压缩感知恢复算法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于信号的稀疏性结构,集采样和压缩为一体,压缩感知突破了香农采样定理,能够运用远少于香农采样定理所界定的采样数目来精确恢复原始稀疏信号。压缩感知具有广泛的应用背景,包括误差校正、图像处理、通信工程、盲信号分离、模式识别等。压缩感知的研究,促进了信号处理理论和工程应用的发展,已经成为该领域的研究热点之一。
     信号恢复算法是压缩感知理论的重要组成部分。针对不同的稀疏信号,选择合适的恢复算法,运用尽可能少的测量数目,压缩感知致力于精确恢复原稀疏信号。本文以此为目标,针对恢复算法展开研究,主要贡献如下:
     1.基于硬阈值追踪算法(hard thresholding pursuit,HTP),提出了一种新的贪婪算法,旨在解决信号稀疏度未知情况下的恢复性问题。该算法采用了渐近估计稀疏度的技巧,解决真实稀疏度未知造成的困难。将限制等距性质(restricted isometryproperty,RIP)作为理论分析工具,给出了算法收敛的充分条件,并且给出了恢复的信号与原始信号之间的误差上界。在信号稀疏度未知的前提下,合成信号和自然图像的恢复实验表明该算法具有良好的恢复性能。
     2.目前,针对块正交匹配追踪算法(block orthogonal matching pursuit,BOMP)精确恢复原始块稀疏信号的条件大多以块-互相关度(block mutual coherence)为判别准则。利用块-RIP,本文给出了保证BOMP算法精确恢复原信号的充分条件,并且说明了给出基于块-RIP的精确恢复条件是必要的;针对人脸识别等工程应用中可能出现冗余块的情况,提出了一种解决冗余块问题的算法,并且给出了保证算法精确恢复的条件;在多重测量向量(multiple measurement vectors,MMV)模型的基础上,本文所提的算法能够实现同时处理多个样本。最后,通过人脸识别的实验,表明了所提算法的有效性。
     3.针对所求稀疏信号部分支撑信息已知的情况,提出了加权L2,1最小化方法。该方法可以利用信号序列中帧与帧之间的相关性,将上一帧的支撑信息作为恢复下一帧信号的先验信息,使得进一步降低采样数目成为可能。利用RIP,给出了恢复的信号与原始信号之间的误差上界。另外,由于该方法将二维的信号直接看做矩阵来处理,而不是将其向量化,这样大大的减少了运行时间。通过恢复Larynx图像序列的实验,验证了算法的有效性。
     4.针对贪婪块坐标下降算法(greedy block coordinate descent,GBCD),在加性噪声和乘性噪声干扰下,运用RIP理论工具,分析了该算法的性能。给出了保证GBCD算法精确恢复原始信号的支撑集合的充分条件,并且给出了满足该充分条件的例子;讨论了该充分条件的上界,通过例子,指出了在不满足该充分条件时,存在着GBCD算法不能精确恢复的情况。最后,通过仿真实验,验证了GBCD算法的性能。
Based on the signal sparsity structure, integrating sampling and compression, theShannon sampling theorem is broken through by the theory of compressed sensing, whichcan recover the sparse signals exactly from far less samples than those required by theclassical Shannon theorem. Compressed sensing has a wide range of applications thatinclude error correction, image processing, communication engineering, blind source sep-aration, pattern recognition and so on. It promotes the development of the theory andengineering application and has been one of the hottest topics in the feld of signal pro-cessing.
     The recovery algorithm is an important part of compressed sensing. In compressedsensing model, selecting the appropriate algorithm for diferent signals, recovering theoriginal signal exactly by using as few measurements as possible is the goal. Taking thisas the target and carrying out research on the recovery algorithms, the main contributionsof this paper are as follows.
     1. Based on the hard thresholding pursuit (HTP), this paper proposes a new greedyalgorithm, aiming at resolving the recovery of sparse signals without the sparsity levelinformation. The algorithm estimates the sparsity level stage by stage, thus it can over-come the difculty caused by the unknown sparsity level information. By using restrictedisometry property (RIP), the sufcient condition for the convergence of the algorithmis presented, and the error between the recovered signal and the original signal is alsogiven. By recovering the synthetic signals and natural images, this paper shows that theproposed algorithm has good performances even without the sparsity level information.
