CpG ODN对真菌性角膜炎病理改变的影响及免疫机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     探讨CpG寡聚脱氧核苷酸(CpG ODN)对小鼠真菌性角膜炎病理改变的影响及可能的免疫作用机制。
     方法
     角膜基质注射法建立BALB/c白色念珠菌性及茄病镰刀菌性角膜炎模型,按照治疗方法不同分为以下五个实验组:不治疗组(A组)、感染同时结膜下注射CpG ODN组(B组)、感染同时结膜下注射non CpG ODN组(C组)、感染前48小时预先结膜下注射CpG ODN组(D组)及感染前48小时预先结膜下注射non CpG ODN组(E组)。观察记录小鼠角膜真菌感染后的角膜大体病变特点和临床病理损害评分,HE/PAS染色检查角膜病理改变及真菌生长情况,真菌培养计算角膜真菌载菌量,ELISA法检测白色念珠菌性角膜炎小鼠角膜、外周血清及体外培养脾细胞中IL-12、IFN-γ、IL-10、MCP-1及真菌特异性抗体IgG、IgM、IgA水平,免疫组化检测白色念珠菌感染后角膜组织中性粒细胞、巨噬细胞及淋巴细胞侵润情况。
     结果
     无论是白色念珠菌还是茄病镰刀菌FK,感染前48hr预先给予CpG ODN结膜下注射对角膜真菌感染的小鼠有明显的免疫保护作用,能明显减轻小鼠角膜组织的病理改变,与其他各组相比,显著降低了角膜临床病理损害评分(p<0.05),并可有效地减少角膜组织的真菌载菌量(p<0.05),有利于真菌病原体的清除以及角膜溃疡的愈合,病程明显缩短,并不加重角膜组织的炎症性病理损伤;而感染同时给予CpG ODN结膜下注射对真菌性角膜炎小鼠无明显的保护或治疗作用,角膜临床病理损害评分及角膜组织的真菌载菌量与其他各组无明显差异(p>0.05)。在白色念珠菌感染小鼠角膜后,CpG ODN预先注射组D组小鼠角膜感染后,其血清及角膜组织中IL-12、IFN-γ、IL-10及MCP-1的水平均有不同程度的升高,以IL-12水平的升高最为显著(p<0.05);IL-12水平从感染第一天骤升后,至感染第14天均持续较高水平,始终显著高于A组、C组、D组及E组(p<0.05);IL-10于感染1天骤升后略降低,至第14天接近于正常水平,其感染第一天水平低于D组(p>0.05),但仍明显高于A组、C组及E组(p<0.05);IFN-γ于感染第一天后开始均逐渐升高。而CpG ODN感染同时注射的D组小鼠角膜感染后,其血清及角膜组织中的IL-12、IFN-γ在感染第一天也明显升高,CpG ODN感染同时注射组比不注射组小鼠角膜组织及血清中也可产生更多的Th1型细胞因子IL-12、IFN-γ(p<0.05),但IL-12水平显著低于B组(p<0.05);与此同时其感染第一天Th2型细胞因子IL-10及趋化因子MCP-1水平的升高的程度也显著高于A组、C组、D组及E组(p<0.05)。总体上,CpG ODN注射组比不注射组小鼠角膜组织及血清中可产生更多的Th1型细胞因子IL-12、IFN-γ(p<0.05),并且感染早期D组小鼠角膜及血清比B组及其他各组表现了更为强烈的Th1型免疫偏移。同时,CpG ODN注射组比不注射组的小鼠脾细胞在体外培养时也可产生更多的Th1型细胞因子IL-12及IFN-γ(p<0.05)。各组小鼠角膜、血清及体外培养的脾细胞中特异性抗体IgG、IgM的IgA水平在感染早期均未见明显变化。免疫组化结果显示,CpG ODN注射组的小鼠在感染早期比不注射组的小鼠角膜内可见更多的中性粒细胞、巨噬细胞及淋巴细胞浸润。
     结论
     本实验结果显示,CpG ODN预先处理可以激活宿主的抗真菌免疫反应,对小鼠角膜真菌感染具有明显的免疫保护作用,其可能的免疫作用机制是CpGODN预先处理能促进小鼠全身及局部分泌Th1型细胞因子、促使免疫应答向Th1型转化,进而增强吞噬细胞对真菌的吞噬能力,实现真菌病原体的清除以及加速角膜溃疡的愈合。
Objective
     To investigate the immune responses and the possible mechanism of CpG oligodeoxynucleotides (CpG ODN) in the treatment of fungal keratitis in mice.
     Methods
     Experimental murine fungal keratitis was induced by intrastromal injection of Candida albicans and Fusarium solani spores separately. According to the different methods of treatment, mice were divided into five groups as following, Group A:No treatment before or after fungal injection, Group B and Group C:CpG and non-CpG oligodeoxynucleotides separately was injected subconjunctivally after fungal injection instantly, Group D:CpG oligodeoxynucleotides was injected subconjunctivally 2 days before fungal injection, Group E:non-CpG oligodeoxynucleotides was injected subconjunctivally 2 days before fungal injection. Clinical scores and fungal load were measured regularly. Serum, cornea and proliferative spleen cells ex vivo, were colleted at different times in Candida albicans infected mice for measurement of interleukin (IL)-12、IFN-γ、IL-10、MCP-1 and Candida-specific-antibody IgG、IgM、and IgA. Immunohistochemistry was used to detect leukocyte, phagocyte, and lymphocyte infiltration in diseased corneas.
