基于滚动时域优化策略的网络化系统状态估计与控制器设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统点对点控制模式是将控制对象的现场数据通过电缆线集中到中央控制室,由中央处理器计算得到的控制量再通过电缆线下放到现场。随着通信、计算机和控制技术的飞速发展,这种控制模式已经不能满足不断提高的控制系统性能要求,并使得控制模式发生了根本性变化。控制系统是由传感器、控制器和执行器等多个环节组成,每个环节通过共享网络实现与其它环节的信息交换,从而形成网络化控制系统。近年来,网络化控制系统已经成为控制理论研究的热点方向。虽然已取得了不少研究成果,但仍有许多问题尚未解决并对现有的控制方法提出了新的挑战。考虑到滚动时域的优化策略在状态估计与控制器设计上不同于反馈的策略,这样带有丢包、数据量化以及通信约束的网络化系统的估计与控制问题可以基于滚动时域窗口的性能指标进行优化求解,进而取得优越的系统性能。因此,本文针对丢包、数据量化和通信约束,研究了基于滚动时域优化策略的状态估计与控制器设计,建立了丢包、量化和通信约束特征参数与系统参数和性能之间的关系。本文主要内容有:
     1)针对随机丢包过程满足独立同分布伯努利序列的网络控制系统,基于滚动时域优化策略,提出了一种能够充分利用滚动窗口内系统输入输出信息的滚动时域状态估计方法,以克服数据包随机丢失带给系统的影响。这种估计方法能够充分利用那些以不等式约束形式出现的关于状态和输入输出的额外信息,提高了状态估计的准确性和合理性。与现有的其它估计方法相比,该方法的一个显著特点在于:如果当前数据包发生丢失,滚动窗口内的一段最新数据而非仅前一个时刻数据或当前数据直接置为零,能够用于估计器设计,这样提高了估计的精度。此外,通过分析估计器的估计性能,以不等式的形式给出了保证估计性能收敛的充分条件。最后,通过仿真示例验证了所提出的滚动时域估计方法的有效性。
     2)针对连续丢包数在有界范围内任意变化的网络控制系统,提出了一种基于滚动时域优化策略的网络预测控制方法。首先,考虑到数据在网络中是以包的形式进行传输的这一特性,建立了具有有界丢包过程的网络控制系统模型。随后,基于这个模型,设计出保证系统渐近稳定且具有一定控制性能的网络预测控制器。不同于其它控制方法,这种预测控制策略能够根据系统未来的动态行为,预测出系统未来的控制动作,在数据传输中实现了整个预测控制序列打成一个数据包进行传输而非仅当前控制量的传输,这样当控制量丢失时能够利用预测控制量替代当前丢失的控制量,作用于被控对象,从而克服数据包丢失带给系统的影响。最后,通过一个倒立摆系统的仿真示例验证了所提控制方法的优越性。
     3)针对控制量经由通信网络从控制器传输至执行器的过程中而发生数据量化的网络控制系统,提出了一种基于滚动时域优化策略的鲁棒预测控制器设计方法。首先,考虑到控制器-执行器间的通信信道存在数据量化,采用对数形式的量化器来表征这种量化作用并利用扇形有界分析方法,建立了具有控制输入量化的网络控制系统模型。其次,基于所建模型,研究了网络控制系统的量化稳定性问题并将其转化为线性不确定系统的鲁棒控制问题,设计出保证系统渐近稳定的鲁棒预测控制器,并以线性矩阵不等式形式给出了系统可镇定的充分条件。随后,在保证网络控制系统稳定性和具有一定控制性能的基础上,给出了一种求解最粗糙量化密度的锥补线性化方法。最后,通过仿真示例验证了所提算法的有效性。
     4)考虑到网络带宽受限使得每个采样时刻只有有限数目的传感器能够通过通信网络将部分测量输出数据传输至远程估计器的这种通信情况,提出了一种基于滚动时域优化策略的动态调度方法,使得估计器在网络资源受限的情况下仍具有良好的估计性能。首先,通过定义一种通信序列,将通信约束转化为一个含有逻辑变量0与1的等式约束,从而将一个具有通信约束的线性时不变系统描述为一个带有等式约束的线性时变系统,并根据此模型提出了一种基于二次型调度指标的滚动时域调度方法,其中该二次型调度指标包括通信成本与估计误差。这种动态调度方法通过在线求解一个混合整数二次规划的优化问题,实时得到通信状态。其次,考虑到具有状态约束的被控对象,提出了一种能够处理这种状态约束的滚动时域状态估计方法,并给出了估计误差范数平方有界的充分条件。最后,通过一个双容液位系统的物理实验验证了所提调度策略的优越性。
The traditional point-to-point control strategy is the one, where the field real-timedata from the controlled plant can be centrally transmitted through the cable to the centralcontrol room and then the control variable computed by the central processing unit can besent to the field. With the rapid development of communication, computer and controltechnology, the traditional point-to-point control structure can not meet the performancerequirements of control systems. Meanwhile, a fundamental change of the traditionalpoint-to-point control structure has taken place. Specifically, control systems are made upof sensors, controllers, actuators and other components each of which can communicatewith others by the shared network, and then Networked Control Systems (NCSs)generated. NCSs have now been one of the hot topics in the control theory research.Though there have been lots of useful results on this issue, lots of problems remain to beunsolved and bring forward new challenges and opportunities to the existing controlmethods. Considering the difference between the moving horizon optimization and thefeedback strategy on the state estimation and the controller design, the estimation andcontrol problem of NCSs with packet dropouts, data quantization and communicationconstraints can be solved based on the performance index of the moving horizon window,which can obtain a good performance. Therefore, based on the moving horizonoptimization strategy, the state estimation and controller design problem of NCSs arerespectively investigated in this thesis. Furthermore, the relations among systemparameters and performances, and parameters characterizing the packet dropouts, dataquantization and communication constraints are established respectively. The maincontents are as follows.
