人工湿地预处理引黄水库水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河流域内有50多个城市利用黄河水作为城市供水水源,在这些城市中,有的是直接从黄河取水作为城市供水原水,而大部分城市为解决黄河断流、洪峰、结冰以及水污染等影响城市正常供水的问题,修建了调蓄水库,在黄河水量足、水质好并且能够取水时,将黄河水提升到储蓄水库,保障城市连续稳定供水。经过对沿黄引黄水库的水质调查发现,近年来各水库普遍存在不同程度的水质超标问题,其中以耗氧量和总氮超标最突出。水的高耗氧量表明水已经受到有机物污染,其危害,一是造成饮用水感官指标变差,出现嗅味和浑浊等现象;二是引发传染病等疾病,人畜饮用会导致疾病;三是导致自来水中产生三致物质,如三卤甲烷等。而另一方面,随着人们生活水平的提高,对饮用水水质要求却越来越高,2007年7月1日,我国颁布了新的《生活饮用水卫生标准》(GB5749—2006),检测指标从35项提高到了106项。目前我国给水处理工艺基本上采用混凝、沉淀、过滤和消毒工艺,该处理工艺的出水水质很难满足新的《生活饮用水卫生标准》,因此研究开发微污染水源,特别是受到有机污染的水源的新型给水处理技术与工艺是当务之急。
     研究针对耗氧量和总氮超标的引黄水库水,采用人工湿地预处理,以降低原水中的耗氧量和总氮,减小后续工艺的处理负荷。考察了推流、往复流潜流和表流三种人工湿地对引黄水库水中耗氧量和总氮的处理效能;分析了人工湿地预处理引黄水库水的影响因素,从改善人工湿地生态系统条件的角度研究如何提高人工湿地系统的处理效能;通过对水中污染物在人工湿地系统中的去除规律、影响因素、植物生物量、氮、磷含量变化及人工湿地的基质分析,研究人工湿地去除污染物的机理,提出了人工湿地去除有机物、总氮和总磷的动力学模型;研究了人工湿地中微生物特征,筛选出了具有较强降解水中污染物性能的菌种,并通过DGGE技术探讨了微生物在人工湿地中的变化规律。
     研究结果表明:人工湿地对微污染原水中的污染物有较好的处理效能,往复流、推流以及表流人工湿地对原水中耗氧量的去除率分别在31.37%~58.12%、27.10%~57.65%、17.10%~34.45%,往复流潜流人工湿地较推流潜流人工湿地处理效能稍好,而表流人工湿地的处理效能较差。三种人工湿地对原水中TN去除率大致与对耗氧量的去除率相当。在试验期,对TP的去除率在45%~80%之间。通过对往复流和推流两套潜流人工湿地处理不同污染物的规律研究建立了两套动力学模型。水力停留时间(HRT)对人工湿地去除污染物的效能影响较大;温度对人工湿地去除耗氧量、TN的影响较大。人工湿地处理微污染原水时,沿水流方向耗氧量、TN浓度、TP浓度逐渐降低,其中人工湿地前1/3床体的去除效能较好,约占整个系统总去除率的50%。潜流人工湿地中不同水体深度污染物的去除效能也不同,人工湿地床体上部去除效能好于中部,中部好于下部。人工湿地处理微污染原水的过程中,植物根系和基质的过滤、截留发挥了很大作用。研究表明,在推流、往复流潜流人工湿地和表流人工湿地中,微生物对污染物的去除起到重要作用,其对耗氧量的去除率在41%~51%之间,硝化菌的硝化速率介于0.642~0.689mg.L~(-1).d~(-1)之间,反硝化菌的反硝化速率为0.778~ 0.83mgL~(-1).d~(-1),聚磷菌的聚磷率在65%~88%之间。PCR-DGGE分析结果表明,人工湿地系统中前端微生物的种类和活性高于后端。
     根据试验结果,利用推流式潜流人工湿地处理规模为10万m3/d引黄水库微污染水,每m3制水成本约为0.022元。
More than 50 cities along the Yellow River Valley rely on the river as their drinking water source. Among those cities, some directly take water from the Yellow River as the raw water, while most of them build reservoirs to prevent water-supply problems such as discontinuous flow, flood peak, freezing and water pollution. To do so, the Yellow River water was lifted into the reservoirs when the water supply is sufficient and the water quality is good and stable. The results of the investigations on the Yellow River reservoirs showed that the water quality of some reservoirs is far beyond the standard and the most prominent problem is the exceeding of dissolved oxgen (DO)and total nitrogen( TN). The high oxygen consumption of water indicates that the raw water has already been polluted by organic matters, which will result in a bad sensory index for the drinking water such as bad odor and turbidity. Furthermore, it can cause infectious disease for the people and livestock. Also, it is a factor to lead to the harmful substances, such as THMs. On the other hand, with the improvement of people’s living standard, the demand for the drinking water quality is becoming prompted. New Standards for Drinking Water Quality (GB5749-2006) was issued in our country on July 1st, 2007, in which the analysis indexes were increased from 35 items to 106 items. Currently, the water treatment process in China is generally composed of the coagulation, sedimentation, filtration and disinfection., which is difficult to meet the new standards. Therefore, it is urgent to develop new water treatment technologies and processes for micro-polluted water sources, especially for water sources polluted by organic matters.
