 35 days of age,using 16S rRNA gene based methods.DGGE profiles from bacterial community showed that the L.sobrius-related band was also observed in jejunal mucosa of piglets,while the predominant band related to S.suis observed only for weaned piglets did not appear in profiles generated from mucosa samples.Primers(Bact-0027/Lab-0677, Lab-0159/Uiv-0515) were used to amplify the Lactobacillus-specific 16S rRNA gene fragments from digesta and mucosa samples,the PCR products were then analyzed by DGGE.Specific bands were observed in DGGE profiles derived from mucosa-associated bacteria.However,16S rRNA gene sequence analysis indicated that the bands were most closely related to alfa-proteobacteria(Brevundimonas vesicularis).Further sequence alignment revealed that there were one or two bases mismatches between Lactobacillus-specific primers(Lab-0159) and target sequences of 16S rRNA gene from the bands related to alfa-proteobacteria.
     4 Comparison of two Lactobacillus strains isolated from piglets in different area by using representational difference analysis
     Representational difference analysis(RDA) has been adapted recently to study the genomic diversity of bacterial strains.Two Lactobacillus strains(L.sobrius 001~T and Lactobacillus sp.S1) were isolated from the intestine of piglets in difference area.Highly similarity of 16S rRNA gene between the two strains was found by DGGE and sequencing analysis.Both of these two strains could be detected in 1.2%agarose gel by Lactobacillus sobrius-specific PCR assay.RDA showed that genomic DNA of the two strains was digested with CfoⅠ,similar profiles of DNA fragments were observed between the strains. After subtractive hybridization,no RDA amplified products were found,which suggested that there was no genomic difference between these two strains.The results indicated that strain S1 also belonged to L.sobrius,strain 001~T and S1 were the similar strain.
     5 16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of L. sobrius S1
     Changes in the composition of microbiota in the hindgut of piglets were studied after oral administration of L.sobrius S1,using molecular techniques based on 16S rRNA genes. Six litters of neonatal piglets were randomly divided into control and treatment groups.At 7, 9 and 11 days of age,piglets in the treatment group orally received a preparation of strain S1.V6-V8 and V2-V3 variable regions of the total bacterial and Lactobacillus-specific 16S rRNA gene pool,respectively,were amplified by PCR and analyzed by denaturing gradient gel electrophoresis.DGGE analysis showed that several populations present in the hindgut of piglets,represented by far-migrating bands,disappeared after weaning.Sequence analysis indicated that most of these bands corresponded to Lactobacillus spp.This trend could also be confirmed by plate counting and quantitative real-time PCR.Drastic changes of L.amylovorus and L.sobrius in total lactobacilli populations were also observed in the colon of piglets around weaning,as monitored by Lactobacillus-specific PCR-DGGE. Comparison of DGGE profiles between control and treatment groups revealed a specific band related to Clostridium disporicum that was found in treatment group on day 14.On day 35,a specific band appeared only in the control group,representing a population most closely related to S.suis(99%).Species-specific real-time PCR revealed that the population of L.sobrius which has the same position as strain S1 in DGGE profiles declined apparently in the colon of piglets after weaning,while it tended to come back earlier after oral administration of strain S1.These results indicated that specific populations(mainly Lactobacillus spp.) disappeared from the predominant bacterial community in the porcine hindgnt after weaning.Oral administration of strain S1 could mitigate this disruption, thereby contributing to the prevention of pathogen overgrowth during the critical phase of weaning.
     6 Sequences alignment of Lactobacillus spp.16S ribosomal RNA genes based on different variable region fragments
     PCR- DGGE based on 16S rRNA gene is commonly used to examine bacterial communities in a variety of environments.However,some unexpected results were observed in recent studies.For example,a single band can be identified to several bacterial species,and several different bands identified to the identical species.Here,we aligned the 16S rRNA gene sequences based on different variable region fragments using Lactobacillus spp.as reference strains.The results showed some different Lactobacillus species possessed the identical partial 16S rRNA gene sequences.Based on different variable region fragments,remarkable difference was observed on pairwise distance in the reference 16S rRNA gene sequences.0.061 of divergence value was found in V6-V8 region of 16S rRNA gene sequences between two L.arnylovorus clones,although they had the identical V2-V3 variable regions.These results indicated that the limitation of DGGE was to some extent due to the characteristic of bacterial 16S rRNA gene sequences.The results also indicated that more attention should be paid to the sequence difference of PCR products among different species,as well as to the specificity of primers when designing new primers for DGGE-PCR.
引文
1 Alam M,Midtvedt T,Udbe A.Eifferential cell kinetics in the ileum and colon of germ-free rats[J].Scand.J.Gastroenterol.1994,29:445-451.
    2 Altschul S F,Gish W,Miller W,et al.Basic local alignment search tool[J].J.Mol.Biol.1990,215:403-410.
    3 Amann R I,Krumholz L,Stahl D A.Finorescent-oligonucleotide probing of whole cells for determinative,phylogenetic,and environmental studies in microbiology[J].J.Bacteriol.1990,172:762-770.
    4 Amann R I,Ludwig W,Schleifer K H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J].Microbiol.Rev.1995,59:143-169.
    5 Arends J P,Zanen H C.Meningitis caused by Streptococcus suis in humans[J].Rev.Infect.Dis.1988,10:131-137.
    6 Awati A,Konstantinov S R,Williams B A,et al.Effect of substrate adaptation on the microbial fermentation and microbial composition of faecal microbiota of weaning piglets studied in vitro[J].J.Sci.Food Agric.2005,85:1765-1772.