     1) Based on the moving horizon optimization strategy, a moving horizon estimation(MHE) method fully utilizing the available input and output information of the system dynamics in sliding window is proposed for NCSs to overcome the influence of the datapacket dropouts which can be modeled by a stochastic variable satisfying the Bernoullibinary distribution. This estimation method can make good use of the additionalinformation about state, control input and output variables shown in the form of inequalityconstraints to enhance the accuracy and rationality of the state estimation. Compared withthe existing other state estimation methods, a distinct character of the proposed estimatoris that when the current measurement is lost during transmission, a batch of the mostrecent measurements instead of the previous value or the current value directly set to zerowill be used to the design of the proposed estimator, which can improve the estimationprecision. Moreover, a sufficient condition in the form of the inequality is presented toguarantee the convergence of the estimation performance. Finally, the efficiency of theproposed MHE can be illustrated by some simulation examples.
     2) Based on the moving horizon optimization strategy, a new networked predictivecontrol method is proposed for networked control systems under the network environmentwhere the number of the consecutive data packet dropouts is bounded arbitrarily.Considering the fact that the data in network can be packed into one packet and then canbe transmitted at each instant, the model of the NCSs with bounded packet dropouts isbuilt. Based on the proposed model, the networked predictive controller can be designedto stabilize the system, and a good control performance can also be obtained. Differentfrom other control methods, the proposed method has the unique merits which can predictthe future control action of the system according to the future dynamics of the controlledsystem and can accomplish the network transmission of the data packet including apredictive control sequence, but not only a current predictive control action. When thecontrol packet is lost, the corresponding predictive control can be picked up from thepredictive control sequence conserved in the buffer, and then acts on the controlled system,which can overcome the effect of the packet dropouts on the controlled system. Finally, aninverted pendulum system can be used to verify the superiority of the proposed method.
     3) Based on the moving horizon optimization strategy, a new robust model predictivecontrol method is proposed to deal with the control problem of NCSs with dataquantization through the communication network between controller and actuator. Firstly,considering the effect of the data quantization in the controller-actuator channel and applying the logarithmic quantizers to describe this kind of quantization, the model of theNCSs with control input quantization is established based on the sector bound approach.Secondly, relying on the proposed model, the stability of the networked control systemswith quantization is studied which can be converted into the robust control problem of thelinear uncertain systems, and then the robust predictive controller to asymptoticallystabilize the system is designed. Furthermore, the stability conditions of NCSs shown interms of linear matrix inequalities (LMIs) are obtained. On the basis of guaranteeing thestability of NCSs and obtaining a certain control performance, the coarsest quantizationdensity can be also derived by using a cone complementary linearization method. Finally,two simulation examples are given to show the validity of the proposed method.
