羌塘地区早古生代构造演化新认识
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特提斯及环冈瓦纳大陆构造演化是目前地学界研究的前沿和热点。随着近年来区域地质工作的深入以及大量新资料的涌入,羌塘地区已经成为研究这一关键问题的理想地区之一。羌塘中部不仅保留了可能与原特提斯俯冲有关的岩浆活动,同时还出露与这一过程相关的早古生代蛇绿岩和中高级变质岩。然而,由于缺少关键性岩石类型,目前对于这一复杂演化过程的理解十分有限,直接制约了对羌塘乃至冈瓦纳北缘早期构造演化历史的认识。
     本文以迄今为止羌塘中部首例志留纪基性高压麻粒岩为研究对象,进行了系统的岩石学、矿物学、同位素年代学和地球化学研究,查明了高压麻粒岩及其围岩的野外地质特征,确定了高压麻粒岩的P-T-t轨迹及形成的构造环境,以高压麻粒岩为切入点,结合区域内早古生代蛇绿岩、古生物、古地磁资料以及其他大量相关地质事实,尝试对冈瓦纳北缘以及古特提斯洋(龙木错-双湖-澜沧江洋)早古生代构造演化历史进行探讨,在前人工作基础上初步构建了全新的构造演化模式,为进一步的相关研究工作提供了新的思路。
     香桃湖基性高压麻粒岩出露于羌塘西部拉顺-香桃湖蛇绿混杂岩带的东南部,与区域内蛇绿岩伴生产出,高压麻粒岩主要呈大小不一的透镜体产于其围岩斜长角闪片(麻)岩中,其围岩中常出露蛇纹石化橄榄岩块体,并发育大洋斜长花岗岩脉体,总体特征与南天山榆树沟高压麻粒岩类似,为一套遭受中高级变质作用改造的蛇绿岩残片。
     矿物学及变质作用研究表明,香桃湖基性高压麻粒岩经历了三期变质演化阶段:①峰期高压麻粒岩相变质阶段(M1),矿物组合为单斜辉石+斜长石+石榴石+石英,形成的温度压力条件为T=830~860°C,P=1.25~1.45GPa;②峰后期中压麻粒岩相阶段(M2),矿物主要呈蠕虫状或文象状后成合晶或冠状体分布于石榴石边部,主要矿物组合为紫苏辉石+斜长石±角闪石±磁铁矿,其形成的温度压力条件为T=810~830°C,P=0.65~0.85GPa;③晚期角闪岩相变质阶段(M3),矿物组合为斜长石+角闪石,形成的变质作用条件为T=590~650°C,P=0.62~0.85GPa。
     同位素定年结果表明,高压麻粒岩主期变质年龄为427~422Ma,且这一期变质锆石中包裹体矿物组合与峰期高压麻粒岩相变质矿物组合特征一致,代表了峰期变质作用(M1)的时代;峰后期中压麻粒岩相退变时代为392~389Ma,晚期角闪岩相退变发生在365~355Ma之间,残留的岩浆锆石中获得481±10和500±5Ma单颗粒锆石SHRIMP U-Pb年龄,可能代表了高压麻粒岩原岩结晶时代。围岩斜长角闪片麻岩峰期变质时代为Ca.391Ma,退变质时代为Ca.355Ma。
     地球化学研究表明,香桃湖基性高压麻粒岩具有与N-MORB稀土元素特征,同时强烈亏损Nb、Ta、Zr和Hf等高场强元素,显示了典型SSZ型蛇绿岩地球化学特征,且与缝合带内寒武纪-早奥陶世蛇绿岩特征一致;斜长角闪片麻岩则具有E-MORB地球化学特征,与区域内中晚奥陶世蛇绿岩特征极其相似。以上结果进一步表明香桃湖基性高压麻粒岩及其围岩为一套经历中高级变质作用改造的早古生代蛇绿岩残片。
     香桃湖基性高压麻粒岩具有顺时针近等温降压P-T-t轨迹,峰期高的变质温度压力条件指示其原岩(SSZ型蛇绿岩)在志留纪末期(427~422Ma)被带入40~50km地壳层次,暗示区域内至少在局部地区出现了短期的会聚型环境;在早泥盆世(392~389Ma)高压麻粒岩经历了一个快速折返的过程(近等温降压P-T轨迹),暗示可能由于俯冲板片的断离或造山带的垮塌,区域内动力学机制发生明显改变而进入伸展构造背景。
     根据本文研究成果,结合区域内蛇绿岩、岩浆岩、古生物和古地磁证据,初步构建了古特提斯洋(龙木错-双湖-澜沧江洋)早期构造演化模型,为进一步研究工作提供了新的思路,认为古特提斯洋可能经历了以下四个演化阶段:①早寒武世(530~517Ma),由于原特提斯向冈瓦纳北缘俯冲消减,古特提斯洋以弧后盆地的方式开启;②寒武纪-志留纪(517~432Ma),古特提斯洋慢速扩张,洋盆宽度有限,两侧代表性陆块中古生物面貌相似;③晚志留世-早泥盆世(427~410Ma),区域构造机制转变导致洋盆短暂收缩,局部地区在进一步的收缩过程中发生闭合或点碰撞,形成以香桃湖基性高压麻粒岩为代表的中高级变质岩石;④早泥盆世(392~389Ma),可能由于原特提斯俯冲板片断离导致冈瓦纳北缘整体进入大型伸展构造背景,香桃湖基性高压麻粒岩快速折返并发生了中压麻粒岩的退变,古特提斯洋先前闭合的局部洋盆亦在这一时期重新开启,而且整体进入了一个快速扩张阶段,在晚泥盆世-早石炭世大洋扩张达到最大规模。
     古特提斯洋可能在早石炭世发生了向北的初始俯冲,在中晚三叠世古特提斯洋闭合,南北羌塘碰撞形成统一的羌塘盆地并开始接受新一轮沉积。
A recent study suggests that the central Qiangtang is a key locality, not only toinvestigate the evolution of the opening and closure of the Paleo-Tethys Ocean, butalso to study the tectonic evolution of the north margin of Gondwana in the earlyPaleozoic. In addition to rocks related to the Paleo-Tethys Ocean, geologic evidenceof early Paleozoic tectonism has been reported along the northern margin of SouthQiangtang near the Longmu Co-Shuanghu suture zone, including granitic gneiss,amphibolite gneiss (±garnet), and ophiolites.These early Paleozoic rocks indicate theoccurrence of earlier tectonothermal events during the evolution of the Paleo-TethysOcean.
     In this contribution we report on hitherto unknown Silurian HP basic granulitesfrom the Xiangtaohu area of central Qiangtang, northern Tibet. The purpose of thispaper is to give a detailed account of the petrological features, mineralogical data,whole-rock geochemistry, and U–Pb zircon ages for these HP basic granulites. Theresults are used to constrain the P–T-t paths and metamorphic evolution of the HProcks, which is critical to understanding the early Paleozoic tectonic history of theQiangtang terrane. Moreover, the new data allow for the evaluation of hypothesesregarding the evolution of the northeastern margin of Gondwana while providing a starting point for more comprehensive future studies.
     The Xiangtaohu HP basic granulites occur as blocks or lens-shaped bodies ofsizes ranging from tens of centimeters to several meters in diameter. The country rockof the HP basic granulite is mainly amphibolite gneiss.
     Detailed petrology and geochronology reveal a three-stage metamorphic historybased on inclusions, reaction textures, and garnet zoning patterns. Peakmetamorphism at830~860°C and1.25~1.45GPa (M1) is defined by high-Ca garnetcores, high-Al clinopyroxene, and high-Na plagioclase. Symplectites or coronas oforthopyroxene+plagioclase±magnetite around garnet porphyroblasts indicate garnetbreakdown reactions at ca.810~830°C and0.65~0.85GPa (M2). Kelyphites ofamphibole+plagioclase around garnet formed during the cooling process at about590~650°C and0.62~0.82GPa (M3). These results help define a sequential P–T pathcontaining near-isothermal decompression (ITD) and near-isobaric cooling (IBC)stages.