     To deal with the Yellow River reservoirs whose oxygen consumption (CODMn) and total nitrogen( TN) indexes exceeding the standards, this study explored the constructed wetland technology for pretreatment to low CODMn and TN of the raw water and reduce the treatment load of the following processes. This study surveyed the treatment effect of such three constructed wetlands as push-subsurface-flow, reciprocating subsurface flow, and surface flow on CODMn and TN in the reservoirs. The influence factors of constructed wetlands pretreatment on the raw water were also analyzed. The methods of improving the treatment effect of the wetland system were further studied by adjusting the running conditions of wetland systems. The mechanisms of pollutants removal with the constructed wetlands were discussed based on the research of removal laws, the influence factors, plant biomass, changes of nitrogen and phosphorus concentration and substrate analysis of the constructed wetlands. The reaction dynamics models of organics, total nitrogen and total phosphorus removal with constructed wetlands were built. The bacteria with stronger degradation on the pollutants of constructed wetlands were selected and the characteristics of microbes were studied in detail. DGGE technology was applied to detect the change laws of microbes in the constructed wetlands.
     The results showed that the constructed wetland had a good removal efficiency on pollutants of the micro-polluted raw water. CODMn removal efficiency by reciprocating subsurface flow, push-subsurface-flow and surface flow constructed wetland were 31.37%~58.12%, 27.10%~57.65% and 17.10%~34.45% respectively. The performance of reciprocating subsurface flow constructed wetland was better compared with push-subsurface-flow constructed wetland and the surface flow constructed wetland had little effect. The TN and CODMn removal efficiency in raw water with the three sets of constructed wetlands were almost equal. During the experiment period, the TP removal efficiency ranged from 45% to 80%. Based on the study of the law of pollutants removal with the two sets of reciprocating subsurface flow and push-subsurface-flow constructed wetland, two sets of dynamics models were constructed. The hydraulic retention time (HRT) had a significant influence on the effect of pollutants for the constructed wetlands. The temperature had a great influence on oxygen consumption, TN removal. When the micro-polluted raw water were pretreated with the constructed wetlands, the CODMn, TN and TP gradually reduced along the water flow direction,. The removal effect of the first 1/3 bed of the wetlands was better, which accounted for 50% of the total removal rate of the whole system. The removal effects of the pollutants were different in different water depth in the subsurface flow constructed wetlands. The removal effect of upper part of the wetland bed was better than that of the middle part which was better than that of the lower part. During the treatment of the micro-polluted raw water by the constructed wetland, the filtration and trapping of plant roots and substrate played an important role.
     Results also indicated that, among the reciprocating subsurface flow, push-subsurface-flow and surface flow constructed wetland, the microbes played an important role in the removal of pollutants. The removal efficiency of CODMn was 41%~51%, while the nitration rate of the nitrobacteria was 0.642~0.689mg.L~(-1).d~(-1) and the denitrification rate of the denitrifying bacteria was 0.778~0.83mgL~(-1).d~(-1). The polyphosphate accumulation rate of PAO was 65%~88%. The analytical results of PCR-DGGE technology revealed that the microbial activity at the front end was higher than that at the back end.
     According to the results of the study, the cost to run a push-subsurface-flow constructed wetland to pretreat micro-polluted water from Yellow River reservoirs was calculated and the cost to pretreat 1m3 raw water with a capability of 100,000 tons/day was about 0.022 Yuan RMB.
引文
1刘百粤.城市水业改制和技术发展趋势.北京:第三届中国城镇水务发展国际研讨会论文集. 2009, 19~33
    2国家环保总局. 2008中国环境状况公报. 2009: 3~7
    3郑丙辉,张远,付青.中国城市饮用水源地环境问题与对策.北京:第二届中国城镇水务发展国际研讨会论文集. 2007, 84~91
    4中华人民共和国水利部. 2008年黄河水资源公报.北京:中国水利水电出版社. 2009: 15~23
    5陈莉,范跃华.微污染原水的处理技术发展与探讨.重庆环境科学. 2002, 24(6): 67~69
    6张华,徐彬士.上海惠南水厂微污染原水生物预处理工程设计.给水排水. 1999, 25(8): 1~4
    7 J. P. Hoek, J. Hofman. The Use of Biological Activated Carbon Filtration for the Removal of Natural Organic Matter and Organic Micropollutants from Water. Water Sci. Technol. 1999, 40 (9): 257~264
    8 S. Muramotoet. Effective Removal of Musty Odor in the Kanamachi Purification Plant. Water Sci. Technol. 1995, 31(11): 219~222
    9刘强.高锰酸钾-湿式粉末活性炭除臭技术研究.西安建筑科技大学硕士论文. 2004: 6, 13~16
    10陈根荣,胡友彪.饮用水深度处理技术探讨.中国资源综合利用. 2008,26(4): 28~31
    11 P. L. Diederik, Rousseaua, P.A. Vanrolleghemb, Niels De Pauwa. Constructed wetlands in Flanders: a performance analysis. Ecol. Eng. 2004 (23): 151–163
    12王占生,刘文君.我国给水深度处理应用状况与发展趋势.中国给水排水. 2005, 21(9): 33~36
    13谢晖,陈勋贤,付乐等.自来水厂氨氮的活性炭深度处理.水处理技术. 2007, 33(2): 89~91
    14王永仪,蒋展鹏,顾夏声.二氧化氯消毒现状与发展.中国给水排水. 1996, 12(5): 23~25
    15陈翼孙,翁晓姚.二氧化氯在饮用水处理中应用的几个问题.给水排水.1998, 24(11): 61~64
    16孙昕,张金松.饮用水预臭氧化技术的进展.给水排水. 2002, 28(4): 7~9
    17王晟.低浓度臭氧化-生物过滤工艺深度处理城市污水的实验研究.西安建筑科技大学硕士论文. 2002: 7~8
    18 J. C. Joret. Inactivation of Indigenous Bacteria in Water by Ozone and Chlorine. Water Sci. Technol. 1997, 35(11~12): 81~86
    19 Shukcairy. Phosphate Adsorption Characteristics of Soils, Slags and Zeolite to be Used as Substrates in Constructed Wetland Systems. Water Res. 1998, 32(2): 393~399.
