基于RS与GIS的定西市安定区土壤侵蚀因子提取与侵蚀强度定量评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘肃省定西市属于陇西黄土丘陵沟壑区,土地受气候、水文和地质等自然因素及人类不合理的开发利用影响,出现了不同程度的土壤侵蚀。本文以美国通用水土流失方程(USLE)所涉及的水土流失影响因子为基础,通过对降水、地形、土壤等因子的计算,采用RS与GIS相结合的技术手段,研究了该区域在过去16年来的土壤侵蚀时空分布格局及其变化特征,并对土壤侵蚀量进行定量估算并参照土壤侵蚀强度按照水利部“水力侵蚀强度分级标准”进行分级。在对土壤侵蚀量的定量估算研究过程中,利用遥感数据,获取水土流失的植被和土地利用信息,提取植被和人为措施因子;根据当地降雨资料和土壤数据,来计算降雨侵蚀力和土壤可蚀性因子;通过数字化地形图,提取高程线和高程点,建立数字高程模型DEM来进而求得研究区坡度和坡长因子,经过诸因子算式及监测模型运算,逐个计算出各像元的年土壤侵蚀模数,对研究区域土壤侵蚀定量估算。通过研究,获得以下主要结论:
     1、在1993年-2005年的12年中,轻度侵蚀、中度侵蚀分别净增147.11 km~2和1418.91 km~2,增加了4.05%和39%。而极强度和强度侵蚀面积明显减少,净减575.56km~2和799.8 km~2,减少了15.83%和21.98%,表明新增的中度侵蚀主要由强度侵蚀和极强度侵蚀转化而来,表明水土流失状况趋于好转。2005年强度侵蚀和极强度侵蚀主要发生于存在沟状侵蚀的北部高丘陵区,由于生态工程实施区域较小,自然因素与人为破坏共同作用,导致坡面径流冲刷和水土流失加剧。
     2、2005年~2009年微度侵蚀净增237.32 km~2,增加了6.52%,轻度侵蚀净增735.54 km~2,增加了20.22%,中度侵蚀和强度侵蚀面积净减918.47 km~2和57.7 km~2,减少了25%和1.58%,可喜的是2009年极强度侵蚀消失。总而言之,定西市安定区在1993年~2009年中的16年间水土流失强度整体上趋于慢慢减小。
     3、1993年~2009年中的16年间,土地利用类型中林草地大幅度增加,林草地由1993年494.22 km~2增加到1295.87 km~2,而植被覆盖度在45%~60%的由1993年453.75 km~2增加到1503.61 km~2,植被覆盖度在60%~75%的由1993年119.08 km~2增加到958.07 km~2,这些重大的改变要归功于定西安定区从2000年开始的退耕还林工程。
     最后,本研究成果可直接为定西市安定区的治理及土地的合理利用提供可靠的依据,具有实践意义。
Dingxi City in Gansu Province belongs to Longxi Loess Plateau, and the land suffers from varying degrees of soil erosion due to impact of climate, hydrology and geology and other natural factors as well as of irrational development and utilization of human. To keep abreast of the development trend of soil erosion is the basic premise of establishment and implementation of ecological construction and environmental policies. Based on the remote sensing images, rainfall, topography and soil data in the objective area, the study investigated the spatial and temporal distribution patterns and variation of soil erosion in the past 16 years by using of GIS, RUSLE model, gave a quantitative estimation to the amount of soil erosion, and classified the soil erosion intensity in accordance with the "water erosion intensity classification standard" specified by Ministry of Water Resources. In the quantitative estimation of soil erosion, remote sensing data was used to get vegetation and land use information of soil erosion and extract vegetation and man-made factors of measures; rainfall data collected in the local area and soil data was used to calculate the rainfall erosivity and soil erodibility factor; elevation lines and elevation points were extracted through digital topographic maps, and digital elevation model (DEM) was established to obtain the slope and slope length factor in the area, and regional soil erosion model was set up to calculate the modulus of yearly soil erosion for each pixel individually through the various factors and monitoring model computation formula and to make a quantitative estimate on the soil erosion of the study area. 3S technology was used as the core technology, dynamic land degradation was carried out on land use, land-cover change and soil erosion, through series of studies, the following conclusions were obtained:
     1. Soil erosion intensity classification map generated in Anding District in Dingxi city clearly shows: in 12 years in 1993 -2005, slight erosion, moderate erosion has a net increase of 147.11 km~2 and 1418.91 km~2 respectively with increase rate of 4.05% and 39%, while the area that suffers from intense and extremely intense erosion was reduced, the net reduction is 575.56km~2 and 799.8 km~2,with the rate of 21.98% and 15.83%, indicating that the new moderate erosion mainly transformed from intense erosion and extremely intense erosion, indicating that all levels of erosion are turning towards the positive direction, and soil and water loss is getting better. Intense erosion and extremely intense erosion in 2005 occurred mainly in the northern high hilly areas with gully erosion, due to the region of ecological engineering is small, and coupled with interaction of natural factors and man-made destruction; erosion in the slope and runoff is getting worse.