     Identification of mineral inclusion assemblages in zircons dated by U–PbSHRIMP and LA–ICP–MS reveals peak HP metamorphism at ca.427~422Ma,subsequent near-isothermal decompression with associated retrograde reactions at ca.392~389Ma, and continued cooling at ca.360Ma. In situ zircon U-Pb LA-ICP-MSdating on the amphibolite gneiss reveals peak HP metamorphism at ca.391Ma andretrograde reactions at ca.355Ma.
     Geochemically, the HP basic granulites is tholeiitic and has low rare earthelement abundances (∑REE=11.08×10-6~24.93×10-6) and display light REE (LREE)depleted patterns with LaN/YbNvalues of0.21-0.77,with marked negative Nb, Ta, Zrand Hf anomalies. These features of HP basic granulites are comparable with those ofsupra-subduction zone (SSZ) type, whereas the country rock amphibolite gneissexhibit REE distribution patterns and trace element abundances similar to enrichedmid-ocean ridge basalts (E-MORB).
     The HP basic granulites record relatively high peak P–T conditions and aclockwise P–T path. A near-isothermal decompression path (segment from M1to M2)implies that protoliths of HP basic granulites experienced burial to depths of ca. 40~50km, followed by ca.20km of rapid erosional exhumation. This process likelyoccurred during collision along a convergent plate margin, followed by extensionalexhumation as the collisional orogen collapsed or slab break-off.
     Based on paleontological, paleomagnetic data, early Paleozoic tectonothermalevents and our new results, we propose a hypothetical tectonic model for the earlyPaleozoic evolution of Paleo-Tethys Ocean and northern margin of Gondwana.According to our model, the Paleo-Tethyan Ocean initially opened as a back-arc basinin the early cambrian as a result of the subduction of the proto-TethyanOceanlithosphere. The Xiangtaohu HP basic granulites formed as a result of locally closureof expanding Paleo-Tethys basin as the change of tectonic style from extension tocompression during the Middle Silurian to Early Devonian. Renewed subduction ofoceanic ridge(Proto-Tethys) and subsequent Silurian collision triggered slab break-off,leading to the reopening and expanding rapidly of the Paleo-Tethys ocean basin.
引文
[1] Agrawala S., Guevarab M., Vermab S.P. Tectonic Discrimination of Basic andUltrabasic Volcanic Rocks through Log-Transformed Ratios of Immobile TraceElements [J]. International Geology Review,2008,50(12):1057-1079.
    [2] Allègre, C.J., Courtillot, V., Tapponnier, P., et al. Structure and evolution of theHimalaya-Tibet orogenic belt [J]. Nature,1984,307:17-22.
    [3] Anovitz, L.M. Al zoning in pyroxene and plagioclase:Window on late prograde toearly retrograde P-T paths in granulite terranes[J].American Mineralogist,1991,76:1328-1343.
    [4] Becker H., Jochum K.P., Carlson R.W. Constraints from high-pressure veins ineclogites on the composition of hydrous fluids in subduction zones[J]. Chem.Geol,1999,160:291-308.
    [5] Belousova E., Griffin W.L., O'reilly S.Y., et al. Igneous zircon: trace elementcomposition as an indicator of source rock type [J]. Contributions to Mineralogyand Petrology,2002,143(5):602-622.
    [6] Bhattacharya, A., Krishnakumar, K.R., Raith, M., et al. An improved set of a-Xparameters for Fe–Mg–Ca garnets and refinements of the orthopyroxene–garnetthermometer and the orthopyroxene–garnet–plagioclase–quartz barometer [J].Journal of Petrology,1991,32(3):629-656.
    [7] Bingen B., Austrheim H., Whitehouse M.J., et al. Trace element signature andU–Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of WNorway [J]. Contributions to Mineralogy and Petrology,2004,147(6):671-683.
    [8] Black L.P., Kamo S.L., Williams I.S., et al. The application of SHRIMP toPhanerozoic geochronology; a critical appraisal of four zircon standards [J].Chemical Geology,2003,200(1):171-188.
    [9] Brown, M. P-T-t evolution of mountain belts and the causes of regionalmetamorphism [J]. Journal of the Geological Society,1993,150:227-241.
    [10]Brown, M. From microscope to mountain belt:150years of petrology and itscontribution to understanding geodynamics, particularly the tectonics of orogens[J]. Journal of Geodynamics,2001,32:115-164.
    [11]Brown, M. Duality of thermal regimes is the distinctive characteristic of platetectonics since the Neoarchean [J]. Geology,2006,34:961-964.
    [12]Brown, M. Metamorphic conditions in orogenic belts: a record of secular change[J].International Geology,2007,49:193-234.
    [13]Burrett, C., Long, J., Stait, B. Early-Middle Palaeozoic biogeography of Asianterranes derived from Gondwana. In: McKerrow, W.S., Scotese, C.R.(Eds.),Palaeozoic Palaeogeography and Biogeography. Geological SocietyMemoir,1990,12:163–174.
    [14]Cabanis B., Lecolle M. Le diagramme La/10–Y/15–Nb/8: un outil pourladiscrimination des séries volcaniques et la mise en evidence des processus demélange et/ou de contamination crustale[J]. Comptes rendus de l'Académie dessciences. Série II. Mécanique, physique, chimie, sciences de l'univers, sciences dela terre,1989,309(20):2023–2029.
    [15]Carney J.N., Treloar P.J., Barton C.M., et al. Deep-crustal granulites withmigmatitic and mylonitic fabrics from the Zambezi Belt, northeasternZimbabwe[J]. Journal of Metamorphic Geology,1991,9(4):461-479.
    [16]Carswell D.A., O'brien P.J. Thermobarometry and geotectonic significance ofhigh-pressure granulites: examples from the Moldanubian Zone of the BohemianMassif in Lower Austria [J]. Journal of Petrology,1993,34(3):427-459.
    [17]Catlos, E.J., Harrison, T.M., Manning, C.E., et al. Records of the evolution of theHimalayan orogen from in situ Th-Pb ion microprobe dating of monazite: EasternNepal and western Garhwal[J]. Journal of Asian Earth Sciences,2002,20(5):459-479.
    [18]Cawood, P.A., Buchan, C. Linking accretionary orogenesis with supercontinentassembly [J]. Earth-Science Reviews,2007a,82:217–256.
    [19]Cawood, P.A., Johnson, M.R.W., Nemchin, A.A. Early Palaeozoic orogenesisalong the Indian margin of Gondwana: tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters,2007b,255:70–84.
    [20]Cheng, H., Zhang, C., Vervoort, J.D., et al. Geochronology of the transition ofeclogite to amphibolite facies metamorphism in the North Qinling orogen ofcentral China [J]. Lithos,2011,125(3),969-983.
    [21]Cheng, H., Zhang, C., Vervoort, J.D., et al. Timing of eclogite faciesmetamorphism in the North Qinling by U–Pb and Lu–Hf geochronology[J]. Lithos,2012,136:46-59.
    [22]Chen Y., Ye K., LIU J.B., et al. Multistage metamorphism of the Huangtulinggranulite, Northern Dabie Orogen, eastern China: implications for thetectonometamorphic evolution of subducted lower continental crust [J]. Journalof metamorphic Geology,2006,24(7):633-654.
    [23]Chen Y., Ye K., LIU J.B., et al. Quantitative P-T-X constraintson orthopyroxene-bearing high-pressure granulites in felsic-metapelitic rocks:evidence from the Huangtuling granulite, Dabieshan Orogen [J]. Journal ofMetamorphic Geology,2008,26:1-15.
    [24]Cherniak, D.J., Watson, E.B. Diffusion in zircon[J]. Rev. Mineral. Geochem,2003,53:113-143.
    [25]Cocks, L.R.M., Fortey, R.A. A new Hirnantia Fauna from Thailand and thebiogeography of the latest Ordovician of south–east Asia [J]. Geobios,1997,20:117–126.
    [26]Condie K.C. Geochemical changes in basalts and andesites across theArchaean-Proterozoic boundary: identification and significance [J]. Lithos,1989,23:1-18.