    7 Bach Knudsen K E.Carbohydrate and lignin contents of plan materials used in animals feeding[J].Anim.Feed Sci.Techol.2001,90:3-20.
    8 Bach Knudsen K E,Hansen I.Gastrointestinal implication in pigs of wheat and oat fractions.1.Digestibility and bulking properties of polysaccharides and other major constituents[J].Br.J.Nutr.1991,65:217-232.
    9 Baron S R,Hylemon P B.Biotransformation of bile acids,cholesterol,and steroid hormones[C].In Gastrointestinal Microbiology.Mackie R I,White B A,Isaacson,R E,eds.Chapman and Hall,New York.
    10 Barrow P A,Brooker B E,Fuller R,et al.The attachment of bacteria to the gastric epithelium of the pig and its importance in the microecology of the intestinal[J].J.Appl.Bacteriol.1980,48:147-154.
    11 Bateup J,Dobbinson S,Munro K,et al.Molecular analysis of the composition of Lactobacillus populations inhabiting the stomach and caecum of pigs[J].Microb Ecol Health Dis,1998,10:95-102.
    12 Beja O,Suzuki M T,Koonin E V,et al.Construction and analysis of bacterial artificial chromosome libraries from marine microbial assemblage[J].Environ.Microbiol.2000,2:516- 529.
    
    13 Berg R D. The indigenous gastrointestinal microflora [J]. Trends Microbiol. 1996, 4: 430-435.
    
    14 Bernet M F, Brassart D, Neeser J R, et al. Lactobacillus acidophilus LAI binds to cultured human intestinal cell lines and inhibits cell-attachment and cell-invasion by enterovirulent bacteria [J]. Gut. 1994,35: 483-489
    
    15 Blomberg L, Henriksson A, Conway P L. Inhibition of adhesion of Escherichia coli K88 to piglet ileal mucus by Lactobacillus spp [J].Appl. Environ. Microbiol. 1993,59: 34-39.
    16 Boever P D, Deplancke B, Verstraete W, et al. Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by supplementing a soygerm powder [J].J. Nutr. 2000,130: 2599-2606.
    17 Bollinger R R, Everett M L, Palestrant D, et al. Human secretory immunoglobulin A may contribute to bilfilm formation in the gut [J]. Immunology. 2003,109: 580-587.
    18 Buczolits S, Rosengarten R, Hirt R, et al. Classification of a Brevundimonas strain detectable after PCR with a Helicobacter-specific primer pair [J]. Syst. Appl. Microbiol. 2001, 24: 368-376.
    19 Busti E, Bordoni R, Castiglioni B, et al. Bacterial discrimination by means of a universal array approach mediated by LDR (ligase detection reaction) [J]. BMC Microbiol. 2002, 20: 27.
    20 Bemet M F, Brassart D, Neeser J R, et al. Lactobacillus acidophillus LA binds to cultured human intestinal cell lines and inhabits cell attachment and invasion by enterovirulent bacteria [J]. Gut. 1994,35: 483-489.
    21 Canh T T, Stutton A L. Dietary carbohydrates alter the fecal composition and pH and the ammonia emission from slurry of growing pigs [J]. J. Anim. Sci. 1998, 76:1887-1895.
    22 Carlstedt-Duke B, Midvedt T, Nord C E, et al. Isolation and characterization of a mucin degrading strain of Peptostreptococcus from rat intestinal tract [J]. Acta Pathol. Microbiol. Immunol. Scand. Sect. B. 1986, 94: 292-300.
    23 Cebra J J. Influences of microbiota on intestinal immune system development [J]. Am. J. Clin, Nutr.1999, 69:1046S-1051S.
    24 Chandler D P, Newton G J, Small J A. Sequence versus structure for the direct detection of 16S rRNA on planar oligonucleotide microarrays [J]. Appl. Environ. Microbiol. 2003, 69: 2950-2958.
    25 Chatellier S, Harel J, Zhang Y, et al. Phylogenetic diversity of Streptococcus suis strains of various serotypes as revealed by 16S rRNA gene sequence comparison [J]. Int. J. Syst. Bacterial. 1998, 48: 581-589.
    26 Cherbut C, Aube A C, Blottiere H M, et al. In vitro contractile effects of short chain fatty acids in the rat terminal ileum [J]. Gut. 1996, 38: 53-58.
    27 Cherbut C,Aube A C,Blottiere H M,et al.Effects of short chain fatty acids on gastrointestinal motility[J].Scand.J.Castroenterol.1997,222:58-61.
    28 Clifton-Hadley F A.Streptococcus suis type 2 infections[J].Br.Vet.J.1983,139:1-5.
    29 Cocolin L,Maazano M,Cantoni C,et al.Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages[J].Appl.Environ.Microbiol.2001,67:5113-5121.
    30 Collier C T,Smirichy M R,Albin D M,et al.Molecular ecological analysis of porcine ileal microbiota response to antimicrobial growth promoters[J].J.Anim.Sci.2003,81:3035-3045.
    31 Collins M D,Hutson R A,Falsen E,et al.Streptococcus gallinaceus sp.nov.,from chickens[J].Int.J.Syst.Evol.Micr.2002,52:1161-1164.