     2. Slight erosion had a net increase of 237.32 km~2, with an increase of 6.52%, in 2005 and 2009; light erosion had a net increase of 735.54 km~2, with an increase of 20.22%, moderate erosion and intense erosion had a net loss of 918.47 km~2 and 57.7 km~2, reduced by 25% and 1.58%, and the good news is that extremely intense erosion disappeared in 2009. All in all, the overall intensity of soil erosion tends to be better in the 16 years from 1993 to 2009 in Anding District in Dingxi city.
     3. In 16 years from 1993 to 2009, in terms of land use types, forest and grassland have a huge increase from 494.22 km~2 in 1993 to 1295.87 km~2, while the land with the vegetation coverage between 45% and 60% increased to 1503.61 km~2 from 453.75 km~2 in 1993, the land with the vegetation coverage between 60% and 75% increased to 1503.61 km~2 from 453.75 km~2 in 1993, which is due to the long-term mechanism for returning farmland to forest project since 2000.
     Finally, the results have practical significance since they can directly provide a reliable basis for to management and rational use of land in Anding District in Dingxi City.
引文
[1]王礼先,朱金兆.水土保持学[M].北京:中国林业出版社,2006.
    [2]张洪江.土壤侵蚀原理[M].北京:中国林业出版社,2000.
    [3]张俊飚.中国土壤侵蚀影响因素及其危害分析[J].云南环境科学,2001,20(2):4-7.
    [4]许峰,郭华东,郭索彦.我国水土保持监测的理论与发展之初步探讨[J].水土保持学报,2001,15(6):1-5.
    [5] Miller M F.Waste through soil erosion[J].Journal Am Soc Agron.1926,18:153-160.
    [6] Zingg A W.Degree and length of land slope as it affects soil loss in runoff[J].Agricultural Engineering.1940,21:59-64.
    [7] Smith D D.Interpretation of soil conservation data for field use[J].Agricultural Engineering. 1941, 22:173-175.
    [8] Browning G M, Parish C L, Glass J A.A method for determining the use and limitation of rotation and conservation practices in control of soil erosion in Iowa [J].Journal of the American Society of Agronomy.1947,39:65-73.
    [9] Musgrave G W.The quantitative evaluation of factors in water erosion-A first approximation[J]. Journal of Soil and Water Conservation.1947,2:133-138.
    [10] Meyer L D.Evolution of the universal soil loss equation[J].Journal of Soil and Water Conservation.1984,39:99-104.
    [11] Wischmeier W H, Smith D D.Predicting rainfall-erosion losses from cropland east of the Rocky Mountains[R].USDA Agricultural Handbook No.282.1965.
    [12] Wischmeier W H, Smith D D.Predicting rainfall erosion losses [Z].USDA Agricultural Handbook No.537.1978.
    [13]杨勤科,李锐,曹明明.区域土壤侵蚀定量研究的国内外进展[J].地球科学进展,2006,21(8):849-856.
    [14] Martha M.Bakker,Gerard Govers,Robert A.Jones,etal.The Effec of Soil Erosion on Europe’s Crop Yields.Ecosystems,2007(10):1209-1219.
    [15] SK Saha, BM Singh.Soil erosion assessment and mapping of the algar river watershed (uttar pradesh) using remote sensing technique. Journal of the Indian Society of Remote Sensing,1991,19(2):67-76.
    [16] Batjes N H.Global assessment of land vulnerability to water erosion on a half degree by one half degree grid. Land Degradation & Development,1996,7(4):353-365.
    [17] Daven Y, Kanae S,Oki T,etal.Global potential soil erosion with reference to land use and climate changes. Hydrological processes,2003,17:2913-2928.
