基于图像不确定性信息的阈值分割方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像分割是由图像处理向图像分析过渡的重要步骤,在图像处理技术中占有重要地位。图像分割同时也是一个经典的世界性难题,目前仍然还没有一种公认的通用的分割算法。阈值化是图像分割中最常用的方法之一,阈值化具有简单、直观、易于实现的特点,是图像分割研究和应用的一个热点。鉴于图像信息具有不确定性,如何处理好图像中的不确定性信息,以便获得更精确的分割结果是图像分割的一个难点。图像中的不确定性包括图像获取,传输,存储等过程中带来的随机性、模糊性、不完全性、不稳定性和不一致性等几个方面。本论文从图像拥有的统计信息、模糊信息和粗糙信息入手,针对现有的一些阈值化方法中存在的问题和不足进行探讨,提出了一些适应性更好的阈值分割算法。取得的主要研究成果如下:
     1.针对运用图像统计信息的Otsu法不能有效分割小目标图像的缺点,提出了两种加权Otsu法。其一是利用邻域平滑直方图作为权值,对传统Otsu法加权,提出了一种邻域加权Otsu法,该方法在保证阈值点处类间方差尽可能大的同时,保证了阈值点尽量位于图像直方图的谷点位置;其二是结合梯度映射函数提出了一种梯度加权Otsu法,该方法将梯度信息加入到Otsu方法的目标函数中,使得最佳的阈值尽量位于目标和背景的边界处。
     2.把运用图像统计信息的一维最小误差阈值法和一维最小交叉熵阈值法推广到二维情形,并舍弃传统二维方法中二维直方图内反对角线区域概率和近似为0的假设,提出了二维直线型最小误差阈值法和二维直线型最小交叉熵阈值法。
     3.对运用图像模糊信息的最大模糊熵阈值分割法进行研究。针对该方法耗时太长的问题提出了一种快速算法,快速算法利用S型隶属函数和模糊熵的两个性质,将传统模糊熵阈值法的时间复杂度由O (L4)降到O (L3);基于模糊熵的对偶概念——模糊能量,讨论了基于模糊能量的图像阈值分割法,为了增强基于模糊能量的阈值法的分割效果,提出了一种加权模糊能量阈值法。
     4.对运用图像模糊信息的广义模糊熵阈值化方法进行研究。针对该方法中参数m的选取问题提出了一种利用优化算法自适应选取参数的方案,该方案可以根据具体图像自适应选取参数m,同时针对参数(a, b, d)穷举搜索费时的缺点,通过优化方法快速找到其最佳参数组合;将一维广义模糊熵阈值法推广到二维以提高算法的抗噪能力,二维方法通过定义图像的二维模糊隶属度函数,同时考虑图像的点灰度信息和像素点周围邻域内的平均灰度信息,可以有效去除图像中的高斯噪声。
     5.对运用图像粗糙信息的粗糙熵阈值化方法进行研究。针对现有粗糙熵表述上的问题,提出了最小平方粗糙熵阈值分割法,该方法的最佳分割阈值取在图像中目标和背景的粗糙度为0处,目标函数的意义更为明确;针对一维粗糙熵阈值法仅考虑了图像中灰度信息的不足,建立了图像的二维粗糙集模型,提出了一种结合空间信息的二维粗糙熵图像阈值分割算法。
Image segmentation is the key step of the image processing to image analysis andplays an important role in image processing technology. There has no universal imagesegmentation method in the world at present and it’s still a classical worldwide proplem.Thresholding is one of the most commonly used methods and is the hot off the press inimage segmentation with characteristics of simple, intuitive and easy to be realized.Considering the uncertainty of the image information, it’s a difficult problem that howto deal with the uncertainty in the image and get more accurate segmentation results.The uncertainty of the image includes the randomness, fuzziness, incompleteness,instability and inconsistency by the process of image acquisition, transmission, andstorage etc. This paper discussed the problem and the shortcoming in the existingthresholding method and proposed some new thresholding algorithms with betterperformance based on the statistical information, fuzzy information and roughinformation in the image. Main research results are as follows,
     1. Considering the classical Otsu method which uses the statistics information of theimage failed if the histogram is unimodal or close to unimodal, two modified Otsumethod were proposed. One novel method weighs the objective function of Otsumethod with the neighborhood gray level of the threshold, and selects a thresholdvalue that has small probabilities in its neighborhood area and also maximizes thebetween-classes variance in the gray-level histogram. The other new method weighsthe objective function of the Otsu method with the gray level and gradient mapping(GGM) function. It combines the gradient information to the objective function ofthe Otsu method and makes the optimal threshold near at the boundary of the objectand the background in an image.