    32 Conway P L.Function and regulation of the gastrointestinal microbiota of the pig[C].EAPP publication 1994,2:231-240.
    33 Devriese L A,Haesebrouck F,de Herdt P,et al.Streptococcus suis infections in birds[J].Avian.Pathol.1994,23:721-724.
    34 Dunne C,Murnhv L,Flvnn S,et al.Probiotics:from myth to reality.Demonstration of functionality in animal models of disease and in human clinical trials[J].Antonie Van Leeu Wenhoek.1999,76:279-292.
    35 Falk P G,Hooper L V,Midtvedt T,et al.Creating and maintaining the gastrointestinal ecosystem:what we know and need to know from gnotobiology[J].Microbiol.Mol.Biol.Rev.1998,62:1157-1170.
    36 Favier C F,de Vos W M,Akkermans A D L.Development of bacterial and bifidobacterial communities in feces of newborn babies[J].Anaerobe.2003,9:219-229.
    37 Felske A.Streamlined representational differences analysis for comprehensive studies of numerous genomes[J].J.Microbiol.Meth.2002,50:305-311.
    38 Firon N S.Carbohydrates in cell recognition[J].Infect.Immun.1987,55:472-476.
    39 Fons M,Gomez A,Karjalainene T.Mechanisms of colonization and colonization resistance of the digestive tract[J].Microb.Ecol.Health Dis.2000,2:240S-246S.
    40 Fontana C,Viguoloa G,Cocconcelli P S.PCR-DGGE analysis for the identification of microbial populations from Argentinean dry fermented sausages[J].J.Microbiol.Meth.2005,63:254-263.
    41 Forsythe S J,Forstner G G.Gastrointestinal mucus[C].1994.In:Physiology of the gastrointestinal Tract.Third Edition.Johnson L R,ed.Raven Press.New York.
    42 Forsythe S J,Parker D S.Nitrogen metabolism by the microbial flora of the rabbit caecum[J].J.Appl.Bacteriol.1985,58:363-369.
    43 Fuller M F,Reeds P J.Nitrogen cycling in the gut[J].Ann.Rev.Nutr.1998,18:385.
    44 Fuller R.A review:probiotics in man and animals[J].J.Appl.Bacteriol.1989,66:365-378.
    45 Gaskins H R,Kelley K W.Immunology and neonatal mortality[C].In:The neonatal pig:development and survival.Varley M A,ed.CAB International,Wallingford,UK.
    46 Gottschalk M,Higgins R,Jacques M,et al.Characterization of six new capsular types(23 through 28) of Streptococcus suis[J].J.Clin.Microbiol.1991,29:2590-2594.
    47 Guan L L,Hagen K E,Tannock G W,et al.Detection and identification of Lactobacillus species in crops of broilers of different ages by using PCR-denaturing gradient gel electrophoresis and amplified ribosomal DNA restriction analysis[J].Appl.Environ.Microb.2003,69:6750-6757.
    48 Guo F C,Williams B A,Kwakkel R P,et al.In Vitro Fermentation Characteristics of Two Mushroom Species,an Herb,and Their Polysaccharide Fractions,Using Chicken Cecal Contents as Inoculum[J].Poultry.Sci.2003,82:1608-1615.
    49 Haarman M,Knol J.Quantitative real-time PCR analysis of fecal Lactobacillus species in infants receiving a prebiotic infant formula[J].Appl.Enviorn.Microbiol.2006,72:2359-2365.
    50 Han Z-K,Wang G,Yao W et al.Isoflavonic Phytoestrogens - New Prebiotics for Farm Animals:a Review on Research in China[J].Curr.Issues Intest.Microbiol.2006,7:53-60.
    51 Harmsen H J M,Elfferich P,Schut F et al.A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization[J].Microb.Ecol.Health Dis.1999,11:3-12.
    52 Harmsen H J M,Raangs G C,He T,et al.Extensive set of 16S rRNA-based probes for detection of bacteria in human feces[J].Appl.Environ.Microbiol.2002,68:2982-2990.
    53 Harmsen H J M,Welling G W.2002.Fluorescence in situ hybridization as a tool in intestinal bacteriology[M].In:Probiotics and Prebiotics:Where Are We Going?(Tannock G W,ed.),pp.41-58.Caister Academic Press,Norfolk,UK.
    54 Harris L J,Daeschel M A,Stiles M E,et al.Anti microbial activity of lactic acid bacteria against Listeria monocyto-genes[J].J.Food Prot.1989,52:384-387.
    55 Heilig H G,Zoetendal E G,Vaughan E E,et al.Molecular diversity of Lactobacillus spp.and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA[J].Appl.Environ.Microbiol.2002,68:114-123.
    56 Henriksson A,Andre L,Conway P.Distribution of lactobacilli in the porcine gastrointestinal tract [J].FEMS Microbiol Ecol,1995,16:55-60.
    57 Herich R,Revajova V,Levkut M,et al.The effect of Lactobacillus paracasei and Raftilose P95upon the non-specific immune response of piglets[J].Food Agr.Immunol.2002,14:171-179.
    58 Higgins R,Gottschalk M,Boudreau M,et al.Description of six new capsular types(29-34) of Streptococcus suis[J].J.Vet.Diagn..Invest.1995,7:405-406.
    59 Hill G B.Enhancement of experimental anaerobic infections by blood,hemoglobin,and hemostatic agents[J].Infect.Immun.1978,19:443-449.