    [18] Ingram J L, Valentin J C.The GCTE Soil Erosion Network:A multi-patricipatory research program[J].Journal of Soil and Water Conservation.1996,51:377-380.
    [19] Wang Weiwu.Managing Soil Erosion Potential by Integrating Digital Elevation Models with the Southern China’s Revised Universal Soil Loss Equation-A Case Study for the West Lake Scenic Spots Area of Hangzhou,China [J].Journal of Mountain Science.2007,4(3):237-247.
    [20] Wu Pingli.Modeling Soil Erosion with the Aid of GIS[J].Journal of Northeast Agricultural University.2005,12(1):42-47.
    [21] A R Vaezi, H A Bahrami, S H R Sadeghi, etal.Spatial Variability of Soil Erodibility Factor (K) of the USLE in North West of Iran[J].Journal of Agricultural Science and Technology, 2000,64:1759-1763.
    [22] Ayoubi S A, M H Alizadeh.Assessment Spatial Variability of Soil Erodibility by using of Geoostatistic and GIS[J].Sociedade&Natureza, Uberlandia, SpecialIssue, 2005,5:78-86.
    [23] W H Moir, J A Ludwig, R T Scholes.Soil Erosion and Vegetation in Grasslands of the Peloncillo Mountains, New Mexico[J]. Soil Science Society of America Journal, 2000,64:1055-1067.
    [24] Kirkby M I, Bissonais Y L,Coulthand T I,etal.The development of land quality indicators for soil degradation by water erosion. Agricultures & Environment,2000,81(2):125-136.
    [25] Renard K G, Foster G R, Weesies G A, etal.Predicting soil erosion by water:a guide to conservation planning with the revised universal soil loss equation(RUSLE).USDA Handbook 703. Washington D C:USDA, 1997.
    [26] Minyoug Kim, John E Gilley.Artificial Neural Network Estimation of soil erosion and nutrient concentrations in runoff from land application areas[J].Computers and Electronics in Agriculture, 2008,5:2161-2168.
    [27]汪东川,卢玉东.国外土壤侵蚀模型发展概述[J].中国水土保持科学, 2004,2(2):35-40.
    [28]宋颖.土壤侵蚀模型研究进展及发展方向[J].山西水利科技, 2006, (3):39-41.
    [29] Cochrane T A, Flanagan D C.Assessing water erosion in small watersheds using WEPP with GIS and digital elevation models[J].Journal of Soil & Water Conservation, 1999,54(4):678-685.
    [30]牛志明,谢明书曙.新一代土壤水蚀预测模型—WEPP[J].中国水土保持, 2001, (1):20-22.
    [31]刘增文.美国水力侵蚀预测模型WEEP介绍[J].中国水土保持, 1997,(12):26-27.
    [32] De Roo A P J.The LISEM project:an introduction[J].Hydrological Processes.1996, 10: 1021-1025.
    [33]李锐,上官周平,刘宝元,等.近60年我国土壤侵蚀科学研究进展[J].中国水土保持科学,2009,7(5):1-7.
    [34]倪九派,谢春燕,魏朝富,等.土壤侵蚀预测建模研究进展[J].中国水土保持科学,2005,3(1):66-71.
    [35]符素华,刘宝元.土壤侵蚀量预报模型研究进展[J].地球科学进展,2002,17(1):78-84.
    [36]刘咏梅,杨勤科,王略.水土保持监测基本方法述评[J].水土保持研究,2008,15(5):221-225.
    [37]陈永宝,黄传伟,陈志伟,等.USLE在我国的应用和发展[J].中国水土保持,2003, (10):11-13.
    [38]雷廷武,邵明安,李占斌,等.土壤侵蚀预报模型及其在中国发展的考虑[J].水土保持研究,1999, 6(2):162-166.
    [39]谢云,林燕,张岩.通用土壤流失方程的发展与应用[J].地理科学进展,2003,22(3):279-287.
    [40]李凤,吴长文.RUSLE侵蚀模型及其应用[J].水土保持研究, 1997,4(1):109-111.
    [41]卜兆宏,宫世俊等.降雨侵蚀力因子的算法及其在土壤流失量监测中的应用[J].遥感技术与应用, 1992,7(3):1-10.
    [42]卜兆宏,唐万龙,杨林章,等.水土流失定量遥感方法新进展及其在太湖流域的应用[J].土壤学报,2003,40(1):1-9.
    [43]邱扬,傅伯杰,王勇.土壤侵蚀时空变异及其与环境因子的时空关系[J].水土保持学报,2002,16(1):108-111.