     Results
     In the corneas infected by both Candida albicans and Fusarium solani, CpG ODN pretreatment could significantly decreased the clinical scores and fungal load in the diseased corneas as compared with that in other groups (p<0.05). No significant difference was found in the clinical scores and fungal load among groups A、B、C and E (p>0.05). In the mice with cornea infected by Candida albicans and CpG pretreatment subconjunctivally, the levels of IL-12、IFN-γ、IL-10 and MCP-1 in both the serum and the cornea increased after infection in group D to some extents, in those the levels of IL-12 and IFN-y elevated most significantly (p<0.05). IL-12 level sharply increased at the first day after infection and persisted at a higher level to at least 14 days post-infection, which was significantly higher than that in any other groups (p<0.05). The level of IL-10 sharply increased at the first day and then reached to the normal level at 14 days post-infection, which was lower than that in group B (p>0.05), but much higher than that in group A、group C and group E on day 1 post infection (p<0.05). The levels of IFN-y increased at the fist day post-infection and elevated slightly later. While in group B, the levels of IL-12 and IFN-y in both the serum and the cornea sharply elevated as well when compared with that in mice without CpG ODN treatment (p<0.05). However, the IL-12 level in mice of group B was still significantly lower than that in group D (p<0.05). In addition, both IL-10 and MCP-1 in serum and cornea in mice of group B showed higher levels as compared with that in group A, group C, group D and group E on day 1 after infection (p<0.05). In total, the IL-12 and IFN-y in cornea and serum had increased significantly after infection in mice with-CpG ODN treatment when compared with that got no CpG ODN intervention (p<0.05). In the cornea and serum of CpG treatment groups (groups B and D), Thl cytokines of IL-12 and IFN-y elevated significantly than that in groups got no CpG ODN intervention (groups A, C and E) (p<0.05). The cytokines assay in the spleen cells ex vivo showed that the immune responses induced by pretreatment of CpG ODN were significantly biased toward the T-helper 1 type as well. No elevating of Candida-specific antibody was detected in the corneas, serum and spleen cells in any of the groups. The immunohistochemistry assay showed that more infiltration of immune cells, including leukocytes, macrophage, and lymphocytes, were found in the corneas of mice with subconjunctival injection of CpG ODN.
     Conclusions
     The present study suggested that CpG ODN pretreatment activated the host anti-fungal immune responses and showed more effectiveness to prevent the fungal keratitis. The immune responses against fungal keratitis in mice with CpG ODN pretreatment were mediated by significant T-helper 1 cytokines, which benefit for the clearance of fungal pathogens and healing up of corneal ulcers and thus contribute to a favourable perspective in the treatment of fungal keratitis.
引文
1. Xie L, Dong X, Shi W. Treatment of fungal keratitis by penetrating keratoplasty. Br J Ophthalmol 2001,85:1070-4.
    2. Xie L, Shi W, Liu Z, et al. Lamellar keratoplasty for the treatment of fungal keratitis. Cornea 2002,21:33-7.
    3. Xie L, Zhong W, Shi W, et al. Spectrum of fungal keratitis in north China. Ophthalmology 2006,113:1943-8.
    4. Rosa RH Jr, Miller D, Alfonso EC. The changing spectrum of fungal keratitis in south Florida. Ophthalmology 1994,101:1005-13.
    5. Tanure MA, Cohen EJ, Sudesh S, et al. Spectrum of fungal keratitis at Wills Eye Hospital, Philadelphia, Pennsylvania. Cornea 2000,9:307-12.
    6. Anderson KL, Mitra S, Salouti R, et al. Fungal keratitis caused by Paecilomyces lilacinus associated with a retained intracorneal hair. Cornea 2004,23:516-21.
    7. Srinivasan M. Fungal keratitis. Curr Opin Ophthalmol 2004,15:321-7.
    8. O'Day DM, Head WS, Csank C, et al. Differences in virulence between two Candida albicans strains in experimental keratitis. Invest Ophthalmol Vis Sci 2000,41:1116-21.
    9. Wu TG, Wilhelmus KR, Mitchell BM. Experimental keratomycosis in a mouse model. Invest Ophthalmol Vis Sci 2003,44:210-6.
    10. Sponsel WE, Graybill JR, Nevarez HL, et al. Ocular and systemic posaconazole (SCH-56592) treatment of invasive Fusarium solani keratitis and endophthalmitis. Br J Ophthalmol 2002,86:829-30.
    11. Goldblum D, Frueh BE, Sarra GM, et al. Topical Caspofungin for Treatment of Keratitis Caused by Candida albicans in a Rabbit Model. Antimicrob Agents Chemother 2005,49:1359-63.
    12. Denning DW. Echinocandin antifungal drugs. Lancet 2003,362:1142-51.
    13. Warn PA, Morrissey G, Morrissey J, et al. Activity of micafungin (FK463) against an itraconazole-resistant strain of Aspergillus fumigatus and a strain of Aspergillus terreus demonstrating in vivo resistance to amphotericin B. J Antimicrob Chemother 2003,51:913-9.
    14. Krieg AM, Schorr YJ, Davis HI. The role of CpG denucleotides in NA vaccine. Trends Microbiol 1998,6:23.
    15. O'Day DM, Head WS, Robinson RD, et al. Contact lens-induced infection--a new model of Candida albicans keratitis. Invest Ophthalmol Vis Sci,1999,40:1607-1611.
    16. Dong X, Shi W, Zeng Q, et al. Roles of adherence and matrix metalloproteinases in growth patterns of fungal pathogens in cornea. Curr Eye Res 2005,30:613-20.
    17.曾庆延,董晓光,史伟云等.真菌孢子黏附和基质金属蛋白酶在角膜真菌感染中的作用.中华眼科杂志2004,40:774-776.
    18. Graybill JR, Bocanegra R, Luther M. Antifungal combination with G-CSF and fluconazole in experimental disseminated candidiasis. Eur J Clin Microbiol Infect Dis 1995,14:700-3.
    19. Shao C, Qu J, He L, et al. Transient overexpression of gamma interferon promotes Aspergillus clearance in invasive pulmonary aspergillosis. Clin Exp Immunol 2005,142:233-41.
    20. Filler SG, Yeaman MR, Sheppard DC. Tumor necrosis factor inhibition and invasive fungal infections. Clin Infect Dis 2005,41:208-12.
    21. Herring AC, Falkowski NR, Chen GH, et al. Transient neutralization of tumor necrosis factor alpha can produce a chronic fungal infection in an immunocompetent host:potential role of immature dendritic cells. Infect Immun 2005,73:39-49.
    22. Morrison BE, Park SJ, Mooney JM, et al. Chemokinemediated recruitment of NK cells is a critical host defense mechanism in invasive aspergillosis. J Clin Invest 2003,112:1862-70.
