降低卷烟主流烟气中羰基化合物和一氧化氮研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸烟有害健康,挥发性羰基化合物和氮氧化物是卷烟烟气中两大类有害成分,降低这两类化合物对提高卷烟安全性有着重要价值。本论文研究卷烟烟气中羰基化合物的形成机理和影响因素以及利用天然可再生资源和过渡金属等低成本材料降低卷烟主流烟气中羰基化合物和氮氧化物的技术,研究对于烟草科学和烟草产业发展具有重要的学术意义和现实意义。
     论文从理论和实验两个方面探讨了卷烟主流烟气中羰基化合物的形成机理。采用密度泛函(DFT)理论,在B3LYP/6-31G基组下,对烟气中丙三醇的各种化学键断裂反应以及过渡态反应的热力学和动力学进行了分析,计算了各个化学键的解离能以及过渡态活化能,通过理论计算找出了主要裂解路径,推导1,2-丙二醇和1,3-丙二醇的裂解路径和主要反应产物;结果表明:丙三醇在高温下裂解主要初级反应是脱水反应,形成甲醛、乙烯醇、2,3-二羟基丙烯、1,3-二羟基丙烯、羟基丙酮、3-羟基丙醛,脱水反应的活化能在53.64kcal/mol~64.98kcal/mol之间。初级反应产物会继续反应,生成丙烯醛、甲醛和乙醛。1,2-丙二醇脱水反应活化能在60-70kcal/mol,裂解主要产物是丙醛、丙酮和乙醛,其中丙醛的含量最高;而1,3-丙二醇脱水反应活化能在50-60kcal/mol,裂解主要产物是甲醛、乙醛和丙烯醛。理论推导与无氧裂解实验具有很高的一致性。
     采用正交实验L9(33)研究了温度、氧气浓度和氮气流量对烟草中各种碳水化合物、保润剂和不同类型烟草羰基化合物产率的影响。结果表明:氮气流量是影响各种化合物裂解生成甲醛的显著影响因素,而温度则是影响其他挥发性羰基化合物生成的主要因素,氧气浓度对羰基化合物产率的影响不显著。四种碳水化合物(葡萄糖、果糖、蔗糖和淀粉)的甲醛、乙醛、丙酮、丙烯醛和丙醛的产率都很高,各种因素对不同碳水化合物裂解生成羰基化合物的影响规律类似。在卷烟常用的四种保润剂中,丙二醇在高温下丙酮和丙醛的产率远远高于丙三醇、木糖醇和山梨醇,而丙三醇裂解甲醛、丙烯醛和巴豆醛的产率最高,木糖醇在600℃甲乙酮产率最高,山梨醇在氧气浓度低、氮气流量小的情况下,丁醛的产率最高。温度显著影响不同类型烟草各种羰基化合物的产率,香料烟在600℃甲醛的产率远远超出烤烟和白肋烟,各种羰基化合物在800℃的产率都不高。
     选择可再生生物大分子壳聚糖以及过渡金属等低成本材料,通过络合方法或共沉淀法以及条件优化,制备了壳聚糖络合物和两种纳米金属复合氧化物,确证了制备物的结构,研究了这些材料对卷烟主流烟气中羰基化合物或氮氧化物的选择性降低作用及其结构与功能性质之间的关系。结果表明:在pH4.8,温度25℃,壳聚糖与硫酸铜配比10:4,时间30min,铜离子负载量为6.2%时,可最优制备壳聚糖-铜(Ⅱ)络合物,壳聚糖氨基或者酰胺基发生与铜离子吸附配位;壳聚糖-铜(Ⅱ)络合物对卷烟主流烟气中羰基化合物的吸附能力与羰基化合物的极性和分子量有重要关系,随着碳链的增加和极性的减弱,吸附量迅速下降。对甲醛的吸附率最高可达53%,而对四碳羰基化合物最高吸附率只能达到12%,在相同碳原子醛酮同分异构体中,对酮的吸附强于醛,而对不饱和羰基化合物的吸附更高。壳聚糖-铜(Ⅱ)络合物对卷烟主流烟气中的苯酚和HCN也有一定得吸附效果,对主流烟气中的CO、烟碱和焦油基本没有吸附效果。
     铜铁复合氧化物催化剂的较佳制备条件为:原料配比(Cu:Fe)1:5,pH值9.0,陈化90min,煅烧温度300℃,煅烧时间5 h。铜钴复合氧化物催化剂的较佳制备条件为:原料配比(Cu:Co)1:5,碱液添加量15 mL,陈化5 h,煅烧温度200℃,煅烧时间3 h。铜铁、铜钴复合氧化物催化剂能够在低温下选择性催化卷烟主流烟气中的NO,生成没有毒性的N2。两种催化剂在卷烟中的添加量超过2%时,都能显著降低主流烟气中的NO,铜钴复合氧化物的催化效果好于铜铁氧化物,在添加量超过5%时,NO可以降低50%。
     本论文从卷烟烟气中羰基化合物的形成机理入手,探讨了其有害物的形成规律和影响因素,确定了卷烟主流烟气中羰基化合物的主要前体物和主要影响因素,建立了壳聚糖-铜(Ⅱ)络合物和两种纳米金属复合氧化物降低卷烟烟气中有害成分羰基化合物和NO的减害技术。研究结果对于降低卷烟主流烟气中其他有害成分都有重要指导作用。
Smoking is harmful to health. Volatile carbonyl compounds and nitrogen oxides are two major types of harmful components in cigarette mainstream smoke. Reducing such harmful components has significant value to enhance safety of cigarette. This paper studied the mechanism of the formation of carbonyl compounds, and discussed the formation rule and influencing factors. We have used some low-cost materials such as the natural renewable resources and the transition metals to reduce carbonyl compounds and nitrogen oxides in cigarette mainstream smoke. The research has important academic and practical significance in the development of tobacco science and tobacco industry.