     4) Based on the moving horizon optimization strategy, a novel dynamical schedulingapproach has been firstly proposed to handle the communication scheduling problem ofNCSs with communication constraints which means that because of the limited networkbandwidth only some sensors can be allowed to transmit the partial measured outputs tothe remote estimator through the communication network at each sample instant. By thisway, the state estimator can still have a good estimation performance in the case of thelimited network resources. Firstly, defining the communication sequence to explain thecommunication constraints, the communication constraints can be changed into anequality constraint with a logical variable taking the value of zero and one, and then alinear time-invariant system with communication constraints can be converted into a lineartime-varying system with an equality constraint, and then the moving horizon schedulingmethod is proposed based on a new quadratic performance criterion includingcommunication cost and estimation performance penalties. Consequently, by onlinesolving the optimization problem of the mixed integer quadratic programming, thecommunication scheduling sequence can be derived. Secondly, a moving horizon stateestimation method has been also suggested to estimate the unavailable states of NCSsincorporating state inequality constraints. It is further analyzed that sufficient conditionsare presented for the boundness on the square norm of the estimation error. Finally, apractical experiment on a two-tank liquid-level system is given to demonstrate theadvantages of the proposed scheduling method.
引文
[1] Ray A. Distributed data communication networks for real-time process control [J].Chemical Engineering and Communications.1988,65(1):139-154.
    [2] Lim D, Anbuky A. A distributed industrial battery management network [J]. IEEETransactions on Industrial Electronics.2004,51(6):1181-1193.
    [3] Tabbara M, Nesic D. Stability of wireless and wireline networked control systems[J]. IEEE Transactions on Automatic Control.2007,52(9):1615-1630.
    [4] Li T, Fujimoto Y. Control system with high-speed and real-time communicationlinks [J]. IEEE Transactions on Industrial Electronics,2008,55(4):1548-1557.
    [5] Seiler P, Sengupta R. Analysis of communication losses in vehicle control problems[A]. In Proceeding of2001American Control Conference [C].2001,2:1491-1496.
    [6] Sparks J A. Low cost techniques for aerospace application [J]. Microprocessors andMicrosystems.1997,20:449-454.
    [7] Yang Y, Polycarpou M M, Minai A A. Multi-UAV cooperative search using anopportunistic learning method [J]. ASME Journal of Dynamic Systems Measurementand Control.2007,129(5):716-728.
    [8] Lian F L, Moyne J R, Tilbury D M. Performance evaluation of control networks:ethernet, controlnet and devicenet [J]. IEEE Control Systems Magazine.2001,21(1):66-83.
    [9] Zhang L. Aecess seheduling and controller design in networked control systems [D].PhD dissertation, University of Maryland,2005.
    [10] Sadjadi B A. Stability of networked control systems in the presence of packet losses[A]. Proceedings of the43rd IEEE Conference Decision Control [C]. Maui, Hawaii,2003:676-681.
    [11] Halevi Y, Ray A. Integrated communication and control systems: part I—analysis [J].Journal of Dynamic Systems, Measurement, and Control.1988,110(4):367-373.
    [12] Ray A, Halevi Y. Integrated communication and control systems: part II—designconsiderations [J]. ASME Journal of Dynamic Systems, Measurement, andControl.1988,110(4):374-381.
    [13] Liou L W, Ray A. Integrated communication and control systems: partIII—nonidentical sensor and controller sampling [J]. ASME Journal of DynamicSystems, Measurement, and Control.1990,112(3):357-364.
    [14] Bushnell L G. Networks and control [J]. IEEE Control Systems Magazine.2001,21(1):22-23.
    [15] Antsaklis P, Baillieul J. Guest editorial Special issue on networked control systems[J]. IEEE Transaction on Automatic Control.2004,49(9):1421-1423.
    [16] Antsaklis P, Baillieul J. Special issue on technology of networked control systems[J]. Proceedings of the IEEE.2007,95(1):5-8.
    [17] Tanenbaum A S. Computer networks (fourth edition)[M]. Englewood Cliffs, NJ:Prentice Hall,2003.
    [18] Hong S H. Scheduling algorithm of data sampling times in the integratedcommunication and control systems [J]. IEEE Transactions on Control SystemsTechnology.1995,3(2):225-230.
    [19] Zhang W. Stability analysis of networked control sytems [D]. PhD disseration,Cleveland: Case Western Reserve University,2001.
    [20] Nahi N E. Optimal recursive estimation with uncertain observation [J]. IEEETransactions on Information Theory.1969,15(4):457-462.
    [21] Wang Y, Ho D, Liu X. Variance-constrained filtering for uncertain stochasticsystems with missing measurements [J]. IEEE Transactions Automatic Control.2003,48(7):1254-1258.