     2. Based on block mutual coherence, the existing work analyzes the recovery ofsparse signals using block orthogonal matching pursuit (BOMP). This paper presents asufcient condition, based on block RIP, which can ensure to recover the original signalusing BOMP. Also, this paper explains that it is necessary to give the sufcient condition.Redundant blocks may be found in face recognition. This paper proposes an algorithmto solve this problem, and gives a sufcient condition for exactly recovering the supportof unknown sparse vector. Based on multiple measurement vectors (MMV) model, thispaper proposes an algorithm that can simultaneously process many samples. Finally, theefectiveness of the proposed algorithm is shown in the experiment of face recognition.
     3. The weighted L2,1minimization method is proposed when a part of a sparsesignal’s support is known. By utilizing the correlation of the consecutive frames of signalsequence, this method sees the support of the last frame as prior information, thus, it is possible to recover the original signal using less samples. Based on RIP, the error betweenthe recovered signal and the original signal is presented. In addition, this method directlyregards2D signal as matrix, rather than1D vector, it greatly reduces the running time.The efectiveness of the proposed method is indicated through the recovery of the Larynxsequence.
     4. Under the additive noise and multiplicative noise, using RIP, this paper aimsat analyzing the theoretical performance of greedy block coordinate descent (GBCD)algorithm. A sufcient condition is presented and an example that satisfes this conditionis also given. The upper bound of this sufcient condition is also analyzed. By giving anexample, this paper shows that GBCD can not exactly recover the support of the originalsignal. Finally, the performance of GBCD is illustrated by experimental results.
引文
[1] Kotelnikov V. On the carrying capacity of the ether and wire in telecommunications[R]. In Izd. Red. Upr. Svyazi RKKA, Moscow, Russia,1933.
    [2] Nyquist H. Certain topics in telegraph transmission theory[J]. Transactions of theAmerican Institute of Electrical Engineers,1928,47(2):617-644.
    [3] Shannon C. Communication in the presence of noise [J]. Proc. Institute of RadioEngineers,1949,37(1):10-21.
    [4] Whittaker E. On the functions which are represented by the expansions of the inter-polation theory [J]. Proc. Royal Soc. Edinburgh, Sec. A,1915,35:181-194.
    [5]陈从颜,翟军勇.信号与系统基础[M].北京:机械工业出版社,2009.
    [6]金坚,谷源涛,梅顺良.压缩采样技术及其应用[J].电子与信息学报,2010,32(2):470-475.
    [7]刘丹华.信号稀疏分解及压缩感知理论应用研究[D].西安:西安电子科技大学,2009.
    [8] Cand`es E, Roberg J, and Tao T. Robust uncertainty principles: Exact signal recog-nition from highly incomplete frequency information [J]. IEEE Trans. Info. Theory,2006,52(2):489-509.
    [9] Donoho D. Compressed sensing [J]. IEEE Trans. Info. Theory,2006,52(4):1289-1306.
    [10] Cand`es E, and Tao T. Near optimal signal recovery from random projections: Uni-versal encoding strategies?[J]. IEEE Trans. Info. Theory,2006,52(12):5406-5425.
    [11] Cand`es E, and Wakin M. An introduction to compressive sampling [J]. IEEE SignalProcessing Magazine,2008,25(2):21-30.
    [12] Cand`es E, and Tao T. Decoding by linear programming [J]. IEEE Trans. Info. Theory,2005(12):4203-4215.
    [13] Cand`es E, Romberg J, and Tao T. Stable signal recovery from incomplete and inac-curate measurements [J]. Comm. Pure Appl. Math.,2006,59(8):1207-1223.
    [14] Eldar Y, and Kutyniok G. Compressed sensing, theory and applications [M]. Cam-bridge: Cambridge University Press,2011.
    [15] Lu Wusheng. Compressed sensing and sparse signal processing [EB]. Avail-able: http://sms.math.ecnu.edu.cn/lu2010/Lecture_Notes/Lecture_Notes_CS_LWS_Final.pdf.
    [16]李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377.
    [17]戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434.
    [18]蔡泽民,赖剑煌.一种基于超完备字典学习的图像去噪方法[J].电子学报,2009,37(2):347-350.
    [19]石光明,刘丹华,高大化等.压缩感知理论及其研究进展[J].电子学报,2009,37(05):1070-1081.
    [20]朱明,高文,郭立强.压缩感知理论在图像处理领域的应用[J].中国光学,2011,4(5):441-447.
    [21]焦李成,杨淑媛,刘芳等.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1622.
    [22]肖小潮,郑宝玉,王臣昊.基于最优观测矩阵的压缩信道感知[J].信号处理,2012,28(1):67-72.