    23. Schelenz S, Smith DA, Bancroft GJ. Cytokine and chemokine responses following pulmonary challenge with Aspergillus migatus:obligatory role of TNF-alpha and GM-CSF in neutrophil recruitment. Med Mycol 1999,37:183-94.
    24. Mencacci A, Perruccio K, Bacci A, et al. Defective antifungal T-helper 1(TH1) immunity in a routine model of allogeneic T-cell-depleted bone marrow transplantation and its restoration by treatment with TH2 cytokine antagonists. Blood 2001,97:1483-90.
    25. Kawakami K, Hossain Qureshi M, Zhang T, et al. Interleukin-4 weakens host resistance to pulmonary and disseminated cryptococcal infection caused by combined treatment with interferon-gamma-inducing cytokines. Cell Immunol 1999,197:55-61.
    26. Clemons KV, Darbonne WC, Curnutte JT, et al. Experimental histoplasmosis in mice treated with anti-murine interferon-gamma antibody and in interferon-gamma gene knockout mice. Microbes Infect 2000,2:997-1001.
    27. Clemons KV, Lutz JE, Stevens DA. Efficacy of interferon-gamma and amphotericin B for the treatment of systemic murine histoplasmosis. Microbes Infect 2001,3:3-10.
    28. Spielberger RT, Falleroni MJ, Coene AJ, et al. Concomitant amphotericin B therapy, granulocyte transfusions, and GM-CSF administration for disseminated infection with Fusarium in a granulocytopenic patient. Clin Infect Dis 1993,16:528-30.
    29. Baltch AL, Bopp LH, Smith RP, et al. Effects of voriconazole, granulocyte-macrophage colony-stimulating factor, and interferon gamma on intracellular fluconazole-resistant Candida glabrata and Candida krusei in human monocyte-derived macrophages. Diagn Microbiol Infect Dis 2005,52:299-304.
    30. Boots RJ, Paterson DL, Allworth AM, et al. Successful treatment of post-influenza pseudomembranous necrotising bronchial aspergillosis with liposomal amphotericin, inhaled amphotericin B, gamma interferon and GM-CSF. Thorax 1999,54:1047-9.
    31.陈兴平,张勇,陈映玲.重组人粒细胞巨噬细胞集落刺激因子与伊曲康唑联合对白念珠菌抗菌作用的实验研究.中华皮肤科杂志2004,37:469-71.
    32. Hartmann G, Risini DW, Ballas ZK, et al. Delineation of a CpG phophorothioate Oligosexoynucleotide for Activating primate Immune Response In vitro and In vivo. J Immunol 2000,164:161.
    33.许洪林,王四清,王世峰等.两种CpG基序能高度活化人免疫细胞.中华微生物与免疫学杂志2001,5:471.
    34. Yi AK, Chang M, Peckham DW, et al. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immumol 1998,160:5898.
    35. Heather LD, Risini W, Thomas JW, et al. CpG DNA is a potent enhance of specific immunity in mice immunized with recombinant Hepatitis Bsurface antigen. The Journal of Immunology 1998,160:870.
    36. Kovarik J, Bozzotti P, Love-Homan L, et al. CpG oligodeoxynucleotides can circumvent the Th2 polarization of neonatal responses to vaccines but fail to fully redirect Th2 responses established by neonatal priming. J Immunol 1999,162:1611.
    37. Krieg AM, Love-Homan L, Yi AK, et al. CpG induces sustained IL-12 expression in vivo and resistance Listeria monocytogenes challenge. J Immunol 1998,161:2428-34.
    38. Ray NB, Kreig AM. Oral pretreatment of mice with CpG DNA reduces susceptibility to oral intraperitoneal challenge with virulent Listeria monocytogenes. Infec Immun 2007,71:4398-404.
    39. Bellocchio S, Montagnoli C, Bozza S, et al. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 2004,172:3059-69.
    40. Jouault T, Ibata-Ombetta S, Takeuchi O, et al. Candida albicans phospholipomannan is sensed through Toll-like receptors. J Infect Dis 2003,188:165-72.
    41.冯颖,胡建民.CpG ODN的最新研究进展.上海畜牧兽医通讯2005,1:6-8.
    42. Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000,408:740-5.
    43. Manning BM, Enioutina EY, Visic DM, et al. CpG DNA functions as an effective adjuvant for the induction of immune responses in aged mice. Expermental Gerontology 2001,37:107.
    44. Dan JM, Wang JP, Lee CK, et al. Cooperative stimulation of dendritic cells by Cryotococcus neoformans mannoprotein and CpG oligodeoxynucleotides. PloS One 2008,3:2046
    45. Xiao G, Miyazato A, Inden K, et al. Cryotococcus neoformans inhitits nitric oxide synthesis caused by CpG-oligodeoxynucleotide-stimulated macrophages in a fashion independent of capsular polysaccharides. Microbiol Immunol 2008,52:171-9.
    46. Ramirez-Oritiz ZG, Specht CA, Wang JP, et al. Toll-like receptor 9-dependent immune activation by unmethylated CpG motifs in Aspergillus fumigatus DNA. Infect Immun 2008,76:2123-9.
    47. Gopinathan U, Ramakrishna T, Willcox M, et al. Enzymatic, clinical and histologic evaluation of corneal tissues in experimental fungal keratitis in rabbits. Exp Eye Res 2001,72:433-42.
    48. Kurt-Jones EA, Mandell L, Whitney C, et al. Role of Toll-like receptor 2 (TLR2) in neutrophil activation:GM-CSF enhances TLR2 expression and TLR2-mediated interleukin 8 responses in neutrophils. Blood 2002,100:1860-8.
    49. Hayashi F, Means TK, Luster AD. Toll-like receptors stimulate human neutrophil function. Blood 2003,102:2660-9.
    50. Roilides E, Blake C, Holmes A, et al. Granulocyte-macrophage colony-stimulating factor and interferon-gamma prevent dexamethasone-induced immunosuppression of antifungal monocyte activity against Aspergillus fumigatus hyphae. J Med Vet Mycol 1996,34:63-9.
    51. van der Graaf CA, Netea MG, Verschueren I, et al. Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infect Immun 2005,73:7458-64.