    [27]Dallmeyer R.D., Johansson L., Moeller C. Chro-nology of Caledonianhigh-pressure granulite-facies meta-morphism, uplift, and deformation withinnorthern parts of the Western Gneiss Region, Norway [J]. Geological Society ofAmerica Bulletin,1992,104(4):444-455.
    [28]Debon F., LE Fort P., Sheppard S.M.F., et al. The four plutonic belts of theTranshimalaya-Himalaya: A chemical, mineralogical, isotopic, and chronologicalsynthesis along a Tibet-Nepal section [J]. Journal of Petrology,1986,27(1):219-250.
    [29]DI Vincenzo G., Palmeri R., Talarico F., et al. Petrology and geochronology ofeclogites from the Lanterman Range, Antarctica [J]. Journal of Petrology,1997,38(10):1391-1417.
    [30]Ding L., Zhong D., Yin A., et al. Cenozoic structural and metamorphic evolutionof the eastern Himalayan syntaxis (Namche Barwa)[J]. Earth and PlanetaryScience Letters,2001,192(3):423-438.
    [31]Droop G. T. R. Reaction history of garnet-sapphirine granu-lites and conditions ofArchaean high-pressure granulite-facies metamorphism in the central Limpopomobile belt, Zim-babwe [J]. Journal of Metamorphic Geology,1989,7(3):383-403.
    [32]Dubinska, E., Bylina, P., Kozlowski, A., et al. U–Pb dating of serpentinization:hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SWPoland)[J]. Chemical Geology,2004,203(3–4):183–203.
    [33]Dubois-C té V., Hébert R., Dupuis C., et al. Petrological and geochemicalevidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet [J].Chemical Geology,2005,214(3):265-286.
    [34]Dupuy C., Dostal J. Trace element geochemistry of some continental tholeiites [J].Earth and Planetary Science Letters,1984,67(1):61-69.
    [35]Eckert, J.O., Newton, R.C., Kleppa, O.J. The△H of reaction and recalibration ofgarnet–pyroxene–plagioclase–quartz geobarometers in the CMAS system bysolution calorimetry[J]. American Mineralogist,1991,76(1–2):148–160.
    [36]Ellis, D.J., Green, D.H. An experimental study of the effect of Ca upongarnet–clinopyroxene Fe–Mg exchange equilibria [J]. Contributions toMineralogy and Petrology,1979,71(1):13–22.
    [37]England, P.C., Thompson, A.B. Pressure-temperature-time paths of regionalmetamorphism, I. Heat transfer during the evolution of regions of thickenedcontinental crust [J]. Journal of Petrology,1984,25:894-928.
    [38]Ewart, A., Bryan, W.B., Chappell, B.W., et al. Regional geochemistry of theLau-Tonga arc and backarc systems. In: Hawkins, J., Parsons, L., Allan, J., et al.,(Eds.), Proc. ODP Sci. Res.135. Ocean Drilling Program, College Station, TX,1994,:385–425.
    [39]Ferrari, O.M., Hochard, C., Stampfli, G.M. An alternative plate tectonic model forthe Palaeozoic–Early Mesozoic Palaeotethyan evolution of Southeast Asia(North-ern Thailand–Burma)[J]. Tectonophysics,2008,451:346–365.
    [40]Frey F.A., Green D.H., ROy S.D. Integrated models of basalt petrogenesis: astudy of quartz tholeiites to olivine melilitites from south eastern Australiautilizing geochemical and experimental petrological data [J]. Journal of Petrotogy,1978,19(3):463-513.
    [41]Fu, X.G., Wang, J., Tan, F.W., et al. The Late Triassic rift-related volcanic rocksfrom eastern Qiangtang, northern Tibet (China): age and tectonic implications [J].Gondwana Research,2010,17:135-144.
    [42]Graham, C.M., Powell, R. A garnet–hornblende geothermometer: calibra-tion,testing, and application to the Pelona Schist, Southern California [J]. Journal ofMetamorphic Geology.1984,2(1):13–31.
    [43]Green, D.H., Ringwood, A.E. An experimental investigation of the gabbro toeclogite transformation and its petrological applications [J].GeochimicaCosmochimica Acta,1967,31:767–833.
    [44]Guilmette C., Hébert R., Dupuis C., et al. Metamorphic history and geodynamicsignificance of high-grade metabasites from the ophiolitic mélange beneath theYarlung Zangbo ophiolites, Xigaze area, Tibet [J]. Journal of Asian EarthSciences,2008,32(5):423-437.
    [45]Guilmette C., Hébert R., Wang C., et al. Geochemistry and geochronology of themetamorphic sole underlying the Xigaze ophiolite, Yarlung Zangbo Suture Zone,south Tibet [J]. Lithos,2009,112(1):149-162.
    [46]Guo, J.H., O'Brien, P.J., Zhai, M.G.. High-pressure granulites in the Sanggan area,North China Craton: metamorphic evolution, P-T paths and geotectonicsignificance [J]. Journal of Metamorphic Geology,2002,20:741-756.
    [47]Hacker, B.R., Mosenfelder, J.L., Gnos, E. Rapid emplacement of the OmanOphiolite; thermal and geochronologic constraints [J]. Tectonics,1996,15,1230–1247.
    [48]Hajash J.A. Rare earth element abundance and distribution patterns inhydrothermally altered basalts: experimental results [J].Contrib. Mineral Petrol,1984,85:409-412.
    [49]Harley, S.L. An experimental study of the partitioning of Fe and Mg betweengarnet and orthopyroxene[J].Contributions to Mineralogy and Petrology.1984,86,359–373.
    [50]Harley, S.L. The origins of granulites: a metamorphic perspective [J]. GeologicalMagazine,1989,126:1059-1095.
    [51]Harley, S.L. Proterozoic granulite terranes. In: Condie, K.(Ed.), ProterozoicCrustal Evolution, Amsterdam: Developments in Precambrian Geology,1992,10,pp:301-359.
    [52]Harley, S.L., Kelly, N.M. The impact of zircon-gamet REE distribution data onthe interpretation of zircon U-Pb ages in complex high-grade terrains: Anexample from the Rauer Islands, East Antarctica [J]. Chem. Geol.2007,241,62-87.
    [53]Harley, S.L. Refining the P-T records of UHT crustal metamorphism [J]. Journalof Metamorphic Geology,2008,26:125-156.
    [54]Hastie A.R., Kerr A.C., Pearce J.A., et al. Classification of Altered VolcanicIsland Arc Rocks using Immobile Trace Elements: Development of the Th-CoDiscrimination Diagram [J]. Journal of Petrology,2007,48(12):2341-2357.
    [55]Hawthorne F.C., Kato A., Kisch H.J., et al. Nomenclature of amphiboles: reportof the subcommittee on amphiboles of the International MineralogicalAssociation, Commission on New Minerals and Mineral Names [J]. TheCanadian Mineralogist,1997,35:219-246.
    [56]Hermann J., Rubatto D., Korsakov A., et al. Multiple zircon growth during fastexhumation of diamondiferous, deeply subducted continental crust (KokchetavMassif, Kazakhstan)[J]. Contributions to Mineralogy and Petrology,2001,141(1):66-82.
    [57]Hess P.C. Phase equilibria constraints on the origin of ocean floor basalts Phaseequilibria constraints on the origin of ocean floor basalts.In:Morgan JP,Blackman DK, Sinton JM.,eds., Mantle Flow and Melt Generation at Mid-OceanRidges[J]. Geophysical Monograph Series,1992,71:67-102.
    [58]Hoeck V., Koller F., Meisel T., et al. The Jurassic South Albanian ophiolites:MOR-vs. SSZ-type ophiolites[J]. Lithos,2002,65(1):143-164.
    [59]Holland, T.J.B. The reaction albite jadeite+quartz determined experimentallyin the range600-1200C [J]. American Mineralogist,1980,65:129-134.
    [60]Hoskin P.W.O., Schaltegger U. The composition of zircon and igneous andmetamorphic petrogenesis [J]. Reviews in mineralogy and geochemistry,2003,53(1):27-62.