     2. Two dimensional methods were presented for the minimum error thresholdingmethod and the minimum cross entropy method, which utilize the statisticsinformation of the image. And discarding the hypothesis that sum of the probabilityin the back diagonal area in the2D histogram are zero, two dimensional linear typeminimum error thresholding method and two dimensional linear type minimumcross entropy method were proposed.
     3. A fast algorithm for the maximum fuzzy entropy thresholding method based on thefuzzy information of the image is presented. The new algorithm reduces the timecomplexity of the maximum fuzzy entropy thresholding method fromO (L4)toO (L3)based on the two properties of the S-type membership function and the fuzzy entropy. Based on the dual conception of the fuzzy entropy, the maximumfuzzy energy image thresholding method was discussed. To enhance theperformance of the maximum fuzzy energy thresholding method, a weightedmethod was proposed.
     4. The generalized fuzzy entropy thresholding method used fuzzy information of theimage was studied. And an adaptive preferences algorithm for the patameter m ofthe generalized fuzzy entropy thresholding method is proposed by the optimizationalgorithm. The new algorithm can select the parameter m for an image adaptivelyand find the optimal parameter combination (a, b, d)with the optimizationalgorithm fastly. To improve the noise immunity of the generalized fuzzy entropythresholding method, the two dimensional generalized fuzzy entropy thresholdingmethod is suggested by the definition of the two dimensional fuzzy membershipfunction for an image. Two dimensional method can remove the Gassion noiseeffectively by considering not only the gray value but also the average gray value ofthe neighbourhood.
     5. In the last section, we discussed the rough entropy thresholding method whichutilized the rough information of the image. The minimum square rough entropy isgiven for the expression problem of the existing rough entropy. The optimalthreshold of the minimum square rough entropy thresholding method is at the grayvalue that the roughness of the object and the background are zeros. To considermore information of the image, the two dimensional rough entropy thresholdingmethod is presented based on the two dimensional rough model of the image withthe spatial information.
引文
[1] Gonzalez R.C., Woods R.E.,阮秋琦,阮宇智等译.数字图像处理(第二版)[M].北京:电子工业出版社,2003.
    [2] Sahoo P. K., Soltani S., Wong A. K. C., A survey of thresholding techniques[J],Computer Vision, Graphics and Image Processing,1988,41,233-260.
    [3] Pal N. R., Pal S. K., A review on image segmentation techniques[J], PatternRecognition,1993,26(9):1277-1294.
    [4] Sezgin M., Sankur B., Survey over image thresholding techniques and quantitativeperformance evaluation[J]. Journal of Electronic Imaging,2004,13(1):146-165.
    [5] Snyder W., Bilbro G., Logenthiran A., Rajala S., Optimal thresholding-A newapproach[J]. Pattern Recognition Letters,1990,11(12):803-809.
    [6] Zadeh L A., Fuzzy sets [J]. Information and Control,1965,8(3):338-353.
    [7] Pawlak Z., Vagueness and uncertainty: A Rough Set Prospective[J]. InternationalJournal of Computer Interlligence,1995,11(2):227-232.
    [8]章毓晋,图像分割[M],北京:科学出版社,2001.
    [9]聂方彦,图像阈值化与目标分割方法中的若干问题研究,重庆大学,2010:3-6.
    [10] Weszka J. S., Rosenfeld A., Threshold evaluation techniques[J], IEEETransactions on Systems, Man and Cybernetics. SMC-8(8),1978,627-629.
    [11]Rosenfeld A., De la Torre P., Histogram concavity analysis as an aid in thresholdselection[J], IEEE Transactions on Systems, Man and Cybernetics, SMC-13(2),1983,231-235.