    [23]杨斌.像素级多传感器图像融合新方法研究[D].长沙:湖南大学,2010.
    [24]邵文泽,韦志辉.压缩感知基本理论:回顾与展望[J].中国图像图形学报,2012,17(1):1-12.
    [25]张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633.
    [26]纪文志.基于压缩感知的信号恢复算法研究[D].南京:南京邮电大学,2012.
    [27]高志荣,吕进.基于压缩感知与小波域奇异值分解的图像认证[J].中南民族大学学报,2010,29(4):89-93.
    [28]黄会营,李小光,洪俊芳.快速定点独立向量分析在语音信号盲分离中的应用[J].河南师范大学学报:自然科学版,2012,40(6):147-149.
    [29] Takhar D, Bansal V, Wakin M, et al. A compressed sensing camera: New theoryand an implementation using digital micromirrors [R]. SPIE Electronic Imaging:Computational Imaging. San Jose.2006.
    [30] Duarte M, Davenport M, Takbar D, et al. Single-pixel imaging via compressive sam-pling [J]. IEEE Signal Processing Magazine,2008,25(2):82-91.
    [31] Lustig M, Donoho D, and Pauly J. Rapid MR imaging with compressed sensingand randomly under-sampled3DFT trajectories [R]. In Proc. Annual Meeting ofISMRM, Seattle, WA,2006.
    [32] Lustig M, Lee J, Donoho D, et al. Faster imaging with randomly perturbed, under-sampled spirals and1reconstruction [R]. In Proc. Annual Meeting of ISMRM,Miami, FL,2005.
    [33] Lustig M, Santos J, Lee J, et al. Application of compressed sensing for rapid MRimaging [R]. In Proc. Work. Struc. Parc. Rep. Adap. Signaux (SPARS), Rennes,France,2005.
    [34] Trzasko J, and Manduca A. Highly undersampled magnetic resonance image recon-struction via homotopic0minimization [J]. IEEE Trans. Med. Imaging,2009,28(1):106-121.
    [35] Vasanawala S, Alley M, Barth R, et al. Faster pediatric MRI via compressed sensing[R]. In Proc. Annual Meeting Soc. Pediatric Radiology (SPR), Carlsbad, CA,2009.
    [36] Gedalyahu K, and Eldar Y. Time-delay estimation from low-rate samples: A union ofsubspaces approach [J]. IEEE Transaction on Signal Processing,2010,58(6):3017-3031.
    [37] Mishali M, and Eldar Y. From theory to practice: Sub-Nyquist sampling of sparsewideband analog signals [J]. IEEE J. Select. Top. Signal Processing,2010,4(2):375-391.
    [38] Mishali M, Eldar Y, Dounaevsky O, et al. Xampling: Analog to digital at sub-Nyquist rates [J]. IET Circuits, Devices, and Systems,2011,5(1):8-20.
    [39] Tropp J, Laska J, Duarte M, et al. Beyond Nyquist: Efcient sampling of sparse,bandlimited signals [J]. IEEE Trans. Info. Theory,2010,56(1):520-544.
    [40] Davenport M, Hegde C, Duarte M, et al. Joint manifolds for data fusion [J]. IEEETransaction on Image Processing,2010,19(10):2580-2594.
    [41] Haupt J, Bajwa W, Rabbat M, et al. Compressed sensing for networked data [J].IEEE Signal Processing Magazine,2008,25(2):92-101.
    [42] Marcia R, and Willett R. Compressive coded aperture video reconstruction [R]. InProceedings of the European Signal Processing Conference. Lausanne, Switzerland,2008.
    [43] Tropp J. Topics in sparse approximation [D]. Austin: The University of Texas atAustin,2004.
    [44] Temlyakov V. Nonlinear methods of approximation [J]. Foundations of Comp. Math.,2003,3(1):33-107.
    [45] Miller A. Subset selection in regression [M]. New York: CRC Press,2002.
    [46] DeVore R. Nonlinear approximation [J]. Acta Numerica,1998,7(2):51-150.
    [47] Coifman R, and Meyer Y. Entropy-based algorithms for best-basis selection [J]. IEEETrans. Info. Theory,1992,38(2):713-718.
    [48] Mallet S, and Zhang Z. Matching pursuit with time-frequency dictionaries [J]. IEEETransactions on Signal Processing,1993,41(12):3397-3415.
    [49] Elad M. Sparse and redundant representations: From theory to applications in signaland image processing [M]. New York: Springer,2010.