    [61]Hu P., Li C., Wang M., et al. Cambrian volcanism in the Lhasa terrane, southernTibet: Record of an early Paleozoic Andean-type magmatic arc along theGondwana proto-Tethyan margin [J]. Journal of Asian Earth Sciences,2013,77:91-107.
    [62]Indares A. Metamorphic interpretation of high-pressure-temperature metapeliteswith preserved growth zoning in garnet, eastern Grenville province, Canadianshield [J]. Journal of Metamorphic Geology,1996,13(4):474-486.
    [63]Javier E.V., Andres P.E., Dominique W., et al. Geochemical characteristics of theRio Verde complex, central Hispaniola: Implications for the paleotectonicreconstruction of the lower Cretaceous Caribbean island-arc [J]. Lithos,2010,114:168-185.
    [64]Kapp P., An Y., Manning C.E., et al. Tectonic evolution of the early Mesozoicblueschist-bearing Qiangtang metermorphic belt, central Tibet [J]. Tectonics,2003,22(4):1043, doi:10.1029.
    [65]Kohn, M.J., Spear, F.S. Two new geobarometers for garnet amphibolites, withapplications to southeastern Vermont [J]. American Mineralogist,1990,75(1–2):89–96.
    [66]Krogh, E.J. The garnet–clinopyroxene Fe–Mg geothermometer—areinterpre-tation of existing experimental data [J]. Contributions to Mineralogyand Petrology,1988,99(1):44–48.
    [67]Kumar C.R.R., Chacko T. Geothermobarometry of mafic granulites andmetapelite from the Palghat Gap, South India: petrological evidence forisothermal uplift and rapid cooling [J]. Journal of Metamorphic Geology,1994,12(4):479-492.
    [68]Lehmann B., Zhao X., Zhou M., et al. Mid-Silurian back-arc spreading at thenortheastern margin of Gondwana: The Dapingzhang dacite-hosted massivesulfide deposit, Lancangjiang zone, southwestern Yunnan, China [J]. GondwanaResearch,2013,24(2):648-663.
    [69]Li, P., Rui, G.., Junwen, C., et al. Paleomagnetic analysis of eastern Tibet:implications for the collisional and amalgamation history of the Three RiversRegion, SW China [J]. Journal of Asian Earth Sciences,2004,24:291–310.
    [70]Li, Z. Ordovician. In: Yin, H.(Ed.), The Palaeobiogeography of China.ClarendonPress, Oxford,1994, pp.64–87.
    [71]Liati, A., Gebauer, D. Constraining the prograde and retrograde P–T-t path ofEocene HP rocks by SHRIMP dating of different zircon domains: inferred rates ofheating, burial, cooling and exhumation for central Rhodope, northern Greece [J].Contributions to Mineralogy and Petrology,1999,135(4):340–354.
    [72]Liu P.H., Liu F.L., Liu C.H., et al. Petrogenesis, P–T–t path, and tectonicsignificance of high-pressure mafic granulites from the Jiaobei terrane, NorthChina Craton[J].Precambrian Research,2013,233:237-258.
    [73]Liu Y., Zhong D.L. Petrology of high-pressure granulite from the easternHimalayan syntaxis [J]. Journal of Metamorphic Geology,1997,15:451-466.
    [74]Liu, F.L., Xu, Z.Q., Xue, H.M. Tracing the protolith, UHP metamorphism, andexhumation ages of orthogneiss from the SW Sulu terrane (eastern China):SHRIMP U–Pb dating of mineral inclusion-bearing zircons [J]. Lithos,2004,78(4):411–429.
    [75]Liu, X.C., Hu, J.M., Zhao, Y., et al. Late Neoproterozoic/Cambrian high-pressuremafic granulites from the Grove Mountains, East Antarctica: P-T-t path,collisional orogeny and implications for assembly of East Gondwana [J].Precambrian Research,2009,174:181-199.
    [76] Liu, L., Wang, C., Cao, Y. T., et al. Geochronology of multi-stage metamorphicevents: Constraints on episodic zircon growth from the UHP eclogite in the SouthAltyn, NW China [J]. Lithos,2012,136:10-26.
    [77]Ludwig, K.R. Squid1.02: A User's Manual. Berkeley Geochronological CenterSpecial Publication.2001, No.2,19.
    [78]Mary L., Singh S., Jain A. K., et al. The onset of India-Asia continental collision:Early, steep subduction required by the timing of UHP metamorphism in thewestern Himalaya [J]. Earth Planet. Sci. Lett.,2005,234:83-97.
    [79]Metcalfe, I. Gondwanaland dispersion, Asian accretion and evolution of EasternTethys [J]. Australian Journal of Earth Sciences,1996,43:605-623.
    [80]Metcalfe, I. Palaeozoic and Mesozoic tectonic evolution and palaeogeographyof East Asian crustal fragments: the Korean Peninsula in context [J]. GondwanaResearch,2006,9:24-46.
    [81]Metcalfe, I. Palaeozoic-Mesozoic History of SE Asia. In: Hall, R., Cottam,M.,Wilson, M.(Eds.), The SE Asian Gateway: History and Tectonics ofAustralia-Asia Collision. Geological Society of London Special Publications2011a,355, pp.7-35.doi:10.1144/SP355.2.
    [82]Metcalfe, I. Tectonic framework and Phanerozoic evolution ofSundaland[J].Gondwana Research,2011b,19:3-21.
    [83]Metcalfe, I. Gondwana dispersion and Asian accretion: Tectonic andpalaeogeographic evolution of eastern Tethys [J].Journal of Asian Earth Sciences,2013,66:1-33.
    [84]M ller C. Decompressed eclogites in the Sveconorwegian (-Grenvillian) orogenof SW Sweden: petrology and tectonic implications [J]. Journal of MetamorphicGeology,1998,16(5):641-656.
    [85]Miller C., Th ni M., Frank W., et al. The early Palaeozoic magmatic event in theNorthwest Himalaya, India: source, tectonic setting and age of emplacement [J].Geological Magazine,2001,138(03):237-251.
    [86]Moskovchendo N.I., Ovchinnikova G.V., Kastrykina V.M. High-pressuregranulites of east Siberia in terms of Archaean and Proterozoic evolution[J].Precambrian Re-search,1993,62(4):473-491.
    [87]Mottana A. Crystal-chemical evaluation of garnet and omphacite microprobeanalyses: its bearing on the classification of eclogites[J]. Lithos,1986,19(3):171-186.
    [88]Newton, R.C., Perkins, D. Thermodynamic calibration of geobarom-eters basedon the assemblages garnet–plagioclase–orthopyroxene clinopyroxene–quartz[J].American Mineralogist,1982,67(2):203-222.
    [89]Nie, Y.S., Rowley, D.B., Ziegler, A.M. Constraints on the locations of Asianmicrocontinents in Palaeo-Tethys during the Late Palaeozoic. In: McKerrow,W.S., Scotese, C.R.(Eds.), Palaeozoic Palaeogeography and Biogeography,Geological Society Memoir12,1990, pp.397-408.
    [90]Nie, Y.S. Paleoclimatic and paleomagnetic constraints on the Paleozoicreconstructions of South China, North China and Tarim [J]. Tectonophysics,1991,196,279-308.
    [91]O'brien P.J. Granulite facies overprints of eclogites:short-lived events deducedfrom diffusion modeling[C]//Qian X, You Z, Jahn B M, Halls H C, Eds.Precambrian Geology and Metamorphic Petrology. Proc.30th Inter. Geol. Conge.1997,vol.17, part2:157-171.
    [92]O’Brien P.J., Zotov N., Law R., et al. Coesite in Himalayan eclogite andimplications for models of India-Asia collision [J]. Geology,2001,29(5):435-438.
    [93]O’Brien, P.J., R tzler, J. High-pressure granulites: formation, recovery of peakconditions and implications for tectonics [J]. Journal of Metamorphic Geology,2003,21(1):3-20.