    60 Hill J E.Hemmingsen S M,Goldade B G,et al.Comparison of ileum microflora of pigs fed corn-,wheat-,or barley-based diets by chaperonin-60 sequencing and quantitative PCR[J].Appl.Environ.Microbiol.2005,71:867-875.
    61 Jackson C R,Roden E E,Churchill P E Changes in bacterial species composition in enrichment cultures with varying inoculum dilution as monitored by denaturing gradient gel electrophoresis[J].Appl.Environ.Microbiol.1998,64:5046-5048.
    62 Jacobsen C N,Nielsen V R,Hayford A E,et al.Screening of probiotic activities of forty-seven strains of Lactobacillus spp.by in vitro techniques and evaluation of the colonization ability of five selected strains in humans[J].Appl.Environ.Microbiol.1999,65:4949-4956.
    63 Janke B,Dobrindt U,Hacker J,et al.A subtractive hybridization analysis of genomic differences between the uropathoganic E.coli strain 536 and the E.coli K-12 strain MG1655[J].FEMS Microbiol.Lett.2001,199:61-66.
    64 Jaspers E,Overmann J.Ecological significance of microdiversity:identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies[J].Appl.Environ.Microbiol.2004,70:4831-4839.
    65 Jensen B B.The impact of feed additives on the microbial ecology of the gut in young pigs[J].J.Amim.Feed Sci.Technol.1998,89:175-188.
    66 Jensen M T,Cox R P,Jensen B B,et al.Effect of dietary fibre on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs[J].Appl.Environ.Microbiol.1994,60:1897-1904.
    67 Katouli M,Lund A,Wailgren P,et al.Metabolic fingerprinting and fermentative capacity of the intestinal flora of pigs during pre- and post-weaning periods[J].J.Appl.Microbiol.1997,61:778-783.
    68 Kaplan H,Hutkins R W.Fermentation of fructooligosaccharides by lactic acid bacteria and Bifidobacteria[J].Appl.Environ.Microbiol.2000,66:2682-2684.
    69 Kindon H,Pothoulakis C,Thim L,et al.Trefoil peptide protection of intestinal epithelial barrier function:cooperative interaction with mucin glycoprotein[J].Gastroenterology.1995,109:516-523.
    70 Kirchgessner M,Gedeck B,Wiehler,S.Influence of formicacid,calcium formate,sodium hydrogen carbonate on the microflora in different segments of the gastrointestinal tract[J].Pig News a:.d Information,1993,14:77.
    71 Koike S,Yoshitani S,Kobayashi Y,et al.Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria[J].FEMS Microbiol.Let.2003,229:23-30.
    72 Kononen E,Vaisanen M-L,Finegold S M,et al.Cellular fatty acid analysis and enzyme profiles of Porphyromonas catoniae-frequent colonizer of the oral cavity in children[J].Anaerobe.1996,2:329-335.
    73 Konstantinov R S.2005.Lactobacilli in the porcine intestine:from composition to functionality [M].Ph.D.thesis.Wageningen University,Wageuingen,The Netherlands
    74 Konstantinov S R,Awati A,Smidt H,et al.Specific response of a novel and abundant Lactobacillus amylovorus-like phylotype to dietary rebiotics in the guts of weaning piglets[J].Appl.Enviorn.Microb.2004,70:3821-3830.
    75 Konstantinov S R,Awati A A,Williams B A,et al.Post-natal development of the porcine microbiota composition and activities[J].Environ.Microbiol.2006a,8:1191-1199.
    76 Konstantinov S R,Favier C F,Zhu W-Y,et al.Microbial diversity study of the porcine GI tract during the weaning transition[J].Anim.Res.2004,54:317-324.
    77 Konstantinov S R,Poznanski E,Fuentes S,et al.Lactobacillus sobrius sp.nov.,a novel isolate abundant in the intestine of weaning piglets[J].Int.J.Syst.Evol.Micr.2006b,56:29-32.
    78 Konstantinov S R,Smidt H,de Vos W M.Representative difference analysis and real-time PCR for strain-specific quantification of Lactobacillus sobrius sp.nov[J].Appl.Environ.Microbiol.2005,71:7578-7581.
    79 Konstantinov S R,Zhu W-Y,Williams B A,et al.Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA[J].FEMSMicrobiol.Ecol.2003,43:225-235.
    80 Kopp E B,Medzhitov R.The Toll-receptor family and control of innate immunity[J].Curr.Opin.Immunol.1999,11:13-18.
    81 Lane D J.1991.16S,23S rRNA sequencing[C].Pp.115-175 in Nucleic Acid Techniques in Bacterial Systeraatics,E.Stackebrandt and M.Goodfellow,eds.John Wiley and Sons,New York.
    82 Langendijk P S,Schut F,Jansen G J,et al.Quantitative fluorescence in situ hybridization of Bifidobacterium spp.with genus-specific 16S rRNA-targeted probes and its application in fecal samples[J].Appl.Environ.Microbiol.1995,61:3069-3075.
    83 Langlands S J,Hopkins M J,Coleman N,et al.Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel[J].Gut.2004,53:1610-1616.
    84 Lerman L S,Fischer S G,Hurley I,et al.Sequence determined DNA separations[J].Ann.Rev.Biophys.Bioeng.1984,13:399-423.
    85 Le Dividich J,Herpin P.Effects of climatic conditions on the performance,metabolism and health status of weaned piglets:a review[J].Livest.Prod.Sci.1994,38:79-90.