    [50] Donoho D. De-noising by soft thresholding [J]. IEEE Trans. Info. Theory,1995,41(3):613-627.
    [51] Sardy S, Bruce A, and Tseng P. Block coordinate relaxation methods for nonpara-metric signal denoising with wavelet dictionaries [J]. Journal of Computational andGraphical Statistics,2000,9(2):361-379.
    [52] Elad M, Matalon B, Shtok J, et al. A wide-angle view at iterated shrinkage algo-rithms [C]. Optical Engineering Applications. International Society for Optics andPhotonics,2007:670102-670102-19.
    [53] Chambolle A, De Vore R, Lee N, et al. Nonlinear wavelet image processing: Varia-tional problems, compression, and noise removal through wavelet shrinkage [J]. IEEETransactions on Image Processing,1998,7(3):319-335.
    [54] Bruckstein A, Donoho D, and Elad M. From sparse solutions of systems of equationsto sparse modeling of signals and images [J]. SIAM Review,2009,51(1):34-81.
    [55] Cand`es E, and Donoho D. New tight frames of curvelets and optimal representationsof objects with piecewise C2singularities [J]. Communications on pure and appliedmathematics,2004,57(2):219-266.
    [56] Do M, and Vetterli M. The contourlet transform: An efcient directional multiresolu-tion image representation [J]. IEEE Transactions on Image Processing,2005,14(12):2091-2106.
    [57] Lu Y, and Do M. Multidimensional directional flter banks and surfacelets [J]. IEEETransactions on Image Processing,2007,16(4):918-931.
    [58] Yaghoobi M, Blumensath T, and Davies M. Dictionary learning for sparse approxi-mations with the majorization method [J]. IEEE Transaction on Signal Processing,2009,57(6):2178-2191.
    [59] Skretting K, and Engan K. Recursive least squares dictionary learning algorithm [J].IEEE Transaction on Signal Processing,2010,58(4):2121-2130.
    [60]曾春艳.匹配追踪的最佳原子选择策略和压缩感知盲稀疏度重建算法改进[D].广州:华南理工大学,2013.
    [61] Cand`es E, and Romberg J. Sparsity and incoherence in compressive sampling [J].Inverse problems,2007,23(3):969-985.
    [62] Baraniuk R. Compressive sensing [J]. IEEE Signal Processing Magazine,2007,24(4):118-121.
    [63] Elad M. Optimized projections for compressed sensing [J]. IEEE Transaction onSignal Processing,2007,55(12):5695-5702.
    [64] Abolghasemi V, Jarchi D, and Sanei S. A robust approach for optimization of themeasurement matrix in compressed sensing [C]. Cognitive Information Processing(CIP),20102nd International Workshop,2010:388-392.
    [65] Chen W, Rodrigues M, and Wassell I. On the design of optimized projections forsensing sparse signals in overcomplete dictionaries [C]. ICASSP,2012:3457-3460.
    [66] Abolghasemi V, Ferdowsi S, and Sanei S. A gradient-based alternating minimizationapproach for optimization of the measurement matrix in compressive sensing [J].Signal Process.,2012,92(4):999-1009.
    [67]章启恒.压缩感知中优化投影矩阵的研究[D].广州:华南理工大学,2013.
    [68] Donoho D, and Elad M. Optimally sparse representation in general (nonorthogonal)dictionaries via1minimization [J]. Proceedings of the National Academy of Sciences,2003,100(5):2197-2202.
    [69] Tropp J, and Gilbert A. Signal recovery from random measurements via orthogonalmatching pursuit [J]. IEEE Trans. Info. Theory,2007,53(12):4655-4666.
    [70] Strohmer T, and Heath R. Grassmanian frames with applications to coding andcommunication [J]. Appl. Comput. Harmon. Anal.,2003,14(3):257-275.
    [71] Donoho D. For most large underdetermined systems of linear equations the minimal1norm solution is also the sparsest solution [J]. Comm. Pure Appl. Math.,2006,59(6):797-829.
    [72] Cai T, and Wang L. Orthogonal matching pursuit for sparse signal recovery withnoise [J]. IEEE Trans. Info. Theory,2011,57(7):4680-4688.
    [73] Wang J, Kwon S, and Shim B. Near optimal bound of orthogonal matching pursuitusing restricted isometric constant [J]. EURASIP Journal on Advances in SignalProcessing,2012,2012(1):1-7.
    [74] Baraniuk R, Davenport M, DeVore R, et al. A simple proof of the restricted isometryproperty for random matrices [J]. Construct. Approx.,2008,28(3):253-263.