    52. Villamon E, Gozalbo D, Roig P, et al. Toll-like receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect 2004,6:1-7.
    53. Romani L. Immunity to fungal infections. Nat Rev Immunol 2004,4:1-23.
    54. Levitz SM. Interactions of Toll-like receptors with fungi. Microbes Infect 2004,6:1351-5.
    55. Pun PB, Bhat AA, Mohan T, et al. Intranasal administration of peptide antigens of HIV with mucosal adjuvant CpG ODN coentrapped in microparticles enhances the mucosal and systemic immune responses. Int Immunopharmacol 2009,9:468-77.
    56. Malaspina A, Moir S, DiPoto AC, et al. CpG oligonucleotides enhance proliferative and effector responses of B Cells in HIV-infected individuals. J Immunol 2008,182:1199-206.
    57. Wuest T, Austin BA, Uematsu S, et al. Intact TRL 9 and type I interferon signaling pathways are required to augment HSV-1 induced corneal CXCL9 and CXCL10. J Neuroimmunol 2006,179:46-52.
    58. Welner RS, Pelayo R, Nagal Y, et, al. Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection. Blood 2008,112:3753-61.
    59. Verthely ID, Gursel M, Kenney RT, et al. CpG oligodeoxynucleotides protect normal and SIV infected macaques from Leishmania infection. J Immunol 2003,170:4717-23.
    60. Guo YL, Wu D, Wang KY, et al. Adjuvant effects of bacillus Calmette-Guerin DNA or CpG-oligonucleotide in the immune response to Taenia solium cytsticercosis vaccine in porcine. Scand J Immunol 2007,66:619-27.
    61. Angel JB, Cooper CL, Clinch J, et al. CpG increases vaccine antigen-specific cell mediated immunity when administered with hepatitis B vaccine in HIV infection. J Immune Bases Ther Vaccines 2008,6:4.
    62. Payette PJ, Ma X, Weeratna RD, et al. Testing of CpG-optimized protein and DNA vaccines against the hepatitis B virus in chimpanzeed for immunogenicity and protection from challenge. Intervirology 2006,49:144-51.
    63. Casadevall A, Pirofski LA. Adjunctive immune therapy for fungal infections. Clin Infect Dis 2001,33:1048-56.
    64. Hacker H, Vabulas RM, Takeuchi O, et al. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF) 6. J Exp Med 2000,192:595-600.
    65. Klinman DM. Use of CpG Oligodeoxynucleotides as immunoprotective agents. Expert Opin Biol Ther 2004,4:937-46.
    66. Ito S, Pedras-Vasconcelos J, Klinman DM. CpG oligodeoxynucleotides increase the susceptibility of normal mice to infection by Candida albicans. Infect Immun 2005,73:6154-6.
    67. Netea MG, Ferwerda G, van der Graaf CA, et al. Recognition of fungal pathogens by toll-like receptors. Curr Pharm Des 2006,12:4195-201.
    68. Yauch LE, Mansour MK, Shoham S, et al. Involvement of CD14, toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect Immun 2004,72:5373-82.
    69. Wang JE, Warris A, Ellingsen EA, et al. Involvement of CD14 and toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect Immun 2001,69:2402-6.
    70. Mambula SS, Sau K, Henneke P, et al. Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem 2002,277:39320-6.
    71. Meier A, Kirschning CJ, Nikolaus T, et al. Toll-like receptor (TLR) 2 and TLR4 are essential for Aspergillus-induced activation of murine macrophages. Cell Microbiol 2003,5:561-70.
    72. Netea MG, Warris A, Van der Meer JW, et al. Aspergillus fumigatus evades immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction. J Infect Dis 2003,188:320-26.
    73. Wuthrich M, Filutowicz HI, Warner T, et al. Vaccine immunity to pathogenic fungi overcomes the requirement for CD4 help in exogenous antigen presentation to CD8+T cells:implications for vaccine development in immune-deficient hosts. J Exp Med 2003,197:1405-16.
    74. Choi JH, Brummer E, Kang YJ, et al. Inhibitor kB and Nuclear Factor kB in Granulocyte-Macrophage Colony-Stimulating Factor Antagonism of Dexamethasone Suppression of the Macrophage Response to Aspergillus fumigatus Conidia. The Journal of Infectious Diseases 2006,193:1023-8.
    75. Bozza S, Gaziano R, Spreca A, et al. Dendritic cells transport conidia and hyphae of Aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate Th responses to the fungus. J Immunol 2002,168:1362-71.
    76. Vonk AG, Netea MG, van der Meer JW, et al. Host defence against disseminated Candida albicans infection and implications for antifungal immunotherapy. Expert Opin Biol Ther 2006,6:891-903.
    77. Brieland J, Essig D, Jackson C, et al. Comparison of pathogenesis and host immune responses to Candida glabrata and Candida albicans in systemically infected immunocompetent mice. Infect Immun 2001,69:5046-55.
    78. Cenci E, Mencacci A, Del Sero G, et al. Induction of protective Th1 responses to Candida albicans by antifungal therapy alone or in combination with an interleukin-4 antagonist. J Chemother 1998,10:160-3.
    79. Edwards L, Williams AE, Krieg A, et al. Stimulating via Toll-like receptor 9 reduced Cryptococcus neoformans-induced pulmonary inflammation in an IL-12 dependent manner. Eur J immunol 2005,35:273-81.
    80. Choi JH, Ko HM, Pars SJ, et al. CpG oligodeoxynucleotides protect mice from lethal challenge with Candida albicans via a pathway involving tumor necrosis factor-alpha-dependent interleukin-12 induction. FEMS Immunol Med Microbiol 2007,51:155-62.
    81. Borish L. IL-10:evolving concepts. J Allergy Clin Immunol 1998,101:293-7.
    82. Tumpey TM, Cheng H, Yan XT, et al. Chemokine synthesis in the HSV-1 infected cornea and its suppression by interleukin-10. J Leukoc Biol 1998,63:486-92.
    83. Cole N, Krockenberger M, Stapleton F, et al. Experimental Pseudomonas aeruginosa Keratitis in Interleukin-10 Gene Knockout Mice. Infect Immun 2003,71:1328-36.