    [94]Pattison D.R.M., Chacko T., Farquhar J., et al. Temperatures of granulite-faciesmetamorphism: constraints from experimental phase equilibria andthermobarometry corrected for retrograde exchange [J]. Journal of Petrology,2003,44(5):867-900.
    [95]Pearce, J.A. A user’s guide to basalt discrimination diagrams. Trace elementgeochemistry of volcanic rocks: applications for massive sulphide exploration [J].Geological Association of Canada, Short Course Notes,1996,12:79-113.
    [96]Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications toophiolite classification and the search for Archean oceanic crust [J]. Lithos,2008,100(1–4):14–48.
    [97]Polat, A., Hofmann, A.W. Alteration and geochemical patterns in the3.7–3.8GaIsua greenstone belt, West Greenland [J]. Precambrian Research,2003,126:197–218.
    [98]Polat, A., Appel, P.W.U., Fryer, B.J. An overview of the geochemistry ofEoarchean to Mesoarchean ultramafic to mafic volcanic rocks, SW Greenland:implications for mantle depletion and petrogenetic processes at subduction zonesin the early Earth[J]. Gondwana Research,2011,20:255–283.
    [99]Polat, A., Fryer, B.J., Samson, I.M., et al. Geochemistry of ultramafic rocks andhornblendite veins in the Fisken set layered anorthosite complex, SW Greenland:evidence for hydrous upper mantle in the Archean[J]. Precambrian Research,2012,214–215:124–153.
    [100]Powell, R. Regression diagnostics and robust regression ingeothermome-ter/geobarometer calibration: the garnet–clinopyroxenegeothermometer revisited [J]. Journal of Metamorphic Geology,1985,3(3):231–243.
    [101]Pullen, A., Kapp, P., Gehrels, G.E., et al. Triassic continental subduction incentral Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean[J].Geology,2008,36(5):351-354.
    [102]Pullen, A., Kapp, P., Gehrels, G.E., et al. Metamorphic rocks in central Tibet:lateral variations and implications for crustal structure [J].Geological Society ofAmerica Bulletin,2011,123:585-600.
    [103]Rahmati-Ilkhchi M., Faryad S.W., Holub F.V., et al. Magmatic and metamorphicevolution of the Shotur Kuh metamorphic complex (Central Iran)[J].International Journal of Earth Sciences,2011,100(1):45-62.
    [104]Ravna, E.K. Distribution of Fe2+and Mg between coexisting garnet andhornblende in synthetic and natural systems: an empirical calibration of thegarnet–hornblende Fe–Mg geothermometer [J]. Lithos,2000,53(3–4):265–277.
    [105]Rong, J.Y., Boucot, A.J., Su, Y.Z., et al. Biogeographical analysis of LateSilurian brachiopod faunas, chiefly from Asia and Australia [J]. Lethaia,1995,28:39–60.
    [106]Ross P.S., Bédard J.H. Magmatic affinity of modern and ancient subalkalinevolcanic rocks determined from trace-element discriminant diagrams[J].Canadian Journal of Earth Sciences,2009,46(11):823-839.
    [107]Rubatto D., Gebauer D., Compagnoni R. Dating of eclogite-facies zircons: theage of Alpine metamorphism in the Sesia–Lanzo Zone (Western Alps)[J]. Earthand Planetary Science Letters,1999,167(3):141-158.
    [108]Rubatto D., Gebauer D. Use of cathodoluminescence for U-Pb zircon dating byion microprobe: some examples from the Western Alps
    [M]//Cathodoluminescence in geosciences. Springer Berlin Heidelberg,2000:373-400.
    [109]Rubatto, D. Zircon trace element geochemistry: partitioning with garnet and thelink between U-Pb ages and metamorphism [J]. Chemical Geology,2002,184,123-138.
    [110]Rubatto, D., Hermann, J. Zircon formation during fluid circulation in eclogites(Monviso, Western Alps): implications for Zr and Hf budget in subduction zones[J]. Geochimica et Cosmochimica Acta,2003,67(12),2173–2187.
    [111]Rubatto, D., Hermann, J. Zircon behaviour in deeply subducted rocks [J].Elements,2007,3(1):31-35.
    [112]Sachan H.K., Mukherjee B.K., Ogasawara Y., et al. Discovery of coesite fromIndus Suture Zone (ISZ), Ladakh, India Evidence for deep subduction[J].European Journal of Mineralogy,2004,16(2):235-240.
    [113]Saki A. Proto-Tethyan remnants in northwest Iran: geochemistry of the gneissesand metapelitic rocks [J]. Gondwana Research,2010,17(4):704-714.
    [114]Salje, E. Heat capacities and entropies of andalusite and sillimanite. Theinfluence of fibrolitisation on the phase diagram of the Al2SiO5polymorphs [J].American Mineralogist,1986,71,1366–1371.
    [115]Schaltegger U., Fanning C.M., Gunther D., et al. Growth, annealing andrecrystllization of zircon and preservation of monazite in high-grademetamorphism: Conventional and in-situ U-Pb isotope, cathodoluminescenceand microchemical evidence[J]. Contrib Mineral Petrol,1999,134:186-201.
    [116] eng r A.M.C., Alt ner D., Cin A., et al. Origin and assembly of the Tethysideorogenic collage at the expense of Gondwana Land [J]. Geological Society,London, Special Publications,1988,37(1):119-181.
    [117]Seng r, A.M.C., Cin, A., Rowley, D.B., et al. Space-time patterns of magmatismalong the Tethysides: a preliminary study [J]. Journal of Geology,1993,101:51-84.
    [118]Snoeyenbos D.R., Willianms M.L., Hanmer S. Ar-chean high-pressuremetamorphism in the western Canadian Shield [J]. European Journal of Mineral,1995,7(6):1251-1272.
    [119]Song, S., Zhang, L., Niu, Y., et al. Evolution from oceanic subduction tocontinental collision: a case study from the Northern Tibetan Plateau based ongeochemical and geochronological data.Journal of Petrology,2006,47(3):435-455.
    [120]Spear, F. S. Metamorphic Phase Equilibria and Pressure-Temperature-TimePaths. Monograph Series, Mineralogical Society of America, Washington DC.1993.
    [121]Stampfli, G.M., Borel, G.D. A plate tectonic model for the Paleozoic andMesozoic constrained by dynamic plate boundaries and restored syntheticoceanic isochrones [J]. Earth and Planetary Science Letters,2002,196,17–33.
    [122]Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalt:implications for mantle composition and processes. In: Saunders A D, Norry M J,eds. Magmatism in the Ocean Basins [J]. London Geol Soc Spec Pub,1989,42:528-548
    [123]Thost D.E., Hensen B.J., Motoyoshi Y. Two‐stage decompression ingarnet‐bearing mafic granulites from Sostrene Island, Prydz Bay, EastAntarctica [J]. Journal of Metamorphic Geology,1991,9(3):245-256.
    [124]Vavra G., Gebauer D., Schmid R., et al. Multiple zircon growth andrecrystallization during polyphase Late Carboniferous to Triassic metamorphismin granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP)study[J]. Contrib Mineral Petrol,1996,122:337-358.
    [125]Vavra G., Schmid R., Gebauer D. Internal morphology, habit and U-Th-Pbmicroanalysis of amphibolite-to-granulite facies zircons: geochronology of theIvrea Zone (Southern Alps)[J]. Contributions to Mineralogy and Petrology,1999,134(4):380-404.
    [126]Von Raumer, J., Stampfli, G.., Borel, G.., et al. Organization of pre-Variscanbasement areas at the north-Gondwanan margin [J]. International Journal ofEarth Sciences,2002,91:35-52.
    [127]Wakabayashi, J., Dilek, Y. Spatial and temporal relationships between ophiolitesand their metamorphic soles; a test of models of forearc ophiolite genesis. In:Dilek, Y., Moores, E.M., Elthon, D., Nicolas, A.(Eds.), Ophiolites and oceaniccrust; new insights from field studies and the Ocean Drilling Program: SpecialPaper—Geological Society of America,2000,349:53–64.