    [75]邹健.分块稀疏表示的理论及算法研究[D].广州:华南理工大学,2012.
    [76] Feng P, and Bresler Y. Spectrum-blind minimum-rate sampling and reconstructionof multiband signals [C]. ICASSP,1996,3:1688-1691.
    [77] Venkataramani R, and Bresler Y. Perfect reconstruction formulas and bounds onaliasing error in sub-Nyquist nonuniform sampling of multiband signals [J]. IEEETran. Inf. Theory,2000,46(6):2173-2183.
    [78] Parvaresh F, Vikalo H, Misra S, et al. Recovering sparse signals using sparse mea-surement matrices in compressed DNA microarrays [J]. IEEE J. Sel. Topics SignalProcess.,2008,2(3):275-285.
    [79] Jin Y, and Rao B. Support recovery of sparse signals in the presence of multiplemeasurement vectors [J]. IEEE Tran. Inf. Theory,2013,59(5):3139-3157.
    [80] Du X, Cheng L, and Liu L. A swarm intelligence algorithm for joint sparse recovery[J]. IEEE Signal Processing Letters,2013,20(6):611-614.
    [81] Majumdar A, Ward R, and Aboulnasr T. Algorithms to approximately solve NPhard row-sparse MMV recovery problem: Application to compressive color imaging[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,2012,2(3):362-369.
    [82] Mishali M, and Eldar Y. Reduce and boost: recovering arbitrary sets of jointly sparsevectors [J]. IEEE Transaction on Signal Processing,2008,56(10):4692-4701.
    [83] Feng P. Universal minimum-rate sampling and spectrum-blind reconstruction formultiband signals [D]. Urbana: University of Illinois at Urbana-Champaign,1997.
    [84] Kim J, Lee O, and Ye J. Compressive MUSIC: revisiting the link between compressivesensing and array signal processing [J]. IEEE Trans. Info. Theory,2012,58(1):278-301.
    [85] Lee K, Bresler Y, and Junge M. Subspace methods for joint sparse recovery [J]. IEEETran. Inf. Theory,2012,58(6):3613-3641.
    [86] Kim J, Lee O, and Ye J. Improving noise robustness in subspace-based joint sparserecovery [J]. IEEE Transactions on Signal Processing,2012,60(11):5799-5809.
    [87] Davies M, and Eldar Y. Rank awareness in joint sparse recovery [J]. IEEE Trans.Info. Theory,2012,58(2):1135-1146.
    [88] Blanchard J, and Davies M. Recovery guarantees for rank aware pursuits [J]. IEEESignal Processing Letters,2012,19(7):427-430.
    [89] Chen S, Donoho D, and Saunders M. Atomic decomposition by basis pursuit [J].SIAM Journal on Scientifc Computing,1998,20(1):33-61.
    [90] Foucart S. A note on guaranteed sparse recovery via1-minimization [J]. Appl. Com-put. Harmon. Anal.,2010,29(1):97-103.
    [91] Mo Q, and Li S. New bounds on the restricted isometry constant δ2k[J]. Appl.Comput. Harmon. Anal.,2011,31(3):460-468.
    [92] Yang J, and Zhang Y. Alternating direction algorithms for1problems in compressivesensing [J]. SIAM Journal on Scientifc Computing,2011,33(1):250-278.
    [93] Yin W, Osher S, Goldfarb D, et al. Bregman iterative algorithms for1-minimizationwith applications to compressed sensing [J]. SIAM Journal on Imaging Sciences,2008,1(1):143-168.
    [94] Van D, and Friedlander M. Probing the pareto frontier for basis pursuit solutions[J]. SIAM Journal on Scientifc Computing,2008,31(2):890-912.
    [95] Hale E, Yin W, and Zhang Y. Fixed-point continuation applied to compressed sens-ing: Implementation and numerical experiments [J]. J. Comput. Math,2010,28(2):170-194.
    [96] Beck A, and Teboulle M. A fast iterative shrinkage-thresholding algorithm for linearinverse problems [J]. SIAM Journal on Imaging Sciences,2009,2(1):183-202.
    [97] Daubechies I, Defrise M, and De M. An iterative thresholding algorithm for linearinverse problems with a sparsity constraint [J]. Comm. Pure Appl. Math.,2004,57(11):1413-1457.
    [98] Lai M, and Liu Y. The null space property for sparse recovery from multiple mea-surement vectors [J]. Appl. Comput. Harmon. Anal.,2011,30(3):402-406.