    84. Koguchi Y, Kawakami K. Cryptococcal infection and Th1-Th1 cytokine balance. Int Rev Immunol 2002,21:423-38.
    85. Han Y, Cutler JE. Antibody response that protects against disseminated candidiasis. Infect Immun 1995,63:2714-9.
    86. Matthews R, Hodgets S, Burnie J. Preliminary assessment to of a human recombinant antibody fragment to hsp90 in murine invasive candidiasis. J Infect Dis 1995,171:1668-71.
    87. Gordon MA, Lapa E. Serum protein enhancement of antibiotic therapy in cryptococcosis. J Infect Dis 1964,114:373-8.
    88. Casadevall A. Antibody immunity and invasive fungal infections. Infect Immun 1995,63:4211-8.
    89. Zhang H, Chen H, Niu J, et al. Role of adaptive immunity in the pathogenesis of Candida albicans keratitis. Invest Ophthalmol Vis Sci 2009,50:2653-9.
    90. Rivera J, Casadevall A. Mouse genetic background is a major determinant of isotype-related differences for antibody-mediated protective efficacy against Cryptococcus neoformans. J Immunol 2005,174:8017-26.
    91. Maitta RW, Datta K, Chang Q, et al. Protective and non-protective human immunoglobulin M monoclonal antibodies to Cryptococcus neoformans Glucuronoxylomannan manifest different specificites and gene use profiles. Infect Immun 2004,72:4810-8.
    92. Nussbaum G, Yuan R, Casadevall A, et al. Immunoglobulin G3 blocking antibodies to the fungal pathogen Cryptococcus neoformans. J Exp Med 1996,183:1905-9.
    93. Sanford JE, Lupan DM, Schlageter AM, et al. Passive immunization against Cryptococcus neoformans with an isotype-switch family of monoclonal antibodies reactive with cryptococcal polysaccharides. Infect Immun 1990,58:1919-23.
    94. Kataoka K, Muta T, Yamazaki S, et al. Activation of macrophages by linear(1right-arrow3)-beta-D-glucans. Implications for the recognition of fungi by innate immunity. J Biol Chem 2002,277:36825-31.
    95. Philippe B, Ibrahim-Granet O, Prevost MC, et al. Killing of Aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect Immun 2003,71:3034-42.
    96. Romani L, Montagnoli C, Bozza S, et al. The exploitation of distinct recognition receptors in dendritic cells determines the full range of host immune relationships with Candida albicans. Int Immunol 2004,16:149-61.
    97. Kudeken N, Kawakami K, Saito A. Cytokine-induced fungicidal activity of human polymorphonuclear leukocytes against Penicllium marneffei. FEMS Immunol Med Microbiol 1999,26:115-24.
    98. Kurita N, Oarada M, lto E, et al. Antifungal activity of human polymorphonuclear leucocytes against yeast cells of Paracoccidioides brasiliensis. Med Mycol 1999,37:261-7.
    99. Kurita N, Biswas SK, Oarada M, et al. Fungistatic and fungicidal activities of murine polymorphonuclear leucocytes against yeast cells of Paracoccidioides brasiliensis. Med Mycol 1999,37:19-24.
    100. Miyagi K, Kawakami K, Kinjo Y, et al. CpG oligodeoxynucleotides promote the host protective response against infection with Cryptococcus neoformans through induction of interferon-gamma production by CD4+T cells. Clin Exp Immunol 2005,140:220-9.
    101. Miyazato A, Nakamura K, Yamamoto N, et al. Toll-like receptor 9-dependent activation of myeloid dendritic cells by Deoxynucleic acids from Candida albicans. Infect Immun 2009,77:3056-64.
    102. Sarangi PP, Kim B, Kurt-Jones E, et al. Innate recognition network driving herpes simplex virus-induced corneal immunopathology:role of the toll pathway in early inflammatory events in stromal keratitis. J Virol 2007,81:11128-38.
    103. Vazquez N, Walsh TJ, Friedman D, et al. Interleukin-15 augments superoxide production and microbicidal activity of human monocytes against Candida albicans. Infect Immun 1998,66:145-50.
    104. Sutmuller RP, den Brok MH, Kramer M, et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 2006,116:485-94.
    105. Gurunathan S, Klinman DM, Seder RA. DNA vaccines:immunology, application, and optimization. Annu Rev Immunol 2000,18:927-74.
    106. Ibrahim AS, Spellberg BJ, Avanesian V, et al. The anti-Candida vaccines based on the recombinant N-terminal domain of Alslp is broadly active against disseminated candidiasis. Infect Immun 2006,74:3039-41.
    1. Xie L, Dong X, Shi W. Treatment of fungal keratitis by penetrating keratoplasty. Br J Ophthalmol,2001, 85:1070-1074.
    2. Anderson KL, Mitra S, Salouti R, et al. Fungal keratitis caused by Paecilomyces lilacinus associated with a retained intracorneal hair. Cornea,2004,23:516-521.
    3. Kumar M, Shukla PK. Use of PCR targeting of internal transcribed spacer regions and single-stranded conformation polymorphism analysis of sequence variation in different regions of rrna genes in fungi for rapid diagnosis of mycotic keratitis. J Clin Microbiol,2005,43:662-668.
    4. Srinivasan M. Fungal keratitis. Curr Opin Ophthalmol,2004,15:321-327.
    5.李绍伟,谢立信,晋秀明,等.严重真菌性角膜炎就诊史调查分析.中华眼科杂志,2003,39:274-277.
    6. Garlanda C, Bottazzi B, Bastone A, et al. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol,2005,23:337-366.
    7. Diniz SN, Nomizo R, Cisalpino PS, et al. PTX3 function as an opsonin for the dectin-1-dependent internalization of zymosan by macrophages. J Leukoc Biol,2004,75:649-656.
    8. Lee SJ, Gonzalez-Aseguinolaza G, Nussenzweig MC. Disseminated candidiasis and hepatic malarial infection in mannose-binding-lectin-A-deficient mice. Mol Cell Biol,2002,22:8199-8203.