    [22] Fortmann T, Bar-Shalom Y, Scheffe M, Gelfand S. Detection thresholds for trackingin clutter—a connection between estimation and signal processing [J]. IEEETransactions on Automatic Control.1985,30(3):221-229.
    [23] Sinopoli B, Schenato L, Franceschetti M, et al. Kalman filtering with intermittentobservations [J]. IEEE Transactions on Automatic Control.2004,49(9):1453-1464.
    [24] Sinopoli B, Schenato L, Franceschetti M, et al. Time varying optimal control withpacket losses [A]. Proceedings of the43rd IEEE Conference on Decision andControl [C]. Atlantis, Paradise Island, Bahamos,2004:1938-1943.
    [25] Epstein M, Shi L, Tiwari A, Murray R M. Probabilistic performance of stateestimation across a lossy network [J]. Automatica.2008,44(12):3046-3053.
    [26] Mostofi Y, Murray R M. To drop or not to drop: design principles for Kalmanfiltering over wireless fading Channels [J]. IEEE Transactions on Automatic Control.2009,54(2):376-381.
    [27] Liu X, Goldsmith A. Kalman filtering with partial observation losses [A].Proceedings of the43rd IEEE Conference on Decision and Control [C].2004:4180-4186.
    [28] Sun S, Xie L, Xiao W, Soh Y C. Optimal linear estimation for systems with multiplepacket dropouts [J]. Automatica.2008,44(5):1333-1342.
    [29] Liang Y, Chen T, Pan Q. Optimal linear state estimator with multiple packetdropouts [J]. IEEE Transactions on Automatic Control.2010,55(6):1428-1433.
    [30] Schenato L. Optimal Estimation in Networked Control Systems Subject to RandomDelay and Packet Drop [J]. IEEE Transactions on Automatic Control.2008,53(5):1311-1317.
    [31] Smith S C, Seiler P. Estimation with Lossy Measurements: Jump Estimators forJump Systems [J]. IEEE Transactions on Automatic Control.2003,48(12):2163-2171.
    [32] Fletcher A K, Rangan S, Goyal V K. Estimation from Lossy Sensor Data: JumpLinear Modeling and Kalman Filtering [A]. Proceedings of the third InternationalSymposium on Information Processing in Sensor Networks [C]. Berkeley, USA,2004,13(7):115-120.
    [33] Huang M Y, Dey S. Kalman fi1tering with Markovian packet1osses and stabi1itycriteria [A]. Proceedings of the45th IEEE conference on Decision and control [C].San Diego, USA.2006:5621-5626.
    [34] Huang M, Dey S. Stability of Kalman filtering with Markovian Packet losses [J].Automatica.2007,43:598-607.
    [35] Xie L, Xie L. Stability of a random Riccati Equation with Markovian BinarySwitching [A]. Proceedings of the46th IEEE Conference on Decision and control
    [C]. New Orleans, LA, USA,2007:12-14.
    [36] Mo Y, Sinopoli B. Kalman filtering with intermittent observations: tail distributionand critical value [J]. IEEE Transactions on Automatic Control.2012,57(3):677-689.
    [37] Sahebsara M, Chen T, Shah S L. Optimal H-2filtering in networked control systemswith multiple packet dropout [J]. IEEE Transactions on Automatic Control.2007,52(8):1508-1513.
    [38] Sahebsara M, Chen T, Shah S L. Optimal H-inf filtering in networked controlsystems with multiple packet dropouts [J]. Systems&Control Letters.2008,57(9):696-702.
    [39] Yang F, Wang Z, Gani M. Roust H-2/H-inf filtering for uncertain systems withmissing measurement [A]. Proceedings of the45th IEEE Conference on Decisionand Control [C]. San Diego, CA, USA,2006:4769-4774.
    [40] Wang Z, Yang F, Ho W C, et al. Robust H-inf filtering for stochastic time-delaysystems with missing measurements [J]. IEEE Transactions on Signal Processing.2006,54(7):2579-2587.
    [41] Yue D, Han Q. Network-based robust H-inf filtering for uncertain linear systems [J].IEEE Transactions on Signal Processing.2006,54(11):4293-4301.
    [42] Cai Y, Wang H O, Tanaka K, Xu X. Robust filtering for networked control systemswith random transmission delays and packet dropouts [A]. Proceedings of the2011American Control Conference [C]. San Francisco, CA, USA,2011:1813-1818.