    [99] Ji S, Xue Y, and Carin L. Bayesian compressive sensing [J]. IEEE Transactions onSignal Processing,2008,56(6):2346-2356.
    [100] Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization[J]. IEEE Signal Processing Letters,2007,14(10):707-710.
    [101] Foygel R, and Mackey L. Corrupted sensing: Novel guarantees for separating struc-tured signals [J]. IEEE Trans. Info. Theory,2014,60(2):1223-1247.
    [102] Tropp J, and Wright S. Computational methods for sparse solution of linear inverseproblems [J]. Proceedings of the IEEE,2010,98(6):948-958.
    [103] Aharon M, Elad M, and Bruckstein A. K-SVD: An algorithm for designing over-complete dictionaries for sparse representation [J]. IEEE Transaction on Signal Pro-cessing.,2006,54(11):2386-2395.
    [104] Bandeira A, Dobriban E, Mixon D, et al. Certifying the restricted isometry propertyis hard [J]. IEEE Trans. Inf. Theory,2013,59(6):3448-3450.
    [105] Blumensath T. Accelerated iterative hard thresholding [J]. Signal process.,2012,92(3):752-756.
    [106] Blumensath T, and Davies M. Iterative hard thresholding for compressed sensing[J]. Appl. Comput. Harmon. Anal.,2009,27(3):265-274.
    [107] Blumensath T, and Davies M. Normalised iterative hard thresholding: Guaranteedstability and performance [J]. IEEE J. Select. Top. Signal Processing,2010,4(2):298-309.
    [108] Dai W, and Milenkovic O. Subspace pursuit for compressive sensing signal recon-struction [J]. IEEE Trans. Inf. Theory,2009,55(5):2230-2249.
    [109] Donoho D, Tsaig Y, Drori I, et al. Sparse solution of underdetermined systemsof linear equations by stagewise orthogonal matching pursuit [J]. IEEE Trans. Inf.Theory,2012,58(2):1094-1121.
    [110] Duarte-Carvajalino J, and Sapiro G. Learning to sense sparse signals: Simultaneoussensing matrix and sparsifying dictionary optimization [J]. IEEE Transaction onImage Processing,2009,18(7):1395-1408.
    [111] Foucart S. Hard thresholding pursuit: An algorithm for compressive sensing [J].SIAM Journal on Numerical Analysis,2011,49(6):2543-2563.
    [112] Fu Y, Zhang Q, and Xie S. Compressed sensing for sparse error correcting model[J]. Circuits, System, and Signal Processing,2013,32(5):2371-2383.
    [113] Needell D, and Tropp J. CoSaMP: Iterative signal recovery from incomplete andinaccurate samples [J]. Appl. Comput. Harmon. Anal.,2009,26(3):301-321.
    [114] Tropp J. Greed is good: Algorithmic results for sparse approximation [J]. IEEETrans. Inf. Theory,2004,50(10):2231-2242.
    [115] Li H, Fu Y, Zhang Q, et al. A generalized hard thresholding pursuit algorithm [J].Circuits, Systems, and Signal Processing,2014,33(4):1313-1323.
    [116] Wang J, Kwon S, and Shim B. Generalized orthogonal matching pursuit [J]. IEEETransaction on Signal processing,2012,60(12):6202-6216.
    [117] Wu H, and Wang S. Adaptive sparsity mathching pursuit algorithm for sparsereconstruction [J]. IEEE Signal Processing Letters,2012,19(8):471-474.
    [118] Zelnik-Manor L, Rosenblum K, and Eldar Y. Dictionary optimization for block-sparse representations [J]. IEEE Transaction on Signal Processing,2012,60(5):2386-2395.
    [119] Elad M, Figueiredo M, and Ma Y. On the role of sparse and redundant represen-tations in image processing [J]. Proceedings of the IEEE,2010,98(6):972-982.
    [120] He Z, Xie S, Ding S, et al. Convolutive blind source separation in frequency domainbased on sparse representation [J]. IEEE Trans. Audio Speech Lang. Process.,2007,15(5):1551-1563.
    [121] He Z, Cichocki A, Xie S, et al. Detecting the number of clusters in n-way probabilis-tic clustering [J]. IEEE Trans. Pattern Anal. Mach. Intell.,2010,32(11):2006-2021.
    [122] He Z, Cichocki A, Zdunek R, et al. Improved FOCUSS method with conjugategradient iterations [J]. IEEE Transaction on Signal Processing,2009,57(1):399-404.