    86 Lee A.1984.Neglected Niches:the microbial ecology of the gastrointestinal tract[C].In Advances in Microbial Ecology,Marshall,K.ed.Plenum Press.New York.
    87 Lisitsyn N A,Lisitsyn N,Wigler M.Cloning the differences between two complex genomes[J].Science.1993,259:946-951.
    88 Louis P,Duncan S H,McCrae S I,et al.Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon[J].J Bacteriol.2004,186:2099-2106.
    89 Ludwig W,Strunk O,Westram R,et al.2002.ARB:a software environment for sequence data.http://www.arbhome.de
    90 MacFarlane S,MacFarlane G T.Proteolysis and amino acid fermentation[C].In:Human colonic bacterial:role in nutrition,physiology and pathology.Gibson G R,MacFarlane G T,eds.CRC Press,Boca Raton,FL
    91 Mackie R I,Sghir A,Gaskins H R.Developmental microbial ecology of the neonatal gastrointestinal tract[J].Am.J.Clin.Nutr.1999,69:1035S-1045S.
    92 Mackie R I,White B A.1997.Gastrointestinal Microbiology[C].Chapman and Hall Microbiology series.Chapman and Hall,New York,NY.
    93 Marois C,Bougeard S,Gottschalk M,et al.Multiplex PCR assay for detection of Streptococcus suis species and serotypes 2 and 1/2 in tonsils of live and dead pigs[J].J.Clin.Microbiol.2004,42:3169-3175.
    94 Mathew A G,Sutton A L,Scheidt A B,et al.Effect of galactan on selected microbial populations and pH and volatile fatty acids in the ileum on the weanling pig[J].J.Anim.Sci.1993,71:1503-1509.
    95 Matsuo K,Ota H,Akamatsu T,et al.Histochemistry of the surface mucous gel layer of the human colon[J].Gut.1997,40:782-789.
    96 May T,Mackie R I,Fahey G C,et al.Effect of fiber soured on short-chain fatty acid production and on the growth and toxin production by Clostrdium difficile[J].Scand.J.Gastroenterol.1994,29:916(abs).
    97 McBurney M I,Sauer W C.Fiber and large bowel energy absorption:validation of the integrated ileostomy-fermentation using pigs[J].J.Nutr.1993,123:721-727.
    98 McCracken B A,Gaskins H R,Ruwe-Kaiser P J,et al.Diet-dependent and diet-independent metabolic responses underlie growth stasis of pigs at weaning [J].J. Nutr. 1995,125: 2838-2845.
    
    99 McCrachen V J, Simpson J M, Mackie R I. Molecular ecological analysis of dietary and antibiotic-induced alterations of the mouse intestinal microbilta [J].J. Nutr. 2001,131:1862-1870.
    
    100 McDonald D E, Pethick D W, Pluske J R, et al. Adverse effects of soluble non-starch polysaccharide (guar-gum) on piglet growth and experimental colibacillosis immediately after weaning [J]. Res. Vet. Sri. 1999, 67: 245-250
    
    101 McDonald D E, Pethick D W, Mullan, B P, et al. Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulate proliferation of enterotoxigenic Escherichia coli in newly-weaned pigs [J]. Br. J. Nutr. 2001, 86: 487-498
    102 McIntyre A., Gibson P R, Young G P. Butyrate production from dietary fiber and protection against large bowel cancer in a rat model [J]. Gut. 1993,34: 386-391.
    103 Melin L. 2001. Weaning of pigs with special focus on the intestinal health [M]. Doctoral thesis. Acta Universitatis Agriculturae Sueciae Veterinaria. 112. Swedish University of Agricultrual Sciences. Sweden.
    104 Michinaga O, Kensuke S. Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillus strains due to production of lactic acid [J]. Int. J. Food Microbiol. 2001,68:135-140
    105 Middendorf B, Gross R. Representational difference analysis identifies a strain-specific IPS biosynthesis locus in Bordetella spp [J]. Mol Gen. Genet. 1999,262:189-198.
    106 Mouricout M A, Julien R A. Pilus-mediated binding of bovine enterotoxigenic Escherichia coli to calf small intestinal mucis [J]. Infect. Immun. 1987,55:1216-1223.
    107 Montagne L, Pluske J R, Hampson D J. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals [J]. Ani. Feed Sci. Tech. 2003,108: 95-117.
    108 Murray A E, Hollibaugh J T, Orrego G. Phylogenetic composition of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments [J].Appl. Environ. Microbiol. 1996,62: 2676-2680.
    109 Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA [J]. Appl. Enviom. Microb. 1993, 59: 695-700.
    110 Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology [J]. Anton, van Leeuw. 1998, 73:127-141.
    111 Myers R M,Fischer S G,Lerman L S,et al.Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis[J].Nucleic Acids Res.1985,13:3131-3145.
    112 Nabuurs M J A,Zijderveld F G,van De Leeuw P W.Clinical and microbiological field studies in the Netherlands of diarrhoea in pigs at weaning[J].Res.Vet.Sci.1993,55:70-77.
    113 Nübel U,Engelen B,Felske A,et al.Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperanre gradient gel electrophoresis[J].J.Bacteriol.1996,178:5636-5643.
    114 Ouwehand A C,Kirjavainen P V,Shortt C,et al.Probiotics:mechanisms and established effects[J].Int.Dairy.J.1999,9:43-52.
    115 Pang X,Ding D,Wei G,et al.Molecular profiling of Bacteroides spp.in human feces by PCR-temperature gradient gel electrophoresis[J].J.Microbiol.Meth.2005,61:413-417.