    [43] Yang R, Shi P, Liu G. Filtering for discrete-time networked nonlinear systems withmixed random delays and packet dropouts [J]. IEEE Transactions on AutomaticControl.2011,56(11):2655-2660.
    [44] Matveev A S, Savkin A V. The problem of state estimation via asynchronouscommunication channels with irregular transmission times [J]. IEEE Transactionson Automatic Control.2003,48(4):670-676.
    [45] Sun S, Xie L, Xiao W, et al. Optimal filtering for systems with multiple packetdropouts [J]. IEEE Transactions on Circuits and Systems II: Express Briefs.2008,55(7):695-699.
    [46] Jin Z, Gupta V, Hassibi B, Murray R M. State estimation utilizing multipledescription coding over lossy networks [A]. Proceedings of the44th IEEEConference on Decision and Control and the European Control Conference [C].Seville, Spain,2005:872-878.
    [47] Zhang L, Yang L, Guo L, Li J. Optimal estimation for multiple packet dropoutssystems based on measurement predictor [J]. IEEE Sensors Journal.2011,11(9):1943-1950.
    [48] Zhang W. Stability analysis of networked control systems [D]. PhD disseration,Cleveland: Case Western Reserve University,2001.
    [49] Zhang W, Branicky M S, Phillips S M. Stability of Networked Control Systems [J].IEEE Control Systems Magazine.2001,21(1):84-99.
    [50] Ling Q, Lemmon M D. Robust Performance of Soft Real Time Networked ControlSystems with Data Dropouts [A]. Proceedings of the41st IEEE Conference onDecision and Control [C]. Phoenix, USA,2002,2:1225-1230.
    [51] Ling Q, Lemmon M D. Optimal Dropout Compensation in Networked ControlSystems [A]. Proceedings of the42nd IEEE Conference on Decision and Control
    [C]. Maui, Hawaii, USA.2003,1:670-675.
    [52] Azimi Sadjadi B. Stability of Networked Control Systems in the Presence of PacketLosses [C]. Proceeding of the42nd IEEE Conference on Decision and Control.Hawaii, USA,2003,1:676-681.
    [53] Imer O C, Yuksel S, Basar T. Optimal control of LTI systems over unreliablecommunication links [J]. Automatica.2006,42(9):1429-1439.
    [54] Hu S, Yan W Y. Stability robustness of networked control systems with respect topacket loss [J]. Automatica.2007,43(7):1243-1248.
    [55] Yue D, Han Q L, Peng C. State feedback controller design of networked controlsystems [J]. IEEE Transaction on Circuits and System II: Express Briefs.2004,51(11):640-644.
    [56] Yue D, Han Q L, Lam J. Network-based robust control of systems with uncertainty[J]. Automatica.2005,41(6):999-1007.
    [57] Xiong J, Lam J. Stabilization of linear systems over networks with bounded packetloss [J]. Automatica.2007,43(1):80-87.
    [58] Wu J, Chen T. Design of networked control systems with packet dropout [J]. IEEETransaction on Automatic Control.2007,52(7):1314-1319.
    [59] Seiler P, Sengupta R. An H-inf approach to networked control [J]. IEEE Transactionon Automatic Control.2005,50(3):356-364.
    [60] Yu M, Wang L, Chu T, Xie G. Modeling and control of networked systems via jumpsystem approach [J]. IET Control Theory and Applications.2008,2(6):535-541.
    [61] Yu J Y, Wang L, Zhang G F, Yu M. Output feedback stabilization of networkedcontrol systems via switched system approach [J]. International Journal of Control.2009,82(9):1665-1677.
    [62] Elia N, Eisenbeis J N. Limitations of linear control over packet drop networks [J].IEEE Transaction on Automatic Control.2011,56(4):826-841.
    [63] Gupta V, Hassibi B, Murray R M. Optimal LQG control across packet-droppinglinks [J]. Systems&Control Letters.2007,56(6):439-446.
    [64] Zhang W A, Yu L. Output feedback stabilization of networked control systems withpacket dropouts [J]. IEEE Transaction on Automatic Control.2007,52(9):1705-1710.
    [65] Sun Y, Qin S. Stability of networked control systems with packet dropout: averagedwell time approach [J]. IET Control Theory and Applications.2011,5(1):47-53.
    [66]赵月明,陈在平,尹迅雷.基于灰色控制的网络控制系统丢包补偿[J].天津理工大学学报.2005,21(4):45-48.