    9. Hogaboam CM, Takahashi K, Ezekowitz RA, et al.. Mannose-binding lectin deficiency alters the development of fungal asthma:effects on airway response, inflammation, and cytokine profile. J Leukoc Biol,2004,75:805-814.
    10. Qiu WY, Yao YF, Zhu YF, et al. Fungal spectrum identified by a new slide culture and in vitro drug susceptibility using Etest in fungal keratitis. Curr Eye Res,2005,30:1113-1120.
    11. Ozbek Z, Kang S, Sivalingam J, et al. Voriconazole in the management of Alternaria keratitis. Cornea, 2006,25:242-244.
    12. Sponsel WE, Graybill JR, Nevarez HL, et al. Ocular and systemic posaconazole (SCH-56592) treatment of invasive Fusarium solani keratitis and endophthalmitis. Br J Ophthalmol,2002,86:829-830.
    13. Goldblum D, Frueh BE, Sarra GM, et al. Topical Caspofungin for Treatment of Keratitis Caused by Candida albicans in a Rabbit Model. Antimicrob Agents Chemother,2005,49:1359-1363.
    14. Denning DW. Echinocandin antifungal drugs. Lancet,2003.362:1142-1151.
    15. Warn PA, Morrissey G, Morrissey J, et al. Activity of micafungin (FK463) against an itraconazole-resistant strain of Aspergillus fumigatus and a strain of Aspergillus terreus demonstrating in vivo resistance to amphotericin B. J Antimicrob Chemother,2003,51:913-919.
    16. Ikeda F. Antifungal activity and clinical efficacy of micafungin (funguard). Nippon Ishinkin Gakkai Zasshi,2005,46:217-222.
    17. Kaji Y, Hiraoka T, Oshika T. Potential use of (1,3)-beta-D-glucan as target of diagnosis and treatment of keratomycosis. Cornea,2004,23:36-41.
    18. Matsumoto Y, Dogru M, Goto E, et al. Successful topical application of a new antifungal agent, micafungin, in the treatment of refractory fungal corneal ulcers:report of three cases and literature review. Cornea,2005,24:748-753.
    19.谢立信,翟华蕾.穿透性角膜移植术治疗真菌性角膜溃疡穿孔.中华眼科杂志,2005,41:1009-1013.
    20. Yao YF, Zhang YM, Zhou P, et al. Therapeutic penetrating keratoplasty in severe fungal keratitis using cryopreserved donor corneas. Br J Ophthalmol,2003,87:543-547.
    21. Romani L. Immunity to fungal infections. Nat Rev Immunol,2004,4:1-23.
    22. Levitz SM. Interactions of Toll-like receptors with fungi. Microbes Infect,2004,6:1351-1355.23. Bozza S, Gaziano R, Spreca A, et al. Dendritic cells transport conidia and hyphae of Aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate Th responses to the fungus. J Immunol,2002,168:1362-1371.
    24. Romani L, Montagnoli C, Bozza S, et al. The exploitation of distinct recognition receptors in dendritic cells determines the full range of host immune relationships with Candida albicans. Int Immunol,2004,16: 149-161.
    25. Brown GD. Dectin-1:a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol,2006,6: 33-43.
    26. Jouault T, Ibata-Ombetta S, Takeuchi O, et al. Candida albicans phospholipomannan is sensed through Toll-like receptors. J Infect Dis,2003,188:165-172.
    27. van der Graaf CA, Netea MG, Verschueren I, et al. Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infect Immun,2005,73: 7458-7464.
    28. Villamon E, Gozalbo D, Roig P, et al. Toll-like receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect,2004,6:1-7.
    29. Balloy V, Si-Tahar M, Takeuchi O, et al. Involvement of Toll-like receptor 2 in experimental invasive pulmonary aspergillosis. Infect Immun,2005,73:5420-5425.
    30. Bellocchio S, Montagnoli C, Bozza S, et al. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol,2004,172: 3059-3069.
    31. Yauch LE, Mansour MK, Shoham S, et al. Involvement of CD14, Toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect Immun, 2004,72:5373-5382.
    32. Kataoka K, Muta T, Yamazaki S, et al. Activation of macrophages by linear(1right-arrow3)-beta-D-glucans. Implications for the recognition of fungi by innate immunity. J Biol Chem,2002,277:36825-36831.
    33. Bellocchio S, Montagnoli C, Bozza S, et al. The contribution of the Toll like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol,2004,172: 3059-3069.
    34. Steele C, Marrero L, Swain S, et al. Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the dectin-1 beta-glucan receptor. J Exp Med,2003,198: 1677-1688.
    35. Philippe B, Ibrahim-Granet O, Prevost MC, et al. Killing of Aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect Immun,2003,71:3034-3042.
    36. Bellocchio S, Moretti S, Perruccio K, et al. TLRs govern neutrophil activity in aspergillosis. J Immunol,2004,173:7406-7415.
    37. Taylor PR, Brown GD, Reid DM, et al. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol,2002, 169:3876-3882.
    38. Hogaboam CM, Blease K, Mehrad B, et al. Chronic airway hyperreactivity, goblet cell hyperplasia, and peribronchial fibrosis during allergic airway disease induced by Aspergillus fumigatus. Am J Pathol, 2000,156:723-732.
    39. Hernandez Y, Arora S, Erb-Downward JR, et al. Distinct roles for IL-4 and IL-10 in regulating T2 immunity during allergic bronchopulmonary mycosis. J Immunol,2005,174:1027-1036.
    40. Noverr MC, Falkowski NR, McDonald RA, et al. Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase:role of host genetics, antigen, and interleukin-13. Infect Immun,2005,73:30-38.
    41. Bozza S, Perruccio K, Montagnoli C, et al. A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood,2003,102:3807-3814.
    42. Shao C, Qu J, He L, et al. Dendritic cells transduced with an adenovirus vector encoding interleukin-12 are a potent vaccine for invasive pulmonary aspergillosis. Genes Immun,2005,6:103-114.
    43. Shao C, Qu J, He L, et al. Transient overexpression of gamma interferon promotes Aspergillus clearance in invasive pulmonary aspergillosis. Clin Exp Immunol,2005,142:233-241.