    116 Pintado J,Guyot J P,Ampe F.Multiple competitive PCR-DGGE as a tool for quantifying and profiling defined mixed cultures of lactic acid bacteria during production of probiotics from complex polysaccharides[J].J.Appl.Microbiol.2003,95:921-933.
    117 Piva A,Panciroli A,Meola E,et al.Lactitol enhances short-chain fatty acid and gas production by swine cecal microflora to a geater extent when fermenting low rather than high fibre diets[J].J.Nutr.1995,126:280-289
    118 Plant L,Lam C,Conway P L,et al.Gastrointestinal microbial community shifts observed following oral administration of a Lactobacillus fermentum strain to mice[J].FEMS Microbiol.Ecol.2003,43:133-140.
    119 Pluske J R,Hampson D J,Williams I H.Factors influencing the structure and function of the small intestine in the weaned pig:a review[J].Livest.Prod.Sci.1997,51:215-236.
    120 Pollman D S,Danielson D M,Wren W B,et al.Influence of Lactobacillus Acidophilus inoculum on gnotobiotic and conventional pigs[J].J.Anim.Sci.1980,51:629-637.
    121 Pryde S E,Duncan S H,Hold G L,et al.The microbiology of butyrate formation in the human colon[J].FEMS Microbiol.Let.2002,217:133-139.
    122 Pryde S E.Richardson A J,Stewart C S,et al.Molecular analysis of the microbial diversity present in the colonic wall,colonic lumen,and cecal lumen of a pig[J].Appl.Enviorn.Microbiol.1999,65:5372-5377.
    123 Pustai A.Chemical probioties in recent advances in animal nutrition[C].Edited by Haresign.W,Cole.D J A,Butteworth,London,1990.
    124 Radecki S.V,Yokohama M T.1991.Intestinal bacteria and their influence on swine nutrition[C].In: Swine Nutrition.Miller,E.R.,Ullrey,D.E.,Lewis,A.J.,eds.Butterworth Heinemann,Boston,USA.
    125 Rigottier-Gois L,Rochet V,Garrec N,et al.Enumeration of Bacteroides species in human faeces by fluorescent in situ hybridization combined with flow cytometry using 16S rRNA probes[J].Syst.Appl.Microbiol.2003,26:110-118.
    126 Saitou N,Nei M.The neighbor-joining method:A new method for reconstructing phylogenetic trees [J].Mol.Biol.Evol.1987,4:406-425.
    127 Sanguinetti C J,Dias Neto D,Simpson A J G.Rapid silver staining and recovery of PCR products separated on polyacrylamide gels[J].Biotechniques.1994,17:915-919.
    128 Sansom B F,Cleed P T.The ingestion of sow's faeces by sucking piglets[J].Br.J.Nutr.1981,46:451-456.
    129 Savage D C.Microbial biota of the human intestine:a tribute to some pioneering scientists[J].Curr.Issues Intest.Microbiol.2001,2:1-15.
    130 Schleifer K.Microbial Diversity:Facts,Problems and Prospects[J].System.Appl.Microbiol.2004,27:3-9.
    131 Schwiertz A,Le Blay G,Blaut M.Quantification of different Eubacterium spp.in human fecal samples with species-specific 16S rRNA targeted oligonucleotide probes[J].Appl.Environ.Microbiol.2000,66:375-382.
    132 Sekiguchi H,Tomioka N,Nakahara T,et al.A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis[J].Biotechnol.Lett.2001,23:1205-1208.
    133 Simpson J M,McCrachen V J,Gaskins H R,et al.Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53[J].Appl.Environ.Microbiol.2000,66:4705-4714.
    134 Simpson J M,McCracken V J,White B A,et al.Application of denaturing gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota[J].J.Microbiol.Meth.1999,36:167-179.
    135 Sissons J W.Potential of probiotic organisms to prevent diarrhoea and promote digestion in fat animals[J].J.Agri.Food Sci.1989,49:1-3.
    136 Smith H E,Veenbergen V,van der Velde J,et al.The cps Genes of Streptococcus suis Serotypes 1,2,and 9:Development of Rapid Serotype-Specific PCR Assays[J].J.Clin.Microbiol.1999,37:3146-3152.
    137 Staats J J,Fede I,Okwumabua O,et al.Streptococcus suis:past and present[J].Vet.Res.Commun.1997,21:381-407.
    138 Stackebrandt E,Goebel B M.Taxonomic note:a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology[J].Int.J.Syst.Bacteriol.1994,44:846-849.
    139 Stewart C.S.1997.Microorganisms in hindgut fermentors[C].In:Mackie,R.I.,White,B.A.,Isaacson,R.E.(Eds.),Gastrointestinal microbiology,Chapman and Hall,New York,pp.142-186.
    140 Stewart C S,Chesson A.Making sense of probiotics[J].Pig Veterinary J.1993,31:11-33.
    141 Stokes C R,Bailey M,Haverson H.Development and function of the pig gastrointestinal immune system[C].In:Digestive physiology of pigs.Lindberg J E,Ogle B,eds CAB International,UK.
    142 Suau A,Bonnet R,Sutren M,et al.Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut[J].Appl.Environ.Microbiol.1999,65:4799-4807.
    143 Suzuki K,Meek D,Dot Y.Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut[J].Proc.Natl.Acad.Sci.U.S.A.2004,101:1981-1986.