    [67]樊卫华,蔡骅,吴晓蓓,胡维礼.具有延时和数据包丢失的网络控制系统的稳定性[J].南京理工大学学报.2004,28(5):465-468.
    [68] Munoz de la Pena D, Christofides P D. Lyapunov-based model predictive control ofnonlinear systems subject to data losses [J]. IEEE Transactions on AutomaticControl.2008,53(9):2076-2089.
    [69] Franzè G, Famularo D, Tedesco F. Receding horizon control for constrainednetworked control systems subject to data-losses [A], Proceedings of the50th IEEEConference on Decision and Control and European Control Conference [C].Orlando, FL, USA,2011:12-15.
    [70] Nair G N, Evans R J. State estimation via a capacity-limited communication channel[A]. Proceedings of the36th Conference on Decision and Control [C].1997, l:866-871.
    [71] Nair G N, Evans R J. State estimation under bit-rate Constraints [A]. Proceedings ofthe37th Conference on Decision and Control [C].1998,1:251-256.
    [72] Nair G N, Evans R J. A finite-dimensional coder-estimator for the rate constrainedstate estimation [A]. Proceedings of the14th IFAC World Congress [C].1999, l:19-24.
    [73] Nair G N, Evans R J. Structural results for finite bit-rate state estimation [A].Proceedings of Information, Decision and Control [C].1999,1:47-52.
    [74] Elia N. Design of hybrid systems with guaranteed performance [A]. Proceedings ofthe39th IEEE Conference on Decision and Control [C].2000,1:993-998.
    [75] Elia N, Mitter S K. Stabilization of linear systems with limited information [J]. IEEETransactions on Automatic Control.2001,46(9):1384-1400.
    [76] Elia N. Coarsest quantizer density for quadratic stabilization of two-input linearsystems [A]. Proceedings of the10th Mediterranean Conference on Control andAutomation [C]. Lisbon, Portugal,2002.
    [77] Fu M, Xie L. The sector bound approach to quantized feedback control [J]. IEEETransaction on Automatic Control.2005,50(11):1698-1711.
    [78] Ceragiolia F, Persisb C D. Discontinuous stabilization of nonlinear systems:quantized and switching controls [J]. Systems&Control Letter.2007,56(7/8):461-473.
    [79] Gao H, Chen T. A new approach to quantized feedback control systems [J].Automatica.2008,44(2):534-542.
    [80] Fagnani F, Zampieri S. Stability analysis and synthesis for scalar linear systems witha quantized feedback [J]. IEEE Transactions on Automatic Control.2003,48(9):1569-1584.
    [81] Zhai G, Chen X, Imae J, et al. Analysis and design of H-inf feedback control systemswith two quantized signals [A]. IEEE International Conference on Networking,Sensing and Control [C].2006:346-350.
    [82] Liberzon D. A hybrid control framework for systems with quantization [A].Proceedings of the40th IEEE international Conference on Decision and Control [C].2001:1217-1222.
    [83] Montestruque L A, Antsaklis P J. Static and dynamic quantization in mode basednetworked control systems [J]. International Journal of Control.2007,80(1):87-101.
    [84] Tian E, Yue D, Zhao X. Quantised control design for networked control systems [J].IET Control Theory and application.2007,1(6):1693-1699.
    [85]张丹,俞立,张文安.带宽受限网络化系统的广义H2滤波[J].控制理论与应用.2010,27(3):377-381.
    [86] Yue D, Peng C, Tang G. Guaranteed cost control of linear systems over networkswith state and input quantisations [J]. IEE Proceeding: Control Theory andApplications.2006,153(6):658-664.
    [87] Peng C, Tian Y. Networked H-inf control of linear systems with state quantization[J]. Information Sciences.2007,177(24):5763-5774.
    [88] Gao H, Chen T. H-inf estimation for uncertain systems with limited communicationcapacity [J]. IEEE Transactions on Automatic Control.2007,52(11):2070-2084.
    [89] Zhang H, Yan H, Yang F, Chen Q. Quantized control design for impulsive fuzzynetworked systems [J]. IEEE Transactions on Fuzzy Systems.2011,19(6):1153-1162.
    [90]褚红燕,费树岷,刘金良,翟军勇.时滞依赖网络控制系统的量化控制:分段时滞法[J].控制理论与应用.2011,28(4):575-580.
    [91]金辉.网络化系统通信序列与控制器设计研究[D].大连海事大学,2010.
    [92] Song H, Zhang W, Yu L. H-inf filtering of network-based systems withcommunication constraints [J]. IET Signal processing.2010,4(1):69-77.