    44. Filler SG, Yeaman MR, Sheppard DC. Tumor necrosis factor inhibition and invasive fungal infections. Clin Infect Dis,2005,41:208-212.
    45. Herring AC, Falkowski NR, Chen GH, et al. Transient neutralization of tumor necrosis factor alpha can produce a chronic fungal infection in an immunocompetent host:potential role of immature dendritic cells. Infect Immun,2005,73:39-49.
    46. Morrison BE, Park SJ, Mooney JM, et al. Chemokinemediated recruitment of NK cells is a critical host defense mechanism in invasive aspergillosis. J Clin Invest,2003,112:1862-1870.
    47. Schelenz S, Smith DA, Bancroft GJ. Cytokine and chemokine responses following pulmonary challenge with Aspergillus migatus:obligatory role of TNF-alpha and GM-CSF in neutrophil recruitment. Med Mycol,1999,37:183-194.
    48. Mencacci A, Perruccio K, Bacci A, et al. Defective antifungal T-helper 1(TH1) immunity in a routine model of allogeneic T-cell-depleted bone marrow transplantation and its restoration by treatment with TH2 cytokine antagonists. Blood,2001,97:1483-1490.
    49. Kawakami K, Hossain Qureshi M, Zhang T, et al. Interleukin-4 weakens host resistance to pulmonary and disseminated cryptococcal infection caused by combined treatment with interferon-gamma-inducing cytokines. Cell Immunol,1999,197:55-61.
    50. Clemons KV, Darbonne WC, Curnutte JT, et al. Experimental histoplasmosis in mice treated with anti-murine interferon-gamma antibody and in interferon-gamma gene knockout mice. Microbes Infect, 2000,2:997-1001.
    51. Clemons KV, Lutz JE, Stevens DA. Efficacy of interferon-gamma and amphotericin B for the treatment of systemic murine histoplasmosis. Microbes Infect,2001,3:3-10.
    52. Johnson AC, Heinzel FP, Diaconu E, et al. Activation of toll-like receptor (TLR) 2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation. Invest Ophthalmol Vis Sci, 2005,46:589-595.
    53. Cook WJ, Kramer M.F, Walker RM, et al. Persistent expression of chemokine and chemokine receptor RNAs at primary and latent sites of herpes simplex virus 1 infection. Virol J,2004,1:5.
    54. Johnson AC, Heinzel FP, Diaconu E, et al. Activation of toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation. Invest Ophthalmol Vis Sci, 2005,46:589-595.
    55. Saint Andre A, Blackwell NM, Hall LR, et al. The role of endosymbiotic Wolbachia bacteria in the pathogenesis of river blindness. Science.2002,295:1892-1895.
    56. Wu TG, Keasler VV, Mitchell BM, et al. Immunosuppression offects the severity of experimental Fusarium solani keratitis. J Infect Dis,2004,190:192-198.
    57. Vemuganti GK, Garg P, Gopinathan U, et al. Evaluation of agent and host factors in progresion of mycotic keratitis:a histologic and microbiologic study of 167 corneal buttons. Ophthalmology,2002,109: 1538-1546.
    58. Gopinathan U, Ramakrishna T, Willcox M, et al. Enzymatic, clinical and histologic evaluation of corneal tisues in experimental fungal keratitis in rabbits. Exp Eye Res,2001,72:433-442.
    59. Philipp W, Gottinger W. Leukocyte adhesion molecules in diseased corneas. Invest Ophthalmol Vis Sci,1993,34:2449-2459.
    60. Zhang H, Chen H, Niu J, et al. Role of adaptive immunity in the pathogenesis of Candida albicans keratitis. Invest Ophthalmol Vis Sci,2009,50:2653-2659.
    61. Kudeken N, Kawakami K, Saito A. Cytokine-induced fungicidal activity of human polymorphonuclear leukocytes against Penicllium marneffei. FEMS Immunol Med Microbiol,1999,26: 115-124.
    62. Gaviria JM, van Burik JA, Dale DC, et al. Comparison of interferon-gamma, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor for priming leukocyte-mediated hyphal damage of opportunistic fungal pathogens. J Infect Dis,1999,179:1038-1041.
    63. Kurita N, Oarada M, lto E, et al. Antifungal activity of human polymorphonuclear leucocytes against yeast cells of Paracoccidioides brasiliensis. Med Mycol,1999,37:261-267.
    64. Kurita N, Biswas SK, Oarada M, et al. Fungistatic and fungicidal activities of murine polymorphonuclear leucocytes against yeast cells of Paracoccidioides brasiliensis. Med Mycol,1999,37: 19-24.
    65. Vazquez N, Walsh TJ, Friedman D, et al. Interleukin-15 augments superoxide production and microbicidal activity of human monocytes against Candida albicans. Infect Ilnmun,1998,66:145-150.
    66. Pappagianis D. The Valley Fever Study Group:evaluation of the protective efficacy of the killed Coccidioides immitis spherule vaccine in humans. Am Rev Respir Dis,1993,148:656-660.
    67. Abu Elteen K, Hamad M. Novel antifungal therapies. In:Kavanagh K, ed. New Insights in Medical Mycology. Dordrecht, The Netherlands:Springer Science & Business Media,2007,69-98.
    68. Deepe GS. Prospects for the development of fungal vaccines. Clin Microb Rev,1997,10:585-596.
    69. Murphy JW. Cryptococcal immunity and immunization. Adv Exp Med Biol,1992,319:225-230.
    70. Torosantucci A, Bromuro C, Chiani P, et al. A novel glycol-conjugate vaccine against fungal pathogens. J Exp Med,2005,202:597-606.
    71. Casadevall A, Pirofski LA. Polysaccharide-containing conjugate vaccines for fungal diseases. Trends Mol Med,2006,12:6-9.
    72. Bellocchio S, Bozza S, Monagnolski C, Perruccio K, et al.. Immunity to Aspergillus fumigatus:the basis for immunotherapy and vaccination. Med Mycol,2005,43:181-188.