    20王占生,刘文君.微污染饮用水源饮用水处理.北京:中国建筑工业出版社. 1999, 77~78
    21 H. Bouwer, R. C. Rice, J. C. Lance et al. Rapid-infiltration Research at Flushing Meadous Project, Arizona. J. Water Pollut. Contr. Federat. 1980, 52: 2457~2469.
    22 Namkung. Removal of Taste and Odor-Causing Compounds by Biofilms Grow on Humid Substances. JAWWA. 1987, 7: 356~361
    23住房和城乡建设部,城镇供水设施改造技术指南(试行). 2009, 7
    24徐丽花,周琪.人工湿地控制暴雨径流污染的试验研究.上海环境科学. 2002, 21(5): 38~41
    25李旭东.沸石芦苇床除氮中试研究.环境科学. 2003, 24(3): 45~48
    26张虎成,田卫,俞穆清等.人工湿地生态系统污水净化研究进展.环境污染治理技术与设备. 2004, 2: 31~34
    27 E. A. Mauricio, T. B.Mark. Feasibility of Using Constructed Treatment Wetlands for Municipal Wastewater Treatment in the BogotáSavannah, Colombia. Ecol. Eng. 2009 (35): 1070~1078
    28 A. Snow, A.E. Ghaly, R. Cote. Treatment of Stormwater Runoff and Landfill Leachates Using a Surface Flow Constructed Wetland. J. Environ. Sci. 2008, 4(2): 164~172
    29 C.A. Prochaska, A.I. Zouboulis, K.M. Eskridge. Performance of Pilot-Scale Vertical-Flow Constructed Wetlands, as Affected by Season, Substrate, Hydraulic Load and Frequency of Application of Simulated Urban Sewage. Ecol. Eng. 2007, 31: 57~66
    30 I. Janjit, W. Y. Su, S. R. Jae. Nutrient Removals by 21 Aquatic Plants for Vertical Free Surface-Flow (VFS) Constructed Wetland. Ecol. Eng. 2007, (29):287~293
    31 N. Gottschall, C. Boutin, A. Crolla, C. Kinsley, P. Champagne. The Role of Plants in the Removal of Nutrients at a Constructed Wetland Treating Agricultural (Dairy) Wastewater, Ontario, Canada. Ecol. Eng. 2007, 29: 154~163
    32 C. L. McJannet, P A. Keddy, F. R. Pick. Nitrogen and Phosphorus Tissue Concentrations in 41 Wetland Plants: A Comparison across Habitats and Functional Groups. Funct. Ecol. 1995, 9(2): 231~238
    33 Tanner. Plant for Constructed Wetland Treatment Systems-a Comparison of the Growth and Nutrient Uptake of Eight Emergent Species. Ecol. Eng. 1996, 7(1): 59~83
    34汪苹,项慕飞,翟茜.从不同反应器筛选、鉴别好氧反硝化菌.环境科学2007, 20(4): 120~124
    35沈耀良,杨铨大.新型废水处理技术-人工湿地.污染防治技术. 1996, 9(1~2): 1~8
    36莫凤鸾.高效垂直流人工湿地污水处理系统实践研究.中南林学院硕士论文. 2004: 19~22
    37 R Otto, D. Stein, J. Borden-Stewart. Seasonal Influence on Sulfate Reduction and Zinc Sequestration in Subsurface Treatment Wetlands. Water Res. 2007, 41: 3440~3448
    38 G. Badalians Gholikandi, M. Moradhasseli, R. Riahi. Treatment of Domestic Wastewater in a Pilot-Scale HSFCW in West Iran. Desalination. 2009, 248(1): 977~987
    39 A.K. Thor′en, C. Legrand, K.S. Tonderski. Temporal Export of Nitrogen from a Constructed Wetland: Influence of Hydrology and Senescing Submerged Plants. Ecol. Eng. 2004, 23: 233–249
    40 M. A. El-Khateeb, A. Z. Al-Herrawy, M. M. Kamel, F. A. El-Gohary. Use of Wetlands as Post-Treatment of Anaerobically Treated Effluent. Desalination. 2009, 245(1): 50~59
    41辛晓云,马秀东.氧化塘水生植物净化污水的研究.山西大学学报(自然科学版). 2003, 2(1): 85~87
    42 L.S. Anne, A. M. Cynthia. Design and Hydraulic Performance of a Constructed Wetland Treating Oil Refinery Wastewater. Water Sci. Technol. 1999, 40(3): 301~307
    43 G. Margaret. Nutrient Content of Wetland Plants in Constructed Wetlands Receiving Municipal Effluent in Tropical Australia. Water Sci. Technol. 1997, 35(5): 135~142
    44 K. Sakadevan, H.J. Bovar. Nutrient Removal Mechanisms in Constructed Wetlands and Sustainable Water Management. Water Sci. Technol. 1999, 40(2): 121~128
    45 C.A. Winthrop, B.H. Paul, A.B. Joel, et al. Temperature and Wetland Plant Species Effects on Wastewater and Root Zone Oxidation. J. Environ Technol. 2002, 31(3): 1010~1016