    [12]Weszka J., Rosenfeld A., Histogram modification for threshold selection[J], IEEETransactions on Systems, Man and Cybernetics, SMC-9(1),1979:38-52.
    [13]Halada L., Osokov G. A., Histogram concavity analysis by quasicurvature,Computers and Artificial Intelligence.1987,6(6),523-533.
    [14]Sahasrabudhe S. C., Gupta K. S. D., A valley-seeking threshold selectiontechnique[J], Computer Vision and Image Understanding.1992,56,55-65.
    [15]Guo R., Pandit S. M., Automatic threshold selection based on histogram modes anda discriminant criterion[J], Machine Vision and Applications.1998,10(5-6),331-338.
    [16]Cai J., Liu Z. Q., A new thresholding algorithm based on all-pole model[C],ICPR’98, International Conference on Pattern Recognition,1998,34-36.
    [17]Ramesh N., Yoo J. H., Sethi I. K., Thresholding based on histogramapproximation[C], IEE Proceeding-Vision Image and Signal Process.1995,142(5),271-279.
    [18]Kampke T., Kober R., Nonparametric optimal binarization[C], ICPR’98,International Conference on Pattern Recognition,1998,27-29.
    [19]Sen D., Pal S. K., Histogram thresholding using beam theory and ambiguitymeasures[J]. Fundamenta Information,2007,75(1-4):483-504.
    [20]Ridler T. W., Calvard S., Picture thresholding using an iterative selection method[J],IEEE Transactions on Systems, Man and Cybernetics. SMC-8,1978,630-632.
    [21]Leung C. K., Lam F. K., Performance analysis of a class of iterative imagethresholding algorithms[J], Pattern Recognition.1996,29(9),1523-1530.
    [22]Trussel H. J., Comments on picture thresholding using iterative selection method[J],IEEE Transactions on Systems, Man and Cybernetics. SMC-9,1979,311.
    [23]Yanni M. K., Horne E. A new approach to dynamic thresholding[C], EUSIPCO’94:9th European Conference on Signal Processing.1994,1,34-44.
    [24]Lloyd D. E., Automatic target classification using moment invariant of imageshapes, Technical Report, RAE IDN AW126, Farnborough, UK~Dec.1985.
    [25]Kittler J., Illingworth J., Minimum error thresholding[J], Pattern Recognition.1986,19(1),41-47.
    [26]Cho S., Haralick R., Yi S., Improvement of Kittler and Illingworths’s minimumerror thresholding[J], Pattern Recognition.1989,22(5),609-617.
    [27]Kittler J., Illingworth J., On threshold selection using clustering criteria[J], IEEETransactions on Systems, Man and Cybernetics. SMC-15,1985,652-655.
    [28]Otsu N., A threshold selection method from gray level histograms[J], IEEETransactions on Systems, Man and Cybernetics. SMC-9,1979,62-66.
    [29]Jawahar C. V., Biswas P. K., Ray A. K., Investigations on fuzzy thresholding basedon fuzzy clustering[J], Pattern Recognition.1997,30(10):1605-1613.
    [30]Velasco F. R. D., Thresholding using the isodata clustering algorithm[J], IEEETransactions on Systems, Man and Cybernetics. SMC-10,1980:771-774.
    [31]Lee H., Park R. H., Comments on an optimal threshold scheme for imagesegmentation[J], IEEE Transactions on Systems, Man and Cybernetics. SMC-20,1990:741-742.
    [32]Pun T., A new method for gray-level picture threshold using theentropy of thehistogram[J], Signal Process.1980,2(3):223-237.
    [33]Pun T., Entropic thresholding: A new approach[J], Computer Graphics and ImageProcessing.1981,16:210-239.
    [34]Kapur J. N., Sahoo P. K., Wong A. K. C., A new method for gray-level picturethresholding using the entropy of the histogram[J], Computer Vision Graphics andImage Processing.1985,29:273-285.
    [35]Yen J. C., Chang F. J., Chang S., A new criterion for automatic multilevelthresholding[J], IEEE Transactions on Image Process.4(3),1995:370-378.
    [36]Sahoo P., Wilkins C., Yeager J., Threshold selection using Renyi’s entropy[J],Pattern Recognition.1997,30(1):71-84.