    [93]窦立谦,宗群,孙连坤,吉月辉.具有通信序列的网络控制系统LQG控制器设计[J].控制工程.2011,18(3):448-452.
    [94]陈惠英.资源受限网络控制系统控制与调度方法研究[D].浙江工业大学,2008.
    [95] Zhang L, Hristu D. LQG control under limited communication [A]. Proceedings ofthe44th IEEE Conference on Decision and Control [C]. Seville, Spain,2005:185-190.
    [96] Brockett R. Stabilization of motor networks [A]. Proceedings of the34th IEEEConference on Decision and Control [C]. New Orleans, USA: IEEE,1995:1484-1488.
    [97] Hristu D. Stabilization of LTI systems with communication constraints [C].Proceedings of the2000American Control Conference, Chicago,2000:2342-2346.
    [98] Zhang L, Hristu D. Communication and control co-design for networked controlsystems [J]. Automatica.2006,42(6):953-958.
    [99] Ishii H. H-inf control with limited communication and message losses [J]. Systems&Control Letters.2008,57(4):322-331.
    [100] Rehbinder H, Sanfridson M. Scheduling of a limited communication channel foroptimal Control [J]. Automatica.2004,40(3):491-500.
    [101] Lincoln B, Bernhardsson B. Efficient pruning of search trees in LQR control ofswitched linear systems [A], Proceedings of the IEEE Conference on DecisionControl and European Contro1Conference [C]. Sydney,2000:1828-1833.
    [102] Lu L, Xie L, Fu M. Optimal control of networked systems with limitedcommunication: combined heuristic and convex optimization approach [A].Proceedings of the42nd IEEE Conference on Decision and Control [C]. Hawaii,USA: IEEE,2003,(2):1194-1199.
    [103] Gaid M M B, Cela A, Hamam Y. Optimal integrated control and scheduling ofsystems with Communication constraints [A]. Proceedings of the44th IEEEConference on Decision Control and European Contro1Conference [C]. Seville,Spain: IEEE,2005:854-859.
    [104] Gaid M M B, Cela A, Hamam Y. Optimal integrated control and scheduling ofnetworked control systems with communication constraints: application to a carsuspension system [J]. IEEE Transaction on Control System Technology.2006,14(4):776-787.
    [105] Ramesh C, Sandberg, H, Bao L, Johansson K H. On the dual effect in state-basedscheduling of networked control systems [C]. Proceedings of the2011AmericanControl Conference [C]. San Francisco, CA, USA,2011:2216-2221.
    [106] Arai S, Iwatani Y, Hashimoto K. Fast sensor scheduling for spatially distributedsensors [J]. IEEE Transactions on Automatic Control.2011,56(8):1900-1905.
    [107] Palopoli L,Bicchi A,Sangiovanni-Vincentelli A.Numerically efficient control ofsystems with communication constraints [A].Proceedings of the IEEE Conferenceon Decision and Control [C]. Piscataway, NJ, USA: IEEE,2002:1626-1631.
    [108] Wong W S, Brockett R W. Systems with finite communication bandwidthconstraints-Part I: state estimation problems [J]. IEEE Transactions on AutomaticControl.1997,42(9):1294-1299.
    [109] Silva E I, Derpich M S, stergaard J. A framework for control system design subjectto average data-rate constraints[J]. IEEE Transactions on Automatic Control.2011,56(8):1886-1899.
    [110] You K, Xie L. Minimum data rate for mean square stabilizability of linear systemswith markovian packet losses [J]. IEEE Transactions on Automatic Control.2011,56(4):772-785.
    [111] Xu Y G, Hespanha J P. Communication logics for networked control systems [A].Proceedings of the2004American Control Conference [C]. Boston, Massachusetts:IEEE,2004:572-577.
    [112] Hassibi A, Boyd S P, How J P. Control asynchronous dynamical systems with rateconstraints on events [A]. Proceedings of the42nd IEEE Conference on Decisionand control [C]. Phoenix,1999:1345-1351.
    [113] Rabelto A, Bhays A. Stabilty of asynchronous dynamical systems with rateconstraints and applications [A]. Proceedings of the2002American ControlConference [C]. Anchorage,2002:1284-1289.
    [114]宗群,王鹤,李然.一种网络控制系统的随机通信逻辑设计与分析.控制与决策.2007,22(7):795-799.
    [115] Zhang H, Lu X, and Cheng D. Optimal estimation for continuous-time systems withdelayed measurements [J]. IEEE Transactions on Automatic Control.2006,51(5):823-827.