    46 L.F. Jennifer, G. Vincent, S. Carina, et al. Microbial processes influencing performance of treatment wetlands: A review. Ecol. Eng. 2009, 35: 7-1004
    47 S. Kirsten, T. Alexandra, L. Günter. Diversity of abundant bacteria in subsurface vertical flow constructed wetlands. Ecol. Eng. 2009, 35: 1021-1025
    48 M. Truu, J. Juhanson, J. Truu. Microbial Biomass, Activity and Community Composition in Constructed Wetlands. Sci. Total Environ. 2009, 407(13): 3958-3971
    49 H.C. Tee, C.E. Seng, A.M. Noor, et al. Performance Comparison of Constructed Wetlands with Gravel and Rice Husk-Based Media for Phenol and Nitrogen Removal. Sci. Total Environ. 2009, 407(11): 3563-3571
    50 M.S. Fountoulakis, S. Terzakis, N. Kalogerakis. Removal of Polycyclic Aromatic Hydrocarbons and Linear Alkylbenzene Sulfonates from Domestic Wastewater in Pilot Constructed Wetlands and a Gravel Filter. Ecol. Eng. 2009, 35(12): 1702-1709
    51 F. Graud. Biodegradation of Anthracene and Fluoranthene by Fungi Isolated from an Experimental Constructed Wetland for Wastewater Treatment. Water Res. 2001, 35(17): 4126~4136
    52 L.C. Davies, I.S. Pedro, J.M. Novais, S. Martins-Dias. Aerobic Degradation of Acid Orange 7 in a Vertical-flow Constructed Wetland. Water Res. 2006, 40: 2055 ~2063
    53邓欢欢,葛利云,顾国泉等.垂直流人工湿地基质微生物群落的代谢特性和功能多样性研究.水处理技术. 2007, 33(6): 18~21
    54 Vlasta, B. Jarmila. V. Jan. Microbial Characteristics of Constructed Wetlands. Water Sci. Technol. 1997, 35(5): 117~123
    55丁浩.梦清园芦苇湿地根际微生物特性初步研究.华东师范大学硕士论文. 2007: 40~47
    56 G. Joan, O. Esther, S. Enric, et al. Spatial Variations of Temperature, Redox Potential, and Contaminants in Horizontal Flow Reed Beds. Ecol. Eng. 2003, 21(2): 129~142
    57俞孔坚,李迪华,孟亚凡.湿地及其在高科技园区中的营造.中国园林. 2001, 2(1): 26~28
    58李怀正,叶建锋,徐祖信.几种经济型人工湿地基质的除污效能分析.中国给水排水. 2007, 23(19): 27~30
    59 Y. Ann. Influence of Redox Potential on Phosphorus Solubility in Chemically Amended Wetland Organic Soils. Ecol. Eng. 2000, 149(2): 169~180
    60 C. Mclatche. Regulation of Organic Matter Decomposition and Nutrient Release in a Wetland Soil. J. Environ Qual. l998, 27(5): 1268~1275
    61杨健,陆雍森,王树乾.绿色生态滤池处理城镇污水的中式研究.环境工程. 2001, 19(2): 20~22
    62 C. Platzer. Design Recommendations for Subsurface Flow Constructed Wetlands for Nitrification and Denitrification. Water Sci. Technol. 1999, 40(3): 257~263
    63 D.Q. Wang; X.D. Jin. Research Progress on Phosphorus Removal in Substrates of Constructed Wetlands. 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (Icbbe 2009). Beijing, China, 11-16 June 2009: 54~60
    64曾桂华.人工湿地污水处理系统的应用及其展望.科技信息(学术版). 2007, 13: 165~169
    65 L. Guenter, L. Klaus, P. Alexander, et al. High-rate nitrogen removal in a two-stage subsurface vertical flow constructed wetland. Desalination. 2009, 246(3): 55~68
    66 A. David, N. Jaime Energy Requirements for Nitrification and Biological Nitrogen Removal in Engineered Wetlands. Ecol. Eng. 2009, 35(2): 184~192
    67 S. Sasikala, N. Tanaka, H.S.Y. Wah, et al. Effects of Water Level Fluctuation on Radial Oxygen Loss, Root Porosity, and Nitrogen Removal in Subsurface Vertical Flow Wetland Mesocosms. Ecol Eng. 2009, 35(4): 410~417
    68 K.B. Sofia, E.B. Stefan, T. Geraldine, et al. Effects of Vegetation and Hydraulic Load on Seasonal Nitrate Removal in Treatment Wetlands. Ecol. Eng. 2009, 35(5): 946~952