    144 Suzuki M T,Beja O,Taylor L T,et al.Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays[J].Appl.Environ.Microbiol.200,60:4605-4614.
    145 Swords W E,Wu C C,Champlin F R,et al.Postnatal changes in selected bacterial groups of the pig colonic microflora[J].Biol.Neonate.1993,63:191-2000.
    146 Tamura M,Hirayama K,Itoh K.Effects of soy protein-isoflavone diet on plasma isoflavone and intestinal microflora in adult mice[J].Nutr.Res.2002,22:705-713.
    147 Tannock G W.1995.Normal microflora.An introduction to microbes inhabiting the human body [C].Chapman and Hall,London,United Kingdom.
    148 Tannock G W.1999.Probiotics.A critical review[C].Horizon Scientific Press,Wymondham,Norfolk,United Kingdom.
    149 Tannock G W,Dashkevicz M P,Feighner S D.Lactobacilli and bile salt hydrolase in the murine intestinal tract[J].Appl.Environ.Microbiol.1989,55:1848-1851.
    150 Tannock G W,Munro K,Harmsen H J M,et al.Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20[J].Appl.Environ.Microbiol.2000,66:2578-2588.
    151 Tannock G W,Tilsala-Timisjarvi A,Rodtong S,et al.Identification of Lactobacillus isolates from the gastrointestinal tract,silage,and yoghurt by 16S-23S rRNA gene intergenic spacer region sequence comparisons[J].Appl.Environ.Microbiol.1999,65:4264-4267.
    152 Thompson J D,Higgins D G,Gibson T J.CLUSTALW:Improving sensitivity of progressive multiple sequence alignments through sequence weighting,position-specific gap penalties and weight matrix choice[J].Nucleic.Acids.Res.1994,22:4673-7680.
    153 Thumblcson M E,Shook L B.1996.Advances in Swine in Biomedical Research[C].Plenum,New York
    154 Trottier S,Higgins R,Brochu G,et al.A case of human endocarditis due to Streptococcus suis in North America[J].Rev.Infect.Dis.1991,13:1251-1252.
    155 Umesaki Y,Setoyama H,Matsumoto S,et al.Expansion of a β T-cell receptor bearing intestinal intraepithelial lymphocytes alters microbial colonization in germ-free mice and its independence from thymus[J].Immunology.1993,79:32-37.
    156 Van Kessel A,Shirkey T W,Siggers R H,et al.2004.Commensal bacteria and intestinal development.Studies using gnotobiotic pigs[C].In:Interfacing immunity,gut health and performance.Tucker L A,Taylor-Pickard,J A,eds.Nottingham University Press,Nottingham,UK.
    157 Vanghan E,Moller B,de Vos W.Functionality of probiotics and intestinal lactobacilli:light in the intestinal tract tunnel[J].Curr.Opin.Biotechnol.1999,10:505-510.
    158 Vanghan E E,Schut F,Heilig G H J,et al.A molecular view of the intestinal ecosystem[J].Curr.Issues Intest.Microbiol.2000,1:1-12.
    159 Varel V H,Yen J T.Microbial perspective on fiber utilization by swine[J].J.Anim.Sci.1997,75:2715-2722
    160 Vecht U,Wisselink H J,van Dijk J E,et al.Virulence of Streptococcus suis type 2 strains in newborn germfree pigs depends on phenotype[J].Infect.Immun.1992,60:550-556.
    161 Wachtershauser A,Stein J.Rationale for the luminal provision of butyrate in intestinal disease[J].Eur.J.Nutr.2000,39:164-171.
    162 Wallner G,Fuchs B,Spring S,Beisker W,et al.Flow sorting of micro organisms for molecular analysis[J].Appl.Environ.Microbiol.1997,63:4223-4231.
    163 Walter J,Heng N C K,Hammes W P,et al.Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract[J].Appl.Environ.Microbiol.2003,69:2044-2051.
    164 Walter J,Hertel C,Tannock G W,et al.Detection of Lactobacillus,Pediococcus,Leuconostoc,and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis[J].Appl.Environ.Microbiol.2001,67:2578-2585.
    165 Walter J,Tannock G W,Tilsala-Timisjarvi A,et al.Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers[J].Appl.Environ.Microbiol.2000,66:297-303.
    166 Wang R F,Beggs M L,Erickson B D,et al.DNA microarray analysis of predominant human intestinal bacteria in fecal samples[J].Mol.Cell Probe.2004,18:223-234.
    167 Wang X,Gibson G R.Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine[J].J.Appl.Bacterial.1993,73:373-380.
    168 Wang X,Heazlewood S P,Krause D O,et al.Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis[J].J.Appl.Microbiol.2003,95:508-520.
    169 Watanabe K,Kodama Y,Harayama S.Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting[J].J.Microbiol.Meth.2001,44:253-262.
    170 Williams B A,Bosch M W,Awati A,et al.In vitro assessment of gastrointestinal tract(GIT)fermentation in pigs:Fermentable substrates and microbial activity[J].Anim.Res.2005,54:191-201.
    171 Williams B A,Verstegen M W A,Tamminga S.Fermentation in the large intestine of single stomached anims and its relationship to animal health[J].Nutr.Res.Rev.2001,14:207-227.
    172 Wilson K H,Blitchington R H.Human colonic biota studied by ribosomal DNA sequence analysis [J].Appl.Environ.Microbiol.1996,62:2273-2278.