    [116] Schenato L, Sinopoli B, Franceschetti M, Poola K, Satry S. Foundations of Controland Estimation over Lossy Networks [J]. Proceedings of the IEEE.2007,95(1):163-187.
    [117] Shi L, Epstein M, Murray R M. Kalman Filtering Over a Packet-DroppingNetworked: A Probabilistic Perspective [J]. IEEE Transactions on AutomaticControl.2010,55(3):594-604.
    [118] Liang Y, Chen T, Pan Q. Optimal linear state estimator with multiple packetdropouts [J]. IEEE Transactions on Automatic Control.2010,55(6):1428-1433.
    [119] Alessandri A, Baglietto M, Battistelli G. Receding-horizon state estimation fordiscrete-time linear systems [J]. IEEE Transactions on Automatic Control.2003,48(3):473-478.
    [120] Rao C V. Moving horizon strategies for the constrained monitoring and control ofnonlinear discrete-time systems [D]. PhD thesis, University of Wisconsin-Madison,2000.
    [121] Alessandri A, Baglietto M, Battistelli G. Moving-horizon state estimation fornonlinear discrete-time systems: New stability results and approximation schemes[J]. Automatica.2008,44(7):1753-1765.
    [122] Rao C V, Rawlings J B, Lee J H. Constrained linear state estimation-a movinghorizon approach [J]. Automatica.2001,37(10):1619-1628.
    [123] Hu W, Liu G, Rees D. Event-driven networked predictive control [J]. IEEETransactions on Industrial Electronics.2007,54(3):1603-1613.
    [124] Wang Z, Yang F, Ho D W C, Liu X. Robust H∞control for networked systems withrandom packet losses [J]. IEEE Transactions on Systems, Man, and Cybernetics,Part B: Cybernetics.2007,37(4):916-924.
    [125]李海涛,唐功友,马慧.一类具有数据包丢失的网络控制系统的最优控制[J].控制与决策,2009,24(5):773-776.
    [126] Liu G P, Xia Y, Rees D, Hu W. Design and stability criteria of networked predictivecontrol systems with random networked delay in the feedback channel [J]. IEEETransactions on Systems, Man, and Cybernetics—Part C: Applicationsand reviews.2007,37(2):173-184.
    [127] Hu W, Liu G P, Rees D. Event-driven networked predictive control [J]. IEEETransactions on Industrial Electronics.2007,54(3):1603-1613.
    [128] Zhao Y B, Liu G P, Rees D. A predictive control-based approach to networkedHammerstein systems: design and stability analysis [J]. IEEE Transactions onSystems, Man, and cybernetics—Part B: Cybernetics.2008,38(3):700-708.
    [129] Quevedo D E, Silva E I, Goodwin G C. Packetized predictive control overerasurechannels [A]. Proceedings of the2007American Control Conference [C]. IEEE,New York City, USA.2007:1003-1008.
    [130] Mayne D Q, Rawlings J B, Rao C V, and Scokaert P. O. M. Constrained modelPredictive control: Stability and optimality [J]. Automatica.2000,36(6):789-813.
    [131] Gao H, Chen T. New results on stability of discrete-time systems with time-varyingstate delay [J]. IEEE Transactions on Automatic Control.2007,52(2):328-334.
    [132] Gao H, Meng X, Chen T. Stabilization of networked control systems with a newdelay characterization [J]. IEEE Transactions on Automatic Control.2008,53(9):2142-2148.
    [133] Nair G N, Evans R J. Exponential stabilisability of finite-dimensional linear systemswith limited data rates [J]. Automatica.2003,39(4):585-593.
    [134] Kothare M V, Balakrishnan V, Morari M. Robust constrained model predictivecontrol using linear matrix inequalities [J]. Automatica.1996,32(10):1361-1379.
    [135] Xie L. Output feedback H∞control of systems with parameter uncertainty [J].International Journal of Control.1996,63(4):741-750.
    [136] Gao H, Lam J, Wang C, Xu S.‘H-inf model reduction for discrete time-delaysystems: delay-independent and dependent approaches [J]. International Journal ofControl.2004,77(4):321-335.
    [137] Sozer E, Stojanovic M, Proakis J. Underwater acoustic networks [J]. IEEE Journalof Oceanic Engineering.2000,25(1):72-83.
    [138]李少远,蔡文剑.工业过程辨识与控制,北京:化学工业出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700