    69 D.P.L. Rousseau, W. Shi, O.R. Stein. Simulation of COD Removal in Lab-ScaleConstructed Wetlands: Influence of Electron Acceptors. 11th International Conference on Wetland Systems for Water Pollution Control. Indore, India. November, 2008: 526~534
    70丁廷华.污水芦苇湿地处理系统示范工程的研究.环境科学. 1992, 13(2): 8~13
    71 J. Vymazal, H. Brix and F. Cooper. Constructed Wetlands for Wastewater Treatment in Europe. Backhuys Publishers,Leiden,The Netherlands. 1998: 89~96
    72 P. A. Mays. Comparison of Heavy Metal Accumulation in a Natural Wetland and Constructed Wetlands Receiving Acid Mine Drainage. Ecol. Eng. 2001, 16(4): 487~500
    73 K. Cameron, C. Madramootoo and A, Crolla. Pollutant Removal from Municipal Sewage Lagoon Effluents with a Free-Surface Wetland. Water Res. 2003, (37): 2803~2812
    74 K.R. Reddy, W.H. Patrick. Nitrogen Transformations Loss Soils and Sediments. CRC Crit. Rev. Environ. Control. 1994, (13): 273~309.
    75吴建强.人工湿地中的SND机理以及DO、pH对其的影响.环境污染与防治. 2005, 27(6): 476~478
    76 M.B. McGechan, S.E. Moir, et al. Modelling Oxygen Transport in a Reedbed-constructed Wetland System for Dilute Effluents. Biosyst. Eng. 2005, 91(2): 191~200.
    77夏汉平.人工湿地处理污水的机理与效率.生态学杂志. 2002, (04): 83~86
    78 G. Ansola, J. M. Gonzez, R. Cortijo, et al. Experiment and Full-Scall Pilot Plant Constructed Wetlands for Municipal Wastewaters Treatment. Ecol. Eng. 2003, (21): 43~52
    79 M.S. Fennessy, J.K. Cronk, W. J. Mitsch. Macrophyte Productivity and Community Development in Created Fresh Water Wetlands Under Experimental Hydrological Conditions. Ecol. Eng. 1994, 3(4): 469~484
    80 S.Y. Lu, F.C. Wu, Y. F. Lu, et al. Phosphorus Removal from Agricultural Runoff by Constructed Wetland. Ecol. Eng. 2009, 35(4): 402-409
    81 X.H. Zhao, Y.Q . Zhao. Investigation of Phosphorus Desorption from P-Saturated Alum Sludge Used as a Substrate in Constructed Wetland. Sep. Purif. Technol. 2009, 66(1): 71~75
    82 Z. Yousefi, A. Mohseni-Bandpei. Nitrogen and Phosphorus Removal fromWastewater by Subsurface Wetlands Planted with Iris Pseudacorus. Ecol. Eng. 2010, 36(6): 777~782.
    83 D. Xu, J. Xu, J. Wu, A. Muhammad. Studies on the Phosphorus Sorption Capacity of Substrates Used in Constructed Wetland Systems. Chemosphere. 2006, 63: 344~352
    84 N.W. Zhua, P. Anb, B. Krishnakumarc, et al. Effect of Plant Harvest on Methane Emission from Two Constructed Wetlands Designed for the Treatment of Wastewater. J. Environ. Manage. 2007, 85: 936~943
    85 C.M. KAO, M.J. WU. Control of Non-Point Source Pollution by a Natural Wetland. Water Sci. Technol. 2001, 43: 169~173
    86 H. Brix. Do Macrophytes Play a Role in Constructed Treatment Wetlands. Water Sci. Technol. 1997, 35(5): 11~17
    87 R. Ansari, T. G. Kazi. Variation in Accumulation of Heavy Metals in Different Verities of Sunflower Seed Oil With the Aid of Multivariate Technique. Food Chem. 2009, 115(1): 318~323
    88 S. Kantawanichkul. Treatment of High-Strength Wastewater in Tropical Vertical Flow Constructed Wetlands Planted with Typha Angustifolia and Cyperus Involucratus. Ecol. Eng. 2009, 35(2): 238~247
    89 M.A. Maine, N. Su?e, H. Hadad Influence of Vegetation on the Removal of Heavy Metals and Nutrients in a Constructed Wetland. J. Environ. Manage. 2009, 90(1): 355~363
    90戴全裕,蔡述伟,张秀英.多花黑麦草对黄金废水净化与富集的研究.环境科学学报. 1998, 18(5): 553~556
    91 C.Y. Lee, C.C. Lee,F.Y. Lee. Performance Of Subsurface Flow Constructed Wetland Taking Pretreated Swine Effluent Under Heavy Loads. Bioresource Technol. 2004, 92: 173~176.