    [123] Davenport M, and Wakin M. Analysis of orthogonal matching pursuit using therestricted isometry property [J]. IEEE Trans. Info. Theory,2010,56(9):4395-4401.
    [124] Mo Q, and Shen Y. A remark on the restricted isometry property in orthogonalmatching pursuit [J]. IEEE Trans. Info. Theory,2012,58(6):3654-3656.
    [125] Wang J, and Shim B. On the recovery limit of sparse signals using orthogonalmatching pursuit [J]. IEEE Transaction on Signal Processing,2012,60(9):4973-4976.
    [126] Mishali M, and Eldar Y. Blind multiband signal reconstruction: Compressed sens-ing for analog signals [J]. IEEE Transaction on Signal Processing,2009,57(3):993-1009.
    [127] Wright J, Yang A, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Trans. Pattern Anal. Mach. Intell.,2009,31(2):210-227.
    [128] Elhamifar E, and Vidal R. Sparse subspace clustering [C]. In Proc. IEEE Conf.Comput. Vis. Pattern Recognit.,2009:2790-2797.
    [129] Eldar Y, and Mishali M. Robust recovery of signals from a structured union ofsubspaces [J]. IEEE Trans. Info. Theory,55(11):5302-5316.
    [130] Eldar Y, Kuppinger P, and Bo¨lcskei H. Block-sparse signals: uncertainty relationsand efcient recovery [J]. IEEE Transaction on Signal Processing,2010,58(6):3042-3054.
    [131] Lv X, Wan C, and Bi G. Block orthogonal greedy algorithm for stable recovery ofblock-sparse signal representations [J]. Signal Process.,2010,90(12):3265-3277.
    [132] Wang L, Bi G, Wan C, et al. Improved stability conditions of BOGA for noisyblock-sparse signals [J]. Signal Process.,2011,91(11):2567-2574.
    [133] Elhamifar E, and Vidal R. Block-sparse recovery via convex optimization [J]. IEEETransaction on Signal Processing,2012,60(8):4094-4107.
    [134] http://cvxr.com/cvx.
    [135] Cotter S, Rao B, Engan K, et al. Sparse solution to linear inverse problems withmultiple measurement vectors [J]. IEEE Transaction on Signal Processing,2005,53(7):2477-2488.
    [136] Obozinski G, Taskar B, and Jordan M. Joint covariate selection and joint subspaceselection for multiple classifcation problems [J]. Sta. Com.,2010,20(2):231-252.
    [137] Malioutov D, Cetin M, and Willsky A. A sparse signal reconstruction perspectivefor source localization with sensor arrays [J]. IEEE Transaction on Signal Processing,2005,53(8):3010-3022.
    [138] Tropp J, Gilbert A, and Strauss M. Algorithms for simultaneous sparse approxi-mation, Part I: Greedy pursuit [J]. Signal Process.,2006,86(3):572-588.
    [139] Chen J, and Huo X. Theoretical results on sparse representations of multiple-measurement vectors [J]. IEEE Transaction on Signal Processing,2006,54(12):4634-4643.
    [140] Gai J, Fu P, Li Z, et al. Signal recovery from multiple measurement vectors viatunable random projection and boost [J]. Signal Process.,2012,92(12):2901-2908.
    [141] Tropp J. Algorithms for simultaneous sparse approximation, Part II: Convex relax-ation [J]. Signal Process.,2006,86(3):589-602.
    [142] Majumdar A, and Ward R. Face recognition from video: an MMV recovery ap-proach [C]. ICASSP,2012:2221-2224.
    [143] Fu Y, Li H, Zhang Q, et al. Block-sparse recovery via redundant block OMP [J].Signal Processing,2014,97(4):162-171.
    [144] Cand`es E. The restricted isometry property and its implications for compressedsensing [J]. C. R. Math. Acad. Sci. Ser. I,2008,346:589-592.
    [145] Majumdar A, and Ward R. Synthesis and analysis prior algorithms for joint-Sparserecovery [C]. ICASSP,2012:3421-3424.
    [146] Lee K, Ho J, and Kriegman D. Acquiring linear subspaces for face recognition undervariable lighting [J]. IEEE Trans. Pattern Anal. Mach. Intell.,2005,27(5):684-698.
    [147] Turk M, and Pentland A. Face recognition using eigenfaces [C]. Computer Visionand Pattern Recognition,1991. Proceedings CVPR’91, IEEE Computer Society Con-ference.1991:586-591.