    [128]Wakabayashi, J., Dilek, Y. What constitutes “emplacement” of an ophiolite?:Mechanisms and relationship to subduction initiation and formation ofmeta-morphic soles. In: Dilek, Y., Robinson, P.T.(Eds.), Ophiolites and Earthhistory:Geological Society, London, Special publication,2003,218:427–448.
    [129]Wakita, K., Metcalfe, I. Ocean Plate Stratigraphy in East and SoutheastAsia[J].Journal of Asian Earth Sciences,2005,24:679-702.
    [130]Wang M., Li C., Wu Y.W., et al. Geochronology, geochemistry, Hf isotopiccompositions and formation mechanism of radial mafic dikes in northernTibet[J], International Geology Review,2014,56(2):187-205.
    [131]Wang Q., Wyman D.A., Xu J.F., et al. Triassic Nb-enriched basalts, magnesianandesites, and adakites of the Qiangtang terrane (Central Tibet): evidence formetasomatism by slab-derived melts in the mantle wedge [J]. Contributions toMineralogy and Petrology,2008,155:473-490.
    [132]Wang X., Zhang J., Santosh M., et al. Andean-type orogeny in the Himalayas ofsouth Tibet: Implications for early Paleozoic tectonics along the Indian marginof Gondwana [J]. Lithos,2012,154:248-262.
    [133]Wang, X.X., Zhang, J.J., Santosh, M., et al. Andean-type orogeny in theHimalayas of south Tibet: Implications for early Paleozoic tectonics along theIndian margin of Gondwana[J]. Lithos,2012,154:248-262.
    [134]Wang, B.D., Wang, L.Q., Pan, G.T., et al., U-Pb zircon dating of Early Paleozoicgabbro from the Nantinghe ophiolite in the Changning-Menglian suture zoneand its geological implication[J].Chinese Science Bulletin,2013,58(8):920-930.
    [135]Wang, H., Wu, Y. B., Gao, S., et al. Eclogite origin and timings in the NorthQinling terrane, and their bearing on the amalgamation of the South and NorthChina Blocks.Journal of Metamorphic Geology,2011,29(9):1019-1031.
    [136]Whitechurch H., Omrani J., Agard P., et al. Evidence for Paleocene–Eoceneevolution of the foot of the Eurasian margin (Kermanshah ophiolite, SW Iran)from back-arc to arc: Implications for regional geodynamics and obduction[J].Lithos,2013,182:11-32.
    [137]Whitehouse, M.J., Piatt, J.P. Dating high-grade metamorphism-constraints fromrare earth elements in zircon and garnet. Contrib [J]. Mineral. Petrol.2003,145:61-74.
    [138]Williams I.S. U–Th–Pb geochronology by ion microprobe [J]. Reviews inEconomic Geology,1998,7(1):1-35.
    [139]Winchester, J.A., Floyd, P.A. Geochemical discrimination of different magmaseries and their differentiation products using immobile elements [J]. Chem.Geol.1977,20,325–343
    [140]Wood D.A. The application of a Th-Hf-Ta diagram to problems oftectonomagmatic classification and to establishing the nature of crystalcontamination of basaltic lavas of the British Tertiaty Volcanic Province[J].Earth Planet Sci Lett,1980,50(5-6):11-30.
    [141]Xu J.F., Castillo P.R. Geochemical and Nd–Pb isotopic characteristics of theTethyan asthenosphere: implications for the origin of the Indian Ocean mantledomain [J]. Tectonophysics,2004,393(1):9-27.
    [142]Yaneko Y., Katayama I., Yamamoto H., et al. Timing of Himalayanultrahigh-pressure metamorphisn: Sinking rate and subduction angle of theIndian continental crust beneath Asia [J]. Journal of Metamorphic Geology,2003,21(6):589-599
    [143]Yang, J. Cambrian. In: Yin, H.(Ed.), The Palaeobiogeography of China.Clarendon Press, Oxford,1994, pp.35–63.
    [144]Yardley B.W.D. An Introduction to Metamorphic Petrology [M]. London:Longman Science&Technical,1989:1-248.
    [145]Yin, A., Harrison, T.M. Geologic evolution of the Himalayan-Tibetanorogen[J].Annual Review of Earth and Planetary Sciences,2000,28:211-280.
    [146]Yuan H.L., Gao S., Liu X.M., et al. Accurate U-Pb age and trace elmentdeterminations of zircon by laser ablation-inductively coupled plasma—massspectrometry[J]. Geostandards and Geoanlytical Research,2004,11:357-370.
    [147]Zhai, Q.G., Jahn, B.M., Zhang, R.Y., et al. Triassic subduction of thePaleo-Tethys in northern Tibet, China: evidence from the geochemical andisotopic characteristics of eclogites and blueschists of the Qiangtang Block [J].Journal of Asian Earth Sciences,2011a,42(6):1356-1370.
    [148]Zhai, Q.G., Zhang, R.Y., Jahn, B.M., et al. Triassic eclogites from centralQiangtang, northern Tibet, China: petrology, geochronology and metamorphicP-T path [J].Lithos,2011b,125(1-2):173-189.
    [149]Zhai Q.G., Jahn B.M., Su L., et al. Triassic arc magmatism in the Qiangtang area,northern Tibet: Zircon U-Pb ages, geochemical and Sr-Nd-Hf isotopiccharacteristics, and tectonic implications [J].Journal of Asian Earth Sciences,2012,63:162-178.
    [150]Zhai Q.G., Jahn B.M., Su L., et al. SHRIMP zircon U-Pb geochronology,geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in theQiangtang Terrane, northern Tibet and geodynamic implications [J]. Lithos,2013a,174:28-43.
    [151]Zhai Q.G., Jahn B.M., Wang J., et al. The Carboniferous ophiolite in the middleof the Qiangtang terrane, Northern Tibet: SHRIMP U-Pb dating, geochemicaland Sr-Nd-Hf isotopic characteristics [J]. Lithos,2013b,168-169:186-199.
    [152]Zhang Z.M., Dong X., Liu F., et al. The making of Gondwana: Discovery of650Ma HP granulites from the North Lhasa, Tibet [J]. Precambrian Research,2012,212:107-116.
    [153]Zhang J.X., Mattinson C.G., Meng F.C., et al. An Early Palaeozoic HP/HTgranulite–garnet peridotite association in the south Altyn Tagh, NW China: P–Thistory and U‐Pb geochronology. Journal of metamorphic Geology,2005,23(7),491-510.
    [154]Zhao G.C., Cawood P.A., Wilde S.A., et al. High-pressure granulites(retrograded eclogites) from the Hengshan Complex, North China Craton:petrology and tectonic implications [J]. Journal of Petrology,2001,42(6):1141-1170.
    [155]Zhao, G.C., Sun, M., Wilde, S.A., et al. Late Archean to Paleoproterozoicevolution of the North China Craton: key issues revisited [J]. PrecambrianResearch,2005,136:177-202.
    [156]Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al. Cambrian bimodal volcanism in theLhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-typemagmatic arc in the Australian proto-Tethyan margin [J]. Chemical Geology,2012,328:290-308.
    [157]Zhu, D. C., Zhao, Z. D., Niu, Y., et al. The origin and pre-Cenozoic evolution ofthe Tibetan Plateau [J]. Gondwana Research,2013,23(4):1429-1454.
    [158]Zong K.Q., Zhang Z.M., He Z.Y., et al. Early Palaeozoic high‐pressuregranulites from the Dunhuang block, northeastern Tarim Craton: constraints oncontinental collision in the southern Central Asian Orogenic Belt [J]. Journal ofMetamorphic Geology,2012,30(8):753-768.
    [159]白立新,吴汉宁,朱日祥,等.扬子地块中寒武世古地磁新结果[J].中国科学D辑,1998,28:57-62.
    [160]鲍佩声,肖序常,王军,等.西藏中北部双湖地区蓝片岩带及其构造涵义[J].地质学报,1999,73(4):302-314.
    [161]曹玉亭,刘良,王超,等.阿尔金淡水泉早古生代泥质高压麻粒岩及其P-T演化轨迹[J].岩石学报,2009,25(9):2260-2270.