    92王薇.人工湿地污水处理工艺与设计.城市环境与城市生态. 2001, 2: 59~62
    93陆琦,郭宗楼.人工湿地水力学优化设计研究.生物系统工程与食品科学学院. 2005: 35~48
    94吴亚英.人工湿地在新西兰的应用.江苏环境科技. 2000, 13(3): 32~33
    95安树青.湿地生态工程—湿地资源利用与保护的优化设计模式.化学工业出版社. 2002: 12~17
    96 W. Eckenfelder. Phosphorous and Nitrogen Removal From Municipal Wastewater. New York, Lewis Publishers. 1991: 63~69
    97 A. Aesoy, H. Odegaard. Nitrogen Removal Efficiency and Capacity in Biofilms with Biologically Hydrolyzed Sludges as a Carbon Source. Water Sci. Tech. 1994, 30(6): 63~72
    98胡康萍.人工湿地设计中的水力学问题研究.环境科学研究. 1991, 4(5): 8~12
    99王久贤.白泥坑人工湿地水力学计算研究.广东水利水电. 1997, 6: 50~52
    100王世和,王薇,俞燕.水力条件对人工湿地处理效果的影响.东南大学学报. 2003, 33(3): 359~362
    101 L. Yang, H.T. Chang, M.N.L. Huang. Nutrient Removaling Gravel and Soil-Based Wetland Microcosms with and Without Vegetation. Ecol. Eng. 2001,18: 91~105.
    102 M. Sundaravadivel, S. Vigneswaran. Constructed Wetland for Wastewater Treatment. Critical Review in Environmental. Sci. Technol. 2003, 13(4): 371~376
    103谈玲.一种改进人工湿地污水氮磷变化机制及流态分析.扬州大学. 2005: 28~37.
    104刘红.潜流人工湿地改善官厅水库水质试验研究.中国环境科学. 2003, 23(5): 462~466
    105杜卫平.利用生态技术治理官厅水库水体污染的探索.中国水利. 2004, 17: 28~32
    106 R. Haberl, R. Perfler, H. Mayer. Constructed Wetlands in Europe. Water Sci. Techno. 1995, 32(3): 305~315
    107吴振斌,任明迅,付贵萍等.垂直流人工湿地水力学特点对污水净化效果的影响.环境科学. 2001, 22(5): 45~49
    108郑建军.山地型人工湿地工艺研究.重庆大学城市建设与环境工程学院. 2006: 33~52.
    109梁继东.人工湿地污水处理系统研究及性能改进分析.生态学杂质. 2003, 22(2): 49~55
    110张甲耀,夏盛林,邱克明等.潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究.环境科学学报. 1999, 19(3): 323~327
    111 G.B. Steven, B.S. George. An Approach toward Rational Design of Constructed Wetlands for Wastewater Treatment. Ecol. Eng. 1995, 4(4): 249~275.
    112 J. Vymazal. Removal of Nutrients in Various Types of Constructed Wetlands. Sci. Total Environ. 2007, 380(1): 48~65
    113国家环境保护总局.地表水环境质量标准.北京:中国环境科学出版社. 2003.
    114国家技术监督局.饮用水水源水质标准(CJ3020-93).北京:中国建筑工业出版社. 1994.
    115中华人民共和国建设部.城市供水水质标准(CJ/T206-2005).北京:中国标准出版社. 2005
    116国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法.第三版.北京:中国环境科学出版社. 1989: 280~285, 354~356
    117国家卫生部,国家标准化管理委员会.生活饮用水卫生标准(GB5749- 2006).北京:中国标准出版社. 2007.
    118国家卫生部,国家标准化管理委员会.生活饮用水标准检验方法(GB/T 5750.1-2006).北京:中国标准出版社. 2007
    119鲍士旦.土壤农化分析(第三版).北京:中国农业出版社, 2000: 25~76, 163~164
    120马放,任南琪,杨基先.污染控制微生物实验.哈尔滨:哈尔滨工业大学出版社. 2002: 68~83
    121张宝涛,王立群,伍宁丰等. PCR—DGGE技术及其在微生物生态学中的应用.生物信息学. 2006, 3: 132~142.