    [37]Li C. H., Lee C. K., Minimum cross-entropy thresholding[J], Pattern Recognition.1993,26(4):617-625.
    [38]Li C. H., Tam P. K. S., An iterative algorithm for minimum cross-entropythresholding[J], Pattern Recognition Letters.1998,19(8):771-776.
    [39]Brink A. D., Pendock N. E., Minimum cross entropy threshold selection[J], PatternRecognition.1996,29(1):179-188.
    [40]Pal N. R., On minimum cross-entropy thresholding[J], Pattern Recognition.1996,29(4):575-580.
    [41]Shanbag A. G., Utilization of information measure as a means of imagethresholding[J], CVGIP: Graphical Models and Image Processing.1994,56(5):414-419.
    [42]Cheng H. D., Chen Y. H., Sun Y., A novel fuzzy entropy approach to imageenhancement and thresholding[J], Signal Process.1999,75(3):277-301.
    [43]Johannsen G., Bille J., A threshold selection method using information measures[C],ICPR’82: Proceeding6th International Conference on Pattern Recognition,1982,140-143.
    [44]Pal S. K., King R. A., Hashim A. A., Automatic gray level thresholding throughindex of fuzziness and entropy[J], Pattern Recognition Letters.1980,1:141-146.
    [45]Shore J. E., Johnson R. W., Axiomatic derivation of the principleof maximumentropy and the principle of minimum cross-entropy[J], IEEE Transaction onInformation Theory. IT-26(1),1980:26-37.
    [46]Wong A. K. C., Sahoo P. K., A gray-level threshold selection method based onmaximum entropy principle[J], IEEE Transactions on Systems, Man andCybernetics. SMC-19,1989:866-871.
    [47]Portes de AlbuquerqueM, Esquef IA, Gesualdi Mello AR, et a.l Image thresholdingusing Tsallis entropy[J]. Pattern Recognition Letters,2004,25:1059-1065.
    [48]Sahoo P. K., Gurdial A., Image thresholding using two-dimensionalTsallis-Havrada-Charvat entropy[J]. Pattern Recognition Letters,2006,27:520-528.
    [49]Pal S. K., Shankar B. U., Mitra P., Granular computing, rough entropy and objectextraction[J]. Pattern Recognition Letters,2005,26:2509-2517.
    [50]Hertz L., Schafer R. W., Multilevel thresholding using edge matching[J], ComputerVision, Graphics, and Image Processing.1988,44(3):279-295.
    [51]Pal S. K., Rosenfeld A., Image enhancement and thresholding by optimization offuzzy compactness[J], Pattern Recognition Letters.1988,7:77-86.
    [52]Tsai W. H., Moment-preserving thresholding: A new approach[J], Computer Vision,Graphics, and Image Processing.1985,19:377-393.
    [53]O’Gorman L., Binarization and multithresholding of document images usingconnectivity[J], Computer Vision, Graphics, and Image Processing.1994,56:494-506.
    [54]Liu Y., Srihari S. N., Document image binarization based on texture analysis[C],Proc. SPIE2181,1994:254-263.
    [55]Yager R., On the measure of fuzziness and negation[J]. Part I: Membershipin theunit interval, International Journal of General Systems.1979,5(4):221-229.
    [56]Kirby R. L., Rosenfeld A., A note on the use of (gray level, local average gray level)space as an aid in threshold selection[J], IEEE Transactions on Systems, Man andCybernetics. SMC-9,1979:860-864.
    [57]Ahuja N., Rosenfeld A., A note on the use of second-order graylevel statistics forthreshold selection[J], IEEE Transactions on Systems, Man and Cybernetics. SMC-5,1975:383-388.
    [58]Lie W. N., An efficient threshold-evaluation algorithm for image segmentationbased on spatial gray level cooccurrences[J], Signal Process.1993,33(1):121-126.
    [59]Chanda B., Majumder D. D., A note on the use of gray level co-occurrence matrixin threshold selection[J], Signal Process.1988,15:149-167.
    [60]Abutaleb A. S., Automatic thresholding of gray-level pictures using two-dimensional entropy, Computer Vision, Graphics, and Image Process.1989,47(1):22-32.