    73. Matthews RC. Candida albicans HSP90:link between protective and auto immunity. J Med Microbiol, 1992,36:367-370.
    74. Matthews RC. Pathogenicity determinants of Candida albicans:potential targets for immunotherapy. Microbiology 1994,104:1505-511.
    75. Ibrahim AS, Spellberg BJ, Avanesian V, et al. The anti-Candida vaccines based on the recombinant N-terminal domain of Alslp is broadly active against disseminated candidiasis. Infect Immun,2006,74: 3039-3041.
    76. Wu" thrich M, Filutowicz HI, Klein BS. Mutations of the WI-1 gene yield an attenuated Blastomyces dermatitidis strain that induces host resistance. J Clin Invest,2000,106:1381-1389.
    77. Raska M, Belakova J, Wudattu NK, et al. Comparison of protective effect of protein and DNA vaccines hsp90 in murine model of systemic candidiasis. Folia Microbiol,2005,50:77-82.
    78. Gordon MA, Lapa E. Serum protein enhancement of antibiotic therapy in cryptococcosis. J Infect Dis, 1964,114:373-378.
    79. Casadevall A. Antibody immunity and invasive fungal infections. Infect Immun,1995,63: 4211-4218.
    80. Rivera J, Casadevall A. Mouse genetic background is a major determinant of isotype-related differences for antibody-mediated protective efficacy against Cryptococcus neoformans. J Immunol,2005, 174:8017-8026.
    81. Maitta RW, Datta K, Chang Q, et al. Protective and non-protective human immunoglobulin M monoclonal antibodies to Cryptococcus neoformans Glucuronoxylomannan manifest different specificites and gene use profiles. Infect Immun,2004,72:4810-4818.
    82. Nussbaum G, Yuan R, Casadevall A, et al. Immunoglobulin G3 blocking antibodies to the fungal pathogen Cryptococcus neoformans. J Exp Med,1996,183:1905-1909.
    83. Han Y, Cutler JE. Antibody response that protects against disseminated candidiasis. Infect Immun, 1995,63:2714-2719.
    84. Matthews R, Hodgets S, Burnie J. Preliminary assessment to of a human recombinant antibody fragment to hsp90 in murine invasive candidiasis. J Infect Dis,1995,171:1668-1671.
    85. Dromer F, Charreire J, Contrepois A, et al. Protection of mice against experimental cryptococcosis by anti-Cryptococcus neoformans monoclonal antibody. Infect Immun,1987,55:749-752.
    86. Sanford JE, Lupan DM, Schlageter AM, et al. Passive immunization against Cryptococcus neoformans with an isotype-switch family of monoclonal antibodies reactive with cryptococcal polysaccharides. Infect Immun,1990,58:1919-1923.
    87. Mukherjee J, Scharf MD, Casadevall A. Protective murine monoclonal antibodies to Cryptococcus neoformans. Infect Immun,1992,60:4534.
    88. Larsen RA, Pappas PG, Perfect J, et al. Phase I evaluation of the safety and pharmacokinetics of murine-derived anticryptococcal antibody 18B7 in subjects with treated cryptococcal meningitis. Antimicrob Agents Chemother,2005,49:952-958.
    89. Krieg AM, Schorr YJ, Davis HI. The role of CpG denucleotidesin NA vaccine. Trends Microbiol, 1998,6:23.
    90. HartmannG, RisiniDW, BallasZK, et al.Delineation of a CpG phophorothioate Oligosexoynucleotide for Activating primate Immune Response In vitro and In vivo. J Immunol,2000,164:161.
    91.许洪林,王四清,王世峰,等.两种CpG基序能高度活化人免疫细胞.中华微生物与免疫学杂志,2001,5:471.
    92. Yi AK, Chang M, Peckham DW, et al. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immumol,1998,160:5898.
    93. Heather LD, Risini W, Thomas JW, et al. CpG DNA is a potent enhance of specific immunity in mice immunized with recombinant Hepatitis Bsurface antigen. The Journal of Immunology,1998,160:870.
    94. Kovarik J, Bozzotti P, Love-Homan L, et al. CpG oligodeoxynucleotides can circumvent the Th2 polarization of neonatal responses to vaccines but fail to fully redirect Th2 responses established by neonatal priming. J Immunol,1999,162:1611.
    95. Manning BM, Enioutina EY, Visic DM, et al. CpG DNA functions as an effective adjuvant for the induction of immune responses in aged mice. Expermental Gerontology,2001,37:107.
    96.冯颖,胡建民.CpG ODN的最新研究进展.上海畜牧兽医通讯,2005,1:6-8.
    97. Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature,2000, 408:740-745.
    98. Hacker H, Vabulas RM, Takeuchi O, et al. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF) 6. J Exp Med,2000,192:595-600.
    99. Krige AM, Davis HL. Enhancing vaccines with immune stimulatory CpG DNA. Curr Opin Mol Ther, 2001,3:15-24.
    100. Gurunathan S, Klinman DM, Seder RA. DNA vaccines:immunology, application, and optimization. Annu Rev Immunol,2000,18:927-974.
    101. Horner AA, Raz E. Immunostimulatory sequence oligodeoxynucleotide-based vaccination and immunomodulation:two unique but complementary strategies for the treatment of allergic diseases. J Allergy Clin Immunol,2002,110:706-712.
    102. Verthely ID, Gursel M, Kenney RT, et al. CpG oligodeoxynucleotides protect normal and SIV infected macaques from Leishmania infection. J Immunol,2003,170:4717-4723.
    103. Dan JM, Wang JP, Lee CK, et al. Cooperative stimulation of dendritic cells by Cryotococcus neoformans mannoprotein and CpG oligodeoxynucleotides. PloS One,2008,3:2046
    104. Xiao G, Miyazato A, Inden K, et al. Cryotococcus neoformans inhitits nitric oxide synthesis caused by CpG-oligodeoxynucleotide-stimulated macrophages in a fashion independent of capsular polysaccharides. Microbiol Immunol,2008,52:171-179.
    105. Ramirez-Oritiz ZG, Specht CA, Wang JP, et al. Toll-like receptor 9-dependent immune activation by unmethylated CpG motifs in Aspergillus fumigatus DNA. Infect Immun,2008,76:2123-2129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700