    122 E.A. Korkusuz, M. Beklioglu, N.G. Demirer. Comparison of the Treatment Performances of Blast Furnaceslag-based and Gravel-based Vertical Flow Wetlands Operated Identically for Domestic Wastewater Treatment in Turkey. Ecol. Eng. 2005, 24(3): 185~198
    123李旭东,张旭,薛玉等.除氮中试研究.环境科学. 2003, 24(3): 158~160
    124 K.G. Janet, R.S. Otto. Polar Organic Solvent Removal in Microcosm Constructed Wetlands. Water Res. 2005, 39(6): 4040~4050
    125 S.W. Chen, C.M. Kao, C.R. Jou, et al. Use of a Constructed Wetland for Post-Treatment of Swine Wastewater. Environ. Eng. Sci. 2008, 25(3): 407~417
    126 J. Vymazal. The Use of Sub-Surface Constructed Wetlands for Wastewater Treatment in the Czech Republic: 10 Years Experience. Ecol. Eng. 2002, 18(5): 633~646
    127 S.R. Jing, Y.F. Lin, D.Y. Lee. Nutrient Removal from Polluted River Water by Using Constructed Wetlands. Bioresurces Technol. 2001,76: 131~134
    128张丽华,宋长春,王德宣等.沼泽湿地生态系统呼吸与温度、氮素及植物生长的相互关系.环境科学. 2007, 28(1): 1~8
    129 J. Huang, R.B.JR Reneau, C.Hagedorn. Nitrogen Removal in Constructed Wetlands Employed to Treat Domestic Wastewater. Water Res. 2000, 34: 2582~2588
    130 K. Cameron, C. Madramootoo, A. Crolla. A Pollutant Removal for Municipal Sewage Lagoon Effluents with a Free-Surface Wetland. Water Res. 2003, 37: 2803
    131 Y.F. Lin, S.R. Jing, D.Y. Lee. Nutrient Removal From Aquaculture Wastewater Using a Constructed Wetlands System. Aquaculture. 2002, 209: 1~4.
    132 V. Christina, A. Reimo, N. Kaspar, et al. Dynamics of Phosphorus,Nitrogen and Carbon Removal in a Horizontal Subsurface Flow Constructed Wetland. Sci. Total Environ. 2007,380(1): 66~74
    133 J.G. jacangelo, J.M. laine, K.E. carns, E. W. Cummins. Low Pressure Membrane Filtration for Removing Giadia and Microbial Indicates. J. Am. Water Works Ass. 1991, 84(9): 97~106
    134 P.L. Diederik, A.V. Peter, D.P. Niels. Model-Based Design of Horizontal Subsurface Flow Constructed Treatment Wetlands: a Review. Water Res. 2004, 38(6): 1484~1493
    135 W.X. Liu, M.F. Dahab, Y. Surmpallir. Nitrogen Transformations Modeling in Subsurface-Flow Constructed Wetlands. Water Environ. Res. 2005, 77(3): 246~251
    136朱永,林卫.人工湿地数学模型模拟与应用.环境污染与防治. 2007, 29(2): 155~157
    137张军,周琪,何蓉.人工湿地污染物去除的数学模型.韶关学院学报. 2003, 24(12): 63~67, 107
    138史云鹏,周琪.人工湿地污染物去除动力学模型研究进展.工业用水与废水. 2002, 33(6): 12~15
    139 H.I. Shepherd, G. Tchobanoglous, M. Grismcr. Time-Dependent Retardation Model for Chemical Oxygen Demand Removal in a Subsurface-Flow Constructed Wetland for Winery Wastewater Treatment. Water Environ. Res. 2001, 73(3): 246~251
    140 V. Shackle, C. Freeman, B. Reynolds. Exogenous Enzyme Supplements to Promote Treatment Efficiency in Constructed Wetlands. Sci. Total Enviro. 2006: 18~24
    141杨思璐,闻岳,李剑波等.人工湿地处理系统的生命周期成本评估. 2007, 23(12): 6~10
    142 S.A. Christos, A.T. Vassilios. Effect of Temperature, HRT, Vegetation and Porous Media on Removal Efficiency of Pilot-Scale Horizontal Subsurface Flow Constructed Wetlands. Ecol. Eng. 2007, 29(2): 173~191
    143王新为,孔庆鑫,金敏等pH值与曝气对硝化细菌硝化作用的影响.解放军预防医学杂志. 2003, 21(5): 319~322
    144张丽华,宋长春,王德宣等.沼泽湿地生态系统呼吸与温度、氮素及植物生长的相互关系.环境科学. 2007, 28(1): 1~8
    145肖海文,邓荣森,翟俊等.溶解氧对人工湿地处理受污染城市河流水体效果的影响.环境科学. 2006, 27(12): 2426~2431
    146 M.A. Belmont, C.D. Metcalfe Feasibility of Using Ornamental Plants (Zantedeschia aethi-opica) in Subsurface Flow Treatment Wetlands tore move Nitrogen, Chemical Oxygen Demand and Nonylphenol Ethoxylate Surfactants a Laboratory Scale Study. Environ. Eng. 2003, 21(3): 233~247
    147娄金生,谢水波,何少华.生物脱氮除磷原理与应用.长沙:国防科技大学出版社. 2002, 256~264
    148袁东海,景丽洁,张孟群等.几种人工湿地基质净化磷素的机理.中国环境科学. 2004, 24(5): 614~617