     The formation mechanism of the carbonyl compounds in cigarette is researched through theory and experiments.The thermodynamic and kinetic properties of bond dissociation reaction and transiton state reaction was studied using DFT theory in B3LYP/6-31G. Bond dissociation energe and activate energe of transtite state were calculated.Major pyrolysis routes were determined by the theoretical calculation.The mechanism can be used to predict pyrolysis route and major products of 1,2-propylene glycol and 1,3-propylene glycol.The results indicated that the active energy of the dehydration reaction is between 53.64kcal/mol and 64.98kcal/mol.The primary products will formate acrolein,formaldehyde and acetaldehyde.The activation energy of 1,2-propylene glycol dehydration reaction is between 60 kcal/mol and 70 kcal/mol, The main pyrolysis products of 1,2-propylene glycol are propionaldehyde, acetone and acetaldehyde, the yield of propionaldehyde is far higher than others.The active energe of 1,3-propylene glycol is between 50 kcal/mol and 60 kcal/mol. The major procucts of 1,3-propylene glycol are formaldehyde, acetaldehyde and acrolein. The experiment datas showed highly agreement with theoretical derivation.
     The effects of temperature,oxygen concertration and nitrogen flow on the yield of volatile carbonyl compounds from carbohydrate, humectants and different tobacco type were researched by orthogonal experiments L9(33). The results as followed: Nitrogen flow remarkably affected the yield of formaldehyde; Temperature is the main factor of formatting other volatile carbonyl compounds, while oxygen concentration showed a little effects on the yield of the carbonyl compounds.Formaldehyde, acetaldehyde, acetone and acrolein are produced in high yield during the pyrolysis of glucose, fructose, sucrose and starch, which have the similar low of producing carbonyl compounds through pyrolysis. In the four kinds of humectants, propylene glycol is like to produce much more acetone and propionaldehyde than glecerol, xylitol and sorbitol. Yield of formaldehyde, acrolein and crotonaldehyde, produced by glycerol pyrolysis, are the highest. When pyrolyzed at 600℃, xylitol generated the most methyl ethyl ketone. While sorbitol can produce the most butyraldehyde in the case of low oxygen concentration and nitrogen flow rate.Temperature significantly affected the generation of carbonyl compounds of the three kinds of tobacco. The yield of formaldehyde produced by oriental tobacco was far higher than others when pyrolyzed at 600℃.Furthermore, all kinds of tobacco that were pyrolyzed at 800℃produced little carbonyl compounds.