    [61]Cheng H. D., Chen Y. H., Thresholding based on fuzzy partition of2Dhistogram[C],14th International Conference on Pattern Recognition,1998:1616-1618.
    [62]刘健庄,粟文青.灰度图像的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105
    [63]Gong J., Li L.Y., Chen W. N., Fast recursive algorithms for two-dimensionalthresholding[J]. Pattern Recognition.1998,31(3):295-300.
    [64]范九伦,赵凤.灰度图像的二维Otsu曲线阈值分割法[J].电子学报,2007,35(4):751-755
    [65]Nakagawa Y., Rosenfeld A., Some experiments on variable thresholding[J], PatternRecognition.1979,11(3):191-204.
    [66]Yang Y., Yan H., An adaptive logical method for binarization of degraded documentimages[J], Pattern Recognition.2000,33:787-807.
    [67]Niblack W., An Introduction to Image Processing, Prentice-Hall, Englewood Cliffs,NJ,1986:115-116.
    [68]White J. M., Rohrer G. D., Image thresholding for optical character recognition andother applications requiring character image extraction[J], IBM J. Res. Dev.1983,27(4):400-411.
    [69]Ng H.F., Automatic thresholding for defect detection[J], Pattern Recognition Letters.2006,27:1644-1649.
    [70]Li S. T., Zhao D. M., Gradient_based polyhedral segmentation for range images[J],Pattern Recognition Letters.2003:2069-2077.
    [71]Mozii F., A note on minimum error thresholding[J], Pattern Recognition Letter,1991,12:349-351
    [72]Ye Q., Danielsson P., On minimum error thresholding and its implementation[J],Pattern Recognition Letter,1988,7:201-206
    [73]Fan J. L., Notes on Poisson distribution-based minimum error thresholding[J].Pattern Recognition Letter.1998,19:425-431
    [74]Ramakrishnan K. M., Contour Area Filtering of two-dimensional electrophoresisimages[J]. Medical Image Analysis,2006,10(3):353-365
    [75]Nakib A., Oulhadj H., Siarry P., Image histogram thresholding based onmultiobjective optimization[J]. Signal Processing,2007,87(11):2516-2534
    [76]赵凤,范九伦.一种结合二维法和模糊熵的图像分割方法[J].计算机应用研究,2007,24(6):189-191.
    [77]李立源,龚坚,陈维南.基于二维灰度直方图最佳一维投影的图像分割方法[J].自动化学报,1996,22:315-322
    [78]Kullback S., Information theory and statistics[M], New York: Wiley,1959.
    [79]Pal S. K., King R. A., Hashim A. A., Automatic greylevel thresholding throughindex of fuzziness and entropy[J], Pattern Recognition Letter,1,1983:141-146.
    [80]Murthy C. A., Pal S. K., Histogram thresholding by minimizing graylevelfuzziness[J], Information sciences,1992,60:107-135.
    [81]Li X. Q., Zhao Z. W., Cheng H. D.,Fuzzy entropy threshold approach to breastcancer detection [J], Information Sciences,1995,4(1):49-56.
    [82]Cheng H. D., Chen J. R., Automatically determine the membership function basedon the maximum entropy principle [J]. Information Science,1997,96:163-182.
    [83]陶文兵,田金文,柳健,娄越,基于遗传算法和模糊熵的前视红外图像分割[J],红外与毫米波学报,2003,22(6):465-468.
    [84]Li L.Y.,Li D., Fuzzy entropy image segmentation based on particle swarmoptimization[J],Progress in Natural Science,2008,18(9):1167-1171.
    [85]倪超,李奇,夏良正,基于广义混沌混合PSO的快速红外图像分割算法[J],光子学报,2007,36(10):1954-1959.
    [86]范九伦,赵凤,基于Sugeno补的广义模糊熵阈值分割方法[J],电子与信息学报,2008,30(8):1865-1868.
    [87]雷博,范九伦,广义模糊熵阈值法中基于粒子群优化的参数选取[J],控制与决策,2009,24(3):446-450.
    [88]De Luca A., Termini S., A definition of a nonprobabilistic entropy in the setting offuzzy set theory [J]. Information and control,1972,20(4):301-312.