    [148] Blumensath T, and Davies M. Iterative thresholding for sparse approximations [J].J. Fourier Anal. Appl.,2008,14(5):629-654.
    [149] Sanderson C, and Lovell B. Multi-region probabilistic histograms for robust andscalable identity inference [M]. Berlin Heidelberg: Springer,2009.
    [150] http://itee.uq.edu.au/~conrad/vidtimit/.
    [151] Deng W, Yin W, and Zhang Y. Group sparse optimization by alternating directionmethod [C]. SPIE Optical Engineering Applications. International Society for Opticsand Photonics,2013:88580R-88580R-15.
    [152] Zhang T. Sparse recovery with orthogonal matching pursuit under RIP [J]. IEEETrans. Info. Theory,2011,57(9):6215-6221.
    [153] Vaswani N, and Lu W. Modifed-CS: modifying compressive sensing for problemswith partially known support [J]. IEEE Transaction on Signal Processing,2010,58(9):4595-4607.
    [154] Lu W, and Vaswani N. Regularized modifed BPDN for noisy sparse reconstructionwith partial erroneous support and signal value knowledge [J]. IEEE Transaction onSignal Processing,2012,60(1):182-196.
    [155] Jacques L. A short note on compressed sensing with partially known signal support[J]. Signal Process.,90(12):3308-3312.
    [156] Friedlander M, Mansour H, Saab R, et al. Recovering compressively sampled signalsusing partial support information [J]. IEEE Trans. Inf. Theory,58(2):1122-1134.
    [157] Ince T, Nacaroglu A, and Watsuji N. Nonconvex compressed sensing with partiallyknown signal support [J]. Signal Process.,2013,93(1):338-344.
    [158] Zou J, Fu Y, and Xie S. A block fxed point continuation algorithm for block-sparsereconstruction [J]. IEEE Signal Processing Letters,2012,19(6):364-367.
    [159] He Z, Cichocki A, Zdunek, R, et al. CG-M-FOCUSS and its application to dis-tributed compressed sensing [J]. In Proc. Advances in Neural Networks-ISNN2008,Pt. I, Berlin,2008,5263:237-245.
    [160] Blanchard J, Cermak M, Hanle D, et al. Greedy Algorithms for Joint Sparse Re-covery [J]. IEEE Transaction on Signal Processing,2014,62(7):1694-1704.
    [161] Foucart S. Recovering jointly sparse vectors via hard thresholding pursuit [R]. Proc.Sampling Theory and Applications (SampTA),2011.
    [162] Wei X, Yuan Y, and Ling Q. DOA estimation using a greedy block coordinatedescent algorithm [J]. IEEE Transaction on Signal Processing,2012,60(12):6382-6394.
    [163] Herman M, and Strohmer T. General deviants: an analysis of perturbations incompressed sensing [J]. IEEE J. Select. Top. Signal Processing,2010,4(2):342-3496.
    [164] Herman M, and Needell D. Mixed operators in compressed sensing [C]. InformationSciences and Systems (CISS), IEEE on44th Annual Conference,2010:1-6.
    [165] Fannjiang A, Yan P, and Strohmer T. Compressed remote sensing of sparse objects[J]. SIAM Journal on Imaging Sciences,2010,3(3):596-618.
    [166] Blumensath T, Davies M. Compressed sensing and source separation [M]. BerlinHeidelberg: Springer,2007.
    [167] Herman M, and Strohmer T. High-resolution radar via compressed sensing [J]. IEEETransaction on Signal Processing,2009,57(6):2275-2284.
    [168] Ding J, Chen L, and Gu Y. Perturbation analysis of orthogonal matching pursuit[J]. IEEE Transaction on Signal Processing,2013,61(2):398-410.
    [169] Wu R, Huang W, and Chen D. The exact support recovery of sparse signals withnoise via orthogonal matching pursuit [J]. IEEE Signal Processing Letters,2013,20(4):403-406.
    [170] Huang S, and Zhu J. Recovery of sparse signals using OMP and its variants: con-vergence analysis based on RIP [J]. Inverse Problems,2011,27(3):1-14.
    [171]林波,张增辉,朱炬波.基于压缩感知的DOA估计稀疏化模型与性能分析[J].电子与信息学报,2014,36(3):589-594.
    [172] Li H, Fu Y, Hu R, et al. Perturbation analysis of greedy block coordinate descentunder RIP [J]. IEEE Signal Processing Letters,2014,21(5):518-522.
    [173] http://cnx.org/content/m32168/latest/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700