    [162]曹玉亭,刘良,王超,等.南阿尔金木纳布拉克地区高压泥质麻粒岩的确定及其地质意义[J].岩石学报,2013,29:1727-1739.
    [163]陈丹玲,刘良,孙勇,等.北秦岭松树沟高压基性麻粒岩锆石的LA-ICP-MSU-Pb定年及其地质意义[J].科学通报,2004,49(18):1901-1908.
    [164]陈汉林,杨树锋,厉子龙,等.阿尔泰富蕴基性麻粒岩锆石SHRIMP U-Pb年代学及其构造意义[J].岩石学报,2006,22(5):1351-1358.
    [165]陈莉,徐军,苏犁.场发射环境扫描电子显微镜上阴极荧光谱仪特点及其在锆石研究中的应用[J].自然科学进展,2005,15(11):1403-1408.
    [166]从柏林,吴根耀,张旗,等.中国滇西古特提斯构造带岩石大地构造演化[J].中国科学B辑,1993,23(11):1201-1207.
    [167]邓希光,丁林,刘小汉,等.藏北羌塘中部冈玛日—桃形错蓝片岩的发现[J].地质科学,2000,35(2):227-232.
    [168]邓希光,丁林,刘小汉,等.青藏高原羌塘中部蓝片岩的地球化学特征及其构造意义[J].岩石学报,2002,18(4):517-525.
    [169]丁林,钟大赉.西藏东部南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造意义[J].中国科学D辑,1999,29(5):385-397.
    [170]董永胜,李才.藏北羌塘中部果干加年山地区发现榴辉岩[J].地质通报,2009,28(9):1197-1200.
    [171]龚俊峰,季建清,桑海清,等.喜马拉雅中段哲古拉花岗岩中高压麻粒岩包体及其主岩的^40Ar/39Ar年代学研究[J].岩石学报,2007,22(11):2677-2686.
    [172]郭敬辉,翟明国,李永刚,等.恒山西段石榴石角闪岩和麻粒岩的变质作用、PT轨迹及构造意义[J].地质科学,1999,34(3):311-325.
    [173]郭敬辉,翟明国,李永刚,等.华北太古宙高压基性麻粒岩的两类PT轨迹及其构造意义:矿物化学和变质作用研究[J].岩石学报,1998,14(4):430-448.
    [174]郭敬辉,翟明国,张毅刚,等.怀安蔓菁沟早前寒武纪高压麻粒岩混杂岩带地质特征、岩石学和同位素年代学[J].岩石学报,1993,9(4):329-341.
    [175]胡培远,李才,李林庆,等.藏北羌塘中部早古生代蛇绿岩堆晶岩中斜长花岗岩的地球化学特征[J].地质通报,2009,28(9):1297-1308.
    [176]胡培远,李才,苏犁,等.青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年——泛非与印支事件的年代学记录[J].中国地质,2010a,37(4):1050-1061.
    [177]胡培远,李才,杨韩涛,等.青藏高原羌塘中部果干加年山晚三叠世花岗岩的构造意义[J].地质通报,2010b,29(12):11-18.
    [178]胡培远,李才,解超明,等.藏北羌塘中部桃形湖蛇绿岩中钠长花岗岩——古特提斯洋壳消减的证据[J].岩石学报,2013,29(12):4404-4414.
    [179]黄宝春,王永成.甘肃北山地区早古生代火山岩的古地磁学研究:北山地体早古生代运动学过程初探[J].科学通报,2002,47(16):1265-1270.
    [180]黄小鹏,李才,翟庆国.西藏羌塘中部玛依岗日地区印支期花岗岩的地球化学特征及其形成环境[J].地质通报,2007,29(12):1646-1653.
    [181]季建清,钟大赉,宋彪,等.喜马拉雅中段高压麻粒岩变质作用,地球化学与年代学[J].岩石学报,2004,20(5):1283-1300.
    [182]解超明,李才,苏犁,等.青藏高原安多高压麻粒岩同位素年代学研究[J].岩石学报,2013,29(3):912-922.
    [183]靳是琴.不同区域变质相中钙质角闪石的成分特征[J].科学通报,1991,36(11),851-854.
    [184]李才.龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J].长春地质学院学报,1987,17(2):155-166.
    [185]李才,黄小鹏,翟庆国,等.龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界[J].地学前缘,2006a,13(4):136-147.
    [186]李才,翟庆国,董永胜,等.青藏高原羌塘中部发现榴辉岩及其意义[J].科学通报,2006b,25(1-2):70-75.
    [187]李才,翟庆国,陈文,等.青藏高原龙木错-双湖板块缝合带闭合的年代学证据—来自果干加年山蛇绿岩与流纹岩Ar-Ar和SHRIMP年龄制约[J].岩石学报,2007a,23(5):911-918.
    [188]李才,翟庆国,董永胜,等.青藏高原龙木错-双湖板块缝合带与羌塘古特提斯洋演化记录[J].地质通报,2007b,26(1):13-21.
    [189]李才,翟庆国,董永胜,等.冈瓦纳大陆北缘早期洋壳信息—来自青藏高原羌塘中部早古生代蛇绿岩依据[J].地质通报,2008a,27(10):1602-1612.
    [190]李才.青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J].地质论评,2008b,54(1):104-119.
    [191]李才,翟刚毅,王立全,等.认识青藏高原的重要窗口—羌塘地区近年来研究进展评述(代序)[J].地质通报,2009,28(9):1169-1177.
    [192]李德威,廖群安,袁晏明,等.喜马拉雅造山带中段日玛那麻粒岩锆石U-Pb年代学[J].科学通报,2003,48(20):2176-2179.
    [193]李曙光,孙卫东,张国伟,等.南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学:古生代洋盆及其闭合时代的证据[J].中国科学(D辑),1996,26(3):223-230.
    [194]梁莎,刘良,张成立,等.南秦岭勉略构造带高压基性麻粒岩变质作用及其锆石U-Pb年龄[J].岩石学报,2013,29(5):1657-1674.
    [195]刘福来,许志琴,宋彪.苏鲁地体超高压和退变质时代的厘定:来自片麻岩锆石微区SHRIMP U-Pb定年的证据[J].地质学报,2003,77(2):229-237.
    [196]刘福来,许志琴,薛怀民,等.中国大陆科学钻探主孔0~4500米变质岩石锆石中保存的超高压矿物包体[J].岩石学报,2005,21(2):277-292.
    [197]刘福来,薛怀民,许志琴,等.大别超高压变质带的进变质,超高压和退变质时代的准确限定:以双河大理岩中榴辉岩锆石SHRIMP U-Pb定年为例[J].岩石学报,2006,22(7):1761-1778.
    [198]刘良,周鼎武,董云鹏,等.东秦岭松树沟高压变质基性岩石及其退变质作用的P-T演化轨迹[J].岩石学报,1995,11(2):127-136.
    [199]刘良,周鼎武,王焰,等.东秦岭秦岭杂岩中长英质高压麻粒岩及其地质意义初探[J].中国科学D辑,1996,26(增刊):56-63.
    [200]刘良,孙勇,罗金海,等.阿尔金英格利萨依花岗片麻岩超高压变质[J].中国科学D辑:地球科学,2003,33:1184-1192.
    [201]刘良,曹玉亭,陈丹玲,等.南阿尔金与北秦岭高压-超高压变质作用研究新进展.科学通报,2013,58(22):2113-2123.
    [202]刘平华,刘福来,王舫,等.山东半岛基性高压麻粒岩的成因矿物学及变质演化[J].岩石学报,2010,26(7),2039-2056.
    [203]刘树文,沈其韩,耿元生.西北两类石榴基性麻粒岩的变质演化及GibbS方法分析[J].岩石学报,1996,2:261-275.
    [204]刘文军,翟明国,李永刚.胶东莱西地区高压基性麻粒岩的变质作用[J].岩石学报,1998,14(4):449-459.
    [205]陆济璞,张能,黄位鸿,等.藏北羌塘中北部红脊山地区蓝闪石+硬柱石变质矿物组合的特征及其意义[J].地质通报,2006,25(1):70-75.