    [89]范九伦,模糊熵理论[M],西北大学出版社,1999:9-33.
    [90]Wang Q., Chi Z. R., Zhao R. C., Image thresholding by maximizing the index ofnonfuzziness of the2-D grayscale histogram[J],Computer Vision and ImageUnderstanding2002,85:100-116.
    [91]Huang L. K., Wang M. J., Image thresholding by minimizing the measures offuzziness[J]. Pattern Recognition,1995,28(1):41-51.
    [92]Zenzo S. D., Cinque L., Levialdi S., Image Thresholding Using Fuzzy Entropies[J],IEEE Transactions on Systems, Man and Cybernetics. Part B,1998,28(1):15-23.
    [93]Fan J. L., Zhao F., A Generalized Fuzzy Entropy-based Image SegmentationMethod [A]. Proceedings of the2007International Conference on IntelligentSystems and Knowledge Engineering [C]. China: Chengdu,2007,427-431.
    [94]Eberhart R. C., Kermedy J., A New Optimizer Using Particles Swarm Theory[A],Proc, sixth International Symposium on Micro Machine and Human Science(Nagoya, Japan)[C]. IEEE. Service Center, Piscataway, NJ.1995,39-43.
    [95]Sugeno M., Fuzzy Measures and Fuzzy Integrals: a Survey[A], In: Gupta M,Saridis GN, Gaines BR (eds) Fuzzy Automata and Decision Processes[C], NorthHolland, Amsterdam and New York,1977,89-102.
    [96]Lowen R., On Fuzzy Complements[J], Information Sciences,1978,14(2):107-113.
    [97]Yager R. R., On the Measures of Fuzziness and Negation[J], Part II: Lattices,Information and Control,1980,44(3):236-260.
    [98]侯格贤,毕笃彦,吴成柯.图象分割质量评价方法研究[J],中国图象图形学报,2000,5(1):39-43.
    [99]Zhang H., Fritts J.E., Goldman S. A., Image segmentation evaluation: A survey ofunsupervised methods[J], Computer Vision and Image Understanding.2008,110:260-280.
    [100] Angeline P. J., Evolutionary Optimization Versus Particle Swarm Optimization:Philosophy and Performance Difference[A]. Annual Conference on EvolutionaryProgramming[C], San Diego.1998,601-610
    [101] Cheng H. D., Chen Y. H., Jiang X. H., Thresholding using two-dimensionalhistogram and fuzzy entropy principle[J], IEEE Transaction on ImageProcessing,2000,9(4):732-735.
    [102]雷博,范九伦,一维Renyi熵阈值法中参数的自适应选取[J].光子学报,2009,38(9):2439-2443.
    [103] Lei B., Fan J. L., Parameter selection of generalized fuzzy entropy-basedthresholding segmentation method with particle swarm optimization[C],2008fourthinternational conference on intelligent information hiding and multimedia signalprocessing,2008,8(15-17):901-904.
    [104]王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9:337-344.
    [105]张文修,梁怡.不确定推理原理[M].西安交通大学出版社,1996.
    [106]李莉.基于可变精度粗集模型的增量式归纳学习[J].计算机科学,1999,26:55-58.
    [107]张文修,吴伟志粗糙集理论介绍和研究综述[J],模糊系统与数学,2000,14(4):1-12.
    [108]邓廷权,盛春东,结合变精度粗糙熵和遗传算法的图像阈值分割算法[J],控制与决策,2011,26(7):1079-1082.
    [109]阎瑞霞,郑建国,翟育明,双论域粗糙集的不确定性度量[J],上海交通大学学报,2011,45(12):1841-1845.
    [110]张文修,吴伟志,梁吉业等,粗糙集理论与方法[M],北京:科学出版社,2001,3-8.
    [111] Sen D., Pal S. K., Generalized rough sets, entropy, and image ambiguitymeasures[J]. IEEE Trans. on SMC-Part B: Cybernetics,2009,39(1):117-128.
    [112] Sen D., Pal S. K., Histogram thresholding using fuzzy and rough measures ofassociation error[J], IEEE Transaction on Image Processing.2009,18(4):879-888.
    [113] http://www.cse.ohio-state.edu/otcbvs-bench.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700