    [44]邱扬,傅伯杰.异质景观中水土流失的空间变异与尺度变异[J].生态学报,2004,24(2):330-337.
    [45]傅炜.黄土地区通用土壤流失方程模型研究[J].干旱区资源与环境,1997,11(1):58-66.
    [46]何兴元,胡志斌,李月辉,等.GIS支持下岷江上游土壤侵蚀动态研究[J].应用生态学报,2005,16(12):2271-2278.
    [47]乔玉良.土壤侵蚀遥感调查技术应用的若干问题[J].地球信息科学,2003, (4):97-100.
    [48] Wang Xiaodan, Zhong Xianghao, Fan Jianrong. Assessment and spatial distribution of sensitivity of soil erosion in Tibet[J].Journal of Geographical Sciences.2004,14(1):41-46.
    [49]董婷婷,张增祥,左利君.基于GIS和RS的辽西地区土壤侵蚀的定量研究[J].水土保持研究,2008, 15(4):48-52.
    [50]王思远,张增祥,赵晓丽.GIS支持下的土壤侵蚀遥感研究—以湖北省为例[J].水土保持研究,2001, 8(3):154-157.
    [51]杨存建,刘纪远,张增祥,等.GIS支持下不同坡度的土壤侵蚀特征分析[J].水土保持学报,2002,16(16):46-49.
    [52]刘耀林.地理信息系统[M].北京:中国农业出版社,2004.
    [53]龚健雅.地理信息系统基础[M].北京:科学出版社,2001.
    [54]梅安新,彭望琭,秦其明,等.遥感导论[M].北京:高等教育出版社,2001.
    [55]周为峰,吴炳方.区域土壤侵蚀研究分析[J].水土保持研究,2006,13(1):265-268.
    [56]周为峰,吴炳方,李苗苗.利用植被和地形信息进行水土流失风险度评价[J].世界科技研究与发展.2005,27(5):51-55.
    [57]中华人民共和国行业标准,土壤侵蚀分类分级标准SL190—2007.[S].北京:中国水利水电出版社,2008.
    [58]卜兆宏,孙金庄,董勤瑞,等.应用水土流失定量遥感监测方法监测山东全省山丘区的研究[J].土壤学报, 1999,36(1):1-8.
    [59]史志华.基于GIS和RS的小流域景观格局变化及其土壤侵蚀相应[D].华中农业大学博士论文, 2003.
    [60]曾大林,李智广.第二次全国土壤侵蚀遥感调查工作的做法与思考[J].中国水土保持,2000, (1):29-31.
    [61]宋根鑫,翟石艳.基于GIS、RS的黄土高原USLE模型改进方法[J].地理空间信息, 2009,7(2):48-50.
    [62]吴礼福.黄土高原土壤侵蚀模型及其应用[J].水土保持通报,1996,16(5):29-35.
    [63]汪明冲,潘竟虎,赵军.基于GIS与RS的土壤侵蚀变化定量监测—以黄土高原水保二期世行贷款庆城项目区为例[J].干旱地区农业研究,2007,25(6):116-121.
    [64]游松财,李文卿.GIS支持下的土壤侵蚀量估算—以江西省泰和县灌溪乡为例[J].自然资源学报,1999,14(1):62-68.
    [65]许月卿,蔡运龙.贵州省猫跳河流域土壤侵蚀量计算及其背景空间分析[J].农业工程学报,2006,22(5):50-54.
    [66]许月卿,邵晓梅.基于GIS和RUSLE的土壤侵蚀量计算—以贵州省猫跳河流域为例[J].北京林业大学学报,2006,28(4):67-71.
    [67]王飞,李锐,等.区域尺度土壤侵蚀研究方法[J].西北林学院学报,2003,18(4):74-78.
    [68]王飞,李锐,杨勤科,等.水土流失研究中尺度效应及其机理分析[J].水土保持学报,2003,17(2):167-169.
    [69]马延庆.刑家沟流域降雨特征与土壤侵蚀关系的分析[J].水土保持通报,1996,16(4):19-22.
    [70]王占礼,邵明安,常庆瑞.黄土高原降雨因素对土壤侵蚀的影响[J].西北农业大学学报,1998,26(4):101-105.
    [71]汪邦稳,杨勤科,刘志红,等.基于DEM和GIS的修正通用土壤流失方程地形因子值的提取[J].中国水土保持科学,2007,5(2):18-23.