    173 Wisselink H J,Joosten J J,Smith H E.Mulitiplex PCR assays for simultaneous detection of six major serotypes and two virulence- associated phenotypes of Streptococcus suis in tonsillar specimens from pigs[J].J.Clin.Microbiol.2002,40,2922-2929.
    174 Woese C R.Bacterial evolution[J].Microbiol.Rev.1987,51:221-271.
    175 Wostmann B S.Germfree and gnotobiotic animal models:background and applications[C].Boca Raton,FL:CRC Press.
    176 Yajima T.Contractile effect of short-chain fatty acids on the isolated colon of the rat[J].J.Physiol.1985,368:667-678.
    177 Yen J T.Anatomy of the digestive system and nutritional physiology[C].In:Swine Nutrition,2nd ed.Lewis A J,Lee Southern L,eds.CRS Press,NY,USA.
    178 Yen J T,Nienaber J A,Hill D A,et al.Potential contribution of absorbed volatile fatty acids to whole-animal energy requirement in conscious swine[J].J.Anim.Sci.1991,69:2001-2012
    179 Zhu W-Y,Williams B A,Akkermans A D.L.Development of the microbial community in weaning piglets[J].Reprod.Nutr.Dev.2000,40,180.
    180 Zimmermann B,Bauer E,Mosenthin R.Pro- and prebiotics in pig nutrition-potential modulators of gut health?[J].J.Anim.Feed Sci.2001,10:47-56.
    181 Zoetendal E G,Akkermans A D L,De Vos W M.Temperature gradient gel electrophoresis analysis from human fecal samples reveals stable and host specific communities of active bacteria[J].Appl.Environ.Microb.1998,64:3854-3859.
    182 Zoetendal E G,Akkermans A D L,Akkermans van-Vliet W M,et al.The host genotype affects the bacterial community in the human gastrointestinal tract[J].Microb.Ecol.Health Disease.2001,13:129-134.
    183 Zoetendal E G,Ben-Amor K,Harmsen H J M,et al.Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rRNA-targeted probes[J].Appl.Environ.Microbiol.2002,68:4225-4232.
    184 Zoetendal E G,Collier C T,Koike S,et al.Molecular Ecological Analysis of the Gastrointestinal Microbiota:A Review[J].J.Nutr.2004,134:465-472.
    185 Zoetendal E G,von Wright A,Vilponnen-Salmela T,et al.Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces[J].Appl.Environ.Microbiol.2002,68:3401-3407.
    186 曹国文,曾代勤,戴荣国.中草药添加剂对断奶猪肠道菌群与生产性能的影响[J].中国兽医科技,2003,33:54-58.
    187 曹国文,马宁,杨松全等.柠檬酸对肠道菌群影响的研究[J].四川畜牧兽医,1992,1:9-11.
    188 陈杰,杨国宇,韩正康.大豆黄酮对反刍动物血清睾酮和瘤胃消化代谢的影响[J].江苏农业研究,1999,20:17-19.
    189 丁轲,倪学勤,潘康成等.中草药和乳酸杆菌合生元的研究[J].中国家禽,2003,25.12-13.
    190 董红军.合生素的体外筛选和在体评估研究[M].南京农业大学硕士学位论文,南京,2005.
    191 冷向军.酸化剂对早期断奶仔猪胃酸分泌、消化酶活性和肠道微生物的影响[M].四川农业大学博士论文,2000.
    192 陆承平.猪链球菌病与猪链球菌2型[J].科技导报,2005,23.9-10.
    193 马清霞,何孔旺,陆承平.猪链球菌2型及其毒力因子检测多重PCR的建立与应用[J].中国兽医学报,2006,26:28-31.
    194 石宝明,单安山,佟建明.寡聚糖对仔猪肠道菌群及生长性能影响的研究[J].东北农业大学学报,2000,31:261-269.
    195 苏勇,朱伟云.仔猪哺乳期和断奶后胃中细菌和乳酸杆菌菌群的变化[J].肠外与肠内营养,2006,13:1-4.
    196 吴慧芬,毛胜勇,姚文,等.猪源乳酸菌产乳酸及其抑菌特性研究[J].微生物学通报,2005. 1:79-84.
    197 杨琳,张宏福,李长忠等.不同断奶日龄仔猪消化道酸度和胃蛋白酶活性的动态变化[J].畜牧兽医学报,2001,32:299-305.
    198 杨维中.余宏杰,景怀琦,等.四川省一起伴中毒性休克综合症的人感染猪链球菌2型暴发[J].中华流行病学杂志,2006,27:185-191.
    199 杨玉芬,卢德勋,许梓荣.日粮纤维对仔猪生产性能和养分消化率影响的研究[J].江西农业大学学报,2003,2:299-303.
    200 姚文,朱伟云,毛胜勇.16S rDNA技术研究新生腹泻仔猪粪样细菌区系的多样性变化[J].微生物学报,2006,46:150-154.
    201 袁森泉.断奶仔猪日粮中的纤维[J].国外畜牧学-猪与禽,1999,2:25-27.
    202 翟俊辉,郭兆彪,宋亚军,等.16S rDNA基因芯片检测临床常见感染性细菌[J].临床检验杂志,2002,20:133-136.
    203 周红丽,张石蕊,贺建华.甘露寡糖对断奶仔猪肠道菌群和抗体水平及生长性能的影响[J].湖南农业大学学报,2002,28:135-138.
    204 朱伟云,姚文,毛胜勇.变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化[J].微生物学报,2003,43:503-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700