     Renewable biomacromolecular resources-chitosan and the transition metals were selected to prepare complex and nano-metal complex oxide through complex and co-precipation method.The preparation structure were charactered.The effect of preparation on carbonyl compounds and nitrogen oxide in mainstream smoke and the structure-activity relationship were studied.The results indicated that the optimized preparation condition of copper-chitosan complex is as followed: pH 4.8, temperature 25℃, molar ratio of chitosan to copper sulfate 10:4, time 30min. In this case,amino or amide groups in chitosan complexed copper ion. There is an important relationship between the adsorption properties of carbonyl compounds on chitosan-copper(Ⅱ) complex and the polarity and molecular weight of carbonyl compounds. The adsorption capacity decreased rapidly with the carbon chain increasing and polarity reducing. The adsorption rate of formaldehyde is up to 53%, nevertheless, only 12% for four carbon carbonyl compounds. Compared aldehydes with its isomer ketones, the result indicated the adsorption of the complex to ketones was stronger than aldehydes, In addition, the complex showed the strongest adsorption capacity to the unsaturated carbonyl compounds. Besides carbonyl compounds, the copper-chitosan complex can adsorb phenol and HCN to certain extent, but has no effect on removing the CO, nicotine and tar in the mainstream smoke.
     The optimum preparation condition of Copper iron composite oxides can be fixed as follows: molar ratio of copper to iron 1:5,pH 9.0,ageing time 90min,calcination temperature 300℃and calcinations time 5h;the optimal preparation condition condition of CuO/Co3O4 catalysts are as followed: molar ratios of copper to cobalt 1:5,volume of NaOH 15ml,ageing time 5h,calcinated at 200℃for 3h.Copper iron and copper cobalt complex oxides can catalysis NO in cigarette mainstream smoke to formate non-harmful N2 at low temperature.When added in the cigarette, NO in the mainstream smoke can be significantly removed in the additive amount of 2%.Comparison with CuO/Fe2O3 complex,CuO/Co3O4 showed higher catalytic activity. When addition amount to 5%,NO can be converted by 50%。
     This article explored the mechanism of carbonyl compounds forming in cigarette smoke, the forming pattern and influence factors. We have determined the main precursors of carbonyl compounds in the mainstream smoke, as well as major influence factors. We also established the technique to utilize chitosan-Cu(II) complex and two nano-metal complex oxides to reduce harmful carbonyl compounds and NO in the cigarette smoke. This research is creative and important in reducing other harmful ingredients in mainstream smoke.
引文
1.Stavridis I. S. Removal of noxious oxidants and carcinogenic volatile nitrosocompounds from cigarette smoke using biological substances[P]. US:5909736, 1999-06-08
    2.戴亚.血红蛋白的提取及降低卷烟烟气中N-亚硝胺含量的初步实验[J].烟草科技,2001,(1):19-21.
    3.聂聪,吕功煊,刘建福,等.应用纳米催化材料降低卷烟烟气中CO研究[C].中国烟草学会2002年学术年会论文集(上册),2002.154-159.
    4.Baker R.R.Sugars.The generation of formaldehyde in cigarettes—Overview and recent experiments [J].Food and Chemical Toxicology, 2006,44(11): 1799-1822.
    5. Paine J.B., Pithawalla Y B., Naworal J.D.. Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 3: The pyrolysis of D-glucose:Formation of C3 and C4 carbonyl compounds and a cyclopentenedione isomer by electrocycylic fragmentation