    149 A. Mustafa, M. Scholz, R. Harrington. Long-term Performance of a Representative Integrated Constructed Wetland Treating Farmyard Runoff. Ecol. Eng. 2009, 35(5): 779~790
    150 AWWA Membrane Technology Research Committee. Committee Report: Membrane Process. J. Am. Water Works Ass. 1998, 90(16): 91~95
    151吴建强,黄沈发丁玲等.人工湿地中的SND机理以及DO, pH对其的影响.环境污染与防治. 2005, 27(6): 47~52
    152邓瑞芳,张永春.人工湿地对污染物去除的研究现状及发展前景.新疆环境保护. 2004, 26(3): 19~22
    153 A.M. Ray, R.S. Inouye. Development of Vegetation in a Constructed Wetland Receiving Irrigation Return Flows Agriculture. Ecosyst. Environ. 2007, 121: 401~406
    154 A.O. Babatunde, Y.Q. Zhao, M.O. 'Neill, B. O'Sullivan Constructed Wetlands for Environmental Pollution Control: A Review of Developments. Research AndPractice in Ireland Environment International. 2008, 34(1): 116~126
    155 J. Vymazal. Horizontal Sub-surface Flow Constructed Wetlands Ond?ejov and SpálenéPo?í?íin the Czech Republic-15 Years of Operation. Desalination. 2009, 246(1~3): 226~237
    156 C. Chiemchaisri, W. Chiemchaisri, J. Junsod, et al. Wicranarachchi Leachate Treatment and Greenhouse Gas Emission in Subsurface Horizontal Flow Constructed Wetland. Bioresource Technol. 2009, 100(16): 3808~3814
    157 D.D. Kozub, S.K. Liehr. Assessing Denitrification Rate Limiting Factors in a Constructed Wetland Receiving Landfill Leachate. Water Sci. Technol. 1999, 40(3): 75~82
    158闻岳.水平潜流人工湿地净化受污染水体研究.同济大学硕士论文. 2007: 39
    159钟文辉,蔡祖聪.土壤管理措施及环境因素对土壤微生物多样性影响研究进展.生物多样性. 2004, 12(4): 456~465
    160 J. Puigagut, J. Villase?or, J.J. Salas, et al. Subsurface-Flow Constructed Wetlands in Spain for the Sanitation of Small Communities: Comparative Study. Ecol. Eng. 2007, 30(4): 312~319
    161 C.Mant, S. Costa, J. Williams, et al. Phytoremediation of Chromium by Model Constructed Wetland. Bioresource Technology. 2006, 97(15): 1767~1772
    162 F. Gao, C. Li, W. Jin. Study on Seawater Toilet-Flushing Sewage Treatment by Constructed Wetland. J. Biotechnol. 2008, 136: 664
    163 S.R. Jing, Y.F. Lin. Seasonal Effect on Ammonia Nitrogen Removal by Constructed Wetlands Treating River Water in Southern Taiwan. Environ. Pollut. 2004, 127(2): 291~301
    164 C.A. Arias, D.M. Bubba, H. Brix. Phosphorus Removal by Sands for Use as Media in Subsurface Flow Constructed Reed Beds. Water Res. 2001, 35(5): 1159~1168
    165 F. Suliman, H.K. French Haugen. Change in Flow and Transport Patters in Horizontal Subsurface Flow Constructed Wetland as a Result of Biological Growth. Ecol. Eng. 2006, 27(2): 124~133
    166程树培.应用人工湿地生态系统处理中小城市排放废水.城市环境与城市生态. 1989, 10(1): 35~37
    167彭青林,敖洁,曾经.水生植物塘中的溶解氧变化及对污水处理研究.长沙电力学院学报(自然科学版). 2004, 19(1): 79~82
    168 V.D. Gon. Oxidation of Methane in the Rhizosphere of Rice Plants. Biol. Fert. Soils. 1996, 22(4): 359~366
    169王晓娟,张荣社.人工湿地微生物硝化和反硝化强度对比研究.环境科学学报. 2006, 26(2): 225~22
    170 F. Morari, L. Giardini. Municipal Wastewater Treatment with Vertical Flow Constructed Wetlands for Irrigation Reuse. Ecol. Eng. 2009, 35(5): 643~653
    171赵庆良,黄汝常.复合式生物膜反应器中生物膜的特性.环境污染与防治. 2000, 22(1): 4~7
    172 M. Karim, F. Manshadi, M. Karshpiscak. The Persistence and Removal of Enteric Pathogens in Constructed Wetlands. Water Res. 2004, 38: 1831.
    173苏俊峰,马放,王弘宇等.利用PCR-DGGE技术分析生物陶粒硝化反应器中微生物群落动态.环境科学学报. 2007, 27(3): 386~390
    174于爱茸,李尤,俞吉安.一株耐氧反硝化细菌的筛选及脱氮特性研究.微生物学杂志. 2005, 25(3): 77~81
    175张小玲,梁运祥.一株反硝化细菌的筛选及其反硝化特性的研究.淡水渔业. 2006, 36(5): 28~32
    176李军,李治荣,王宝贞.淹没式生物膜法除磷微生物特性研究.北京工业大学学报. 2001, 27(1): 7~90
    177 K.K. Joong, K.Young. An Erobic Nitrification-Denitrification by Heterotrophic Bacillus Strains. Bioresource Technol. 2005, 96(1): 1897~1906

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700