    [206]潘桂棠,王立全,尹福光,等.从多岛弧盆系研究实践看板块构造登陆的魅力[J].地质通报,2004a,23(9):933-939.
    [207]潘桂棠,王立全,朱弟成.青藏高原区域地质调查中几个重大科学问题的思考[J].地质通报,2004b,23(1):12-19.
    [208]曲军锋,张立飞,艾永亮,等.西昆仑塔什库尔干高压麻粒岩P-T轨迹, SHRIMP锆石定年及其大地构造意义[J].中国科学D辑,2007,37(4):429-441.
    [209]施建荣,董永胜,王生云.藏北羌塘中部果干加年山斜长花岗岩定年及其构造意义[J].地质通报,2009,28(9):1236-1243.
    [210]宋述光,张立飞.榴辉岩的两种变质演化轨迹和俯冲大陆地壳的差异折返——以柴北缘都兰超高压地体为例[J].高校地质学报,2007,13(3):515-525.
    [211]王立全,潘桂棠,李才,等.藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP U-Pb年龄—兼论原-古特提斯洋的演化[J].地质通报,2008,27(12):2045-2056.
    [212]王仁民,陈珍珍,陈飞.恒山灰色片麻岩和高压麻粒岩包体及其地质意义[J].岩石学报,1991,7(4):36-45.
    [213]王润三,王居里,周鼎武,等.南天山榆树沟遭受麻粒岩相变质改造的蛇绿岩套研究[J].地质科学,1999a,34(2):166-176.
    [214]王润三,周鼎武,王居里,等.南天山榆树沟华力西期深地壳麻粒岩地体研究[J].中国科学D辑,1999b,29(4):306-313.
    [215]王润三,周鼎武,王焰,等.南天山榆树沟高压麻粒岩地体多期变质定年研究[J].岩石学报,2003,19(3):452-460.
    [216]王晓先,张进江,杨雄英,等.藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄, Hf同位素特征及其地质意义[J].地学前缘,2011,18(2):127-139.
    [217]魏春景,张翠光.辽西建平杂岩高压麻粒岩相变质作用的P—T条件及其地质意义[J].岩石学报,2001,17(2):269-282.
    [218]吴彦旺.龙木错-双湖-澜沧江洋历史记录[D].吉林:吉林大学地球科学学院,2013.
    [219]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
    [220]杨经绥,许志琴,裴先治,等.秦岭发现金刚石:横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别[J].地质学报,2002,76(4):484-495
    [221]杨经绥,许志琴,段向东,等.缅甸密支那地区发现侏罗纪的SSZ型蛇绿岩[J].岩石学报,2012,28(6):1710-1730.
    [222]于胜尧,张建新,李金平,等.柴北缘都兰高压麻粒岩的锆石U-Pb定年及其地质意义[J].岩石矿物学杂志,2010,29(2):139-150
    [223]于胜尧,张建新,侯可军,等.柴北缘都兰UHP地体中两期不同性质的岩浆活动:对碰撞造山作用的启示[J].岩石学报,2011,27(11):3335-3349
    [224]翟明国,郭敬辉,阎月华,等.中国华北太古宙高压基性麻粒岩的发现及初步研究[J].中国科学B辑,1992,22(12):1325-1330.
    [225]翟明国.华北克拉通两类早前寒武纪麻粒岩(HT-HP和HT-UHT)及其相关问题[J].岩石学报,2009,25(8):1553-1571.
    [226]翟庆国,李才,程立人,等.西藏羌塘角木日地区二叠纪蛇绿岩地质特征及构造意义[J].地质通报,2004,23(12):22-24.
    [227]翟庆国,李才,黄晓鹏.西藏羌塘中部角木日地区二叠纪玄武岩的地球化学特征及其构造意义[J].地质通报,2006,25(12):1419-1427.
    [228]翟庆国,李才.藏北羌塘菊花山那底岗日组火山岩锆石SHRIMP定年及其意义[J].地质学报,2007,42(6):795~800.
    [229]翟庆国,李才,董永胜,等.西藏羌塘中部荣玛地区蓝片岩岩石学、矿物学和Ar-Ar年代学[J].岩石学报,2009a,25(9):2281-2288.
    [230]翟庆国,王军,王永.西藏改则县冈玛错地区发现榴辉岩[J].地质通报,2009b,28(12):1720-1724.
    [231]翟庆国,王军,李才,等.青藏高原羌塘中部中奥陶世变质堆晶辉长岩锆石SHRIMP年代学及Hf同位素特征[J].中国科学D辑,2010,40(5):565-573.
    [232]张建新,孟繁聪,于胜尧.柴北缘绿梁山高压基性麻粒岩的变质演化历史:岩石学及锆石SHRIMP年代学证据[J].地学前缘,2007,14(3):85-97.
    [233]张建新,于胜尧,孟繁聪,等.造山带中成对出现的高压麻粒岩与榴辉岩及其动力学意义[J].岩石学报,2009,25(9):2050-2066.
    [234]张建新,于胜尧,孟繁聪,等.北秦岭造山带的早古生代多期变质作用.岩石学报,2011,27(4):1179-1190
    [235]张晓冉,史仁灯,黄启师,等.青藏高原安多高压基性麻粒岩的发现及其地质意义[J].科学通报,2010,27-28,2702-2711.
    [236]张修政,董永胜,施建荣,等.羌塘中部龙木错—双湖缝合带中硬玉石榴石二云母片岩的成因及意义[J].地学前缘,2010a,17(1):93~103.
    [237]张修政,董永胜,李才,等.青藏高原羌塘中部不同时代榴辉岩的识别及其意义—来自榴辉岩及其围岩40Ar-39Ar年代学的证据[J].地质通报,2010b,29(12):1815-1824.
    [238]张修政,董永胜,李才,等.青藏高原羌塘中部榴辉岩地球化学特征及其大地构造意义[J].地质通报,2010c,29(12):1804-1814.
    [239]张修政,董永胜,解超明,等.安多地区高压麻粒岩的发现及其意义[J].岩石学报,2010d,26(7):2106-2112.
    [240]张修政,董永胜,李才,等.青藏高原拉萨地块北部新元古代中期蛇绿混杂岩带的厘定及其意义[J].岩石学报,2013,29(2):698-722.
    [241]张修政,董永胜,李才,等.羌塘中部晚三叠世岩浆活动的构造背景及成因机制—以红脊山地区香桃湖花岗岩为例[J].岩石学报,2014a,30(2):547-564.
    [242]张修政,董永胜,李才,等.从洋壳俯冲到陆壳俯冲和碰撞:来自羌塘中西部地区榴辉岩和蓝片岩的地球化学证据[J].岩石学报,2014b,30(5):待刊.
    [243]张泽明,郑来林,王金丽,等.东喜马拉雅构造结南迦巴瓦岩群中石榴辉石岩-印度大陆向欧亚板块之下俯冲至80-100km深度的证据[J].地质通报,2007,26(1):1-12.
    [244]张泽明,王金丽,沈昆,等.环东冈瓦纳大陆周缘的古生代造山作用:东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据[J].岩石学报,2008,24(7):1627-1637.
    [245]赵国春.华北克拉通基底主要构造单元变质作用演化及其若干问题讨论[J].岩石学报,2009,25(8):1772-1792.
    [246]钟长汀.晋冀蒙高级区两期高压麻粒岩的地质特征及成因[J].前寒武纪研究进展,1999,22(2):53-58.
    [247]周鼎武,苏犁,简平,等.南天山榆树沟蛇绿岩地体中高压麻粒岩SHRIMP锆石U-Pb定年及构造意义[J].科学通报,2004,49(14):1411-1415.
    [248]周喜文,魏春景,耿元生,等.胶北栖霞地区泥质高压麻粒岩的发现及其地质意义[J].科学通报,2004,49(14):1424-1430.
    [249]朱同兴,张启跃,董瀚,等.藏北双湖才多茶卡一带构造混杂岩中新发现晚泥盆世和晚二叠世放射虫硅质岩[J].地质通报,2006,25(12):1413-1418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700