    [72]王秀英,曹文洪,陈东.土壤侵蚀与地表坡度关系研究[J].泥沙研究,1998, (2):36-41.
    [73]孔亚平,张科利,曹龙熹.土壤侵蚀研究中坡长因子评价问题[J].水土保持研究,2008,15(4):43-47.
    [74]孙长安,王炜炜,黄磊,等.我国植被恢复对土壤性状影响研究综述[J].长江科学院院报,2008,25(3):6-8.
    [75]刘宝元,张科礼,焦菊英.土壤可蚀性及其在侵蚀预报中的应用[J].自然资源学报,1999,14(4):345-350.
    [76]宋阳,刘连友,严平,等.土壤可蚀性研究述评[J].干旱区地理,2006,29(1):124-131.
    [77]赵义涛,姜佰文,梁运江.土壤肥料学[M].北京:化学工业出版社,2009.
    [78]赵其国,史学正.土壤资源概论[M].北京:科学出版社,2007.
    [79]定西专区土壤普查委员会编.甘肃省定西专区土壤志[M].1959.
    [80]王亮,隋晓丹.利用ArcMap空间分析功能进行面蚀侵蚀强度分级[J].水土保持通报,2009,29(2):76-79.
    [81]汤国安,杨昕.ArcGIS地理信息系统空间分析试验教程[M].北京:科学出版社,2006.
    [82] Arnoldus H M J.An approximation of rainfall factor in the Universal Soil Loss Equation. In:De Boodt M,Gabriels D eds. Assessment of Erosion. New York : John Wiley and Sons, 1980:127-132.
    [83] Renard K G, Freidmund J R. Using monthly precipitation data to estimate the R-factor in the revised USLE[J].Hydrology, 1994,157:287-306.
    [84]王静等著.土地资源遥感监测与评价方法[M].北京:科学出版社,2006.
    [85]杨勤科,赵牡丹,刘咏梅,等.DEM与区域土壤侵蚀地形因子研究[J].地理信息世界,2009, (1):25-31.
    [86]卜兆宏,唐万龙.土壤侵蚀量遥感监测中GIS象元地形因子算法的研究[J].土壤学报,1994,3(10):20-24.
    [87] B Y Liu, M A Nearing, P J Shi, etal. Slope Length Effects on Soil Loss for Steep Slope[J].Soil Science Society of America Journal, 2000,64:1759-1763.
    [88]张岩,刘宝元,史培军,等.黄土高原土壤侵蚀作物覆盖因子计算[J].生态学报,2001,21(7):1050-1056.
    [89]张云霞,李晓兵,陈云浩.草地植被盖度的多尺度遥感与实地测量方法综述[J].地球科学进展, 2003, (1):85-93.
    [90]吴静,李纯斌,邸利等.定西市安定区植被覆盖遥感调查方法研究[J].中国水土保持.2009, 9:59-61.
    [91]赵英时,等.中国科学院研究生教学丛书:遥感应用分析原理与方法[M].北京:科学出版社,2003.
    [92]秦伟,朱清科,张学霞,等.植被覆盖度及其测算方法研究进展[J].西北农林科技大学学报:自然科学版,2006,34(9):163-170.
    [93]程红芳,章文波,陈锋.植被覆盖度遥感估算方法研究进展[J].国土资源遥感,2008,1:13-18.
    [94] Quarmby N A, Townshend J R G, Settle J J, etal.Linear mixture modelling applied to AHVRR data for crop area estimation[J].International Journal of Remote Sensing, 1992,13(3):415-425.
    [95]马超飞,马建文,哈斯巴干,等.基于RS和GIS的岷江流域退耕还林还草的初步研究[J].水土保持学报,2001,15(4):20-24.
    [96]张云霞,李晓兵,张云飞.基于数字相机、ASTER和MODIS影像综合测量植被盖度[J].植物生态学报,2007,31(5):842-849.
    [97]江洪,王钦敏,汪小钦.福建省长汀县植被覆盖度遥感动态监测研究[J].自然资源学报,2006,21(1):126-132.
    [98]刘宝元,谢云,张科礼,等.土壤侵蚀预报模型[M].北京:科学技术出版社,2001.
    [99]陈芳,魏怀东,丁峰等.基于NDVI的黄土丘陵沟壑区退耕还林还草监测及效果评价—以定西市安定区为例[J].西北林学院学报,2008,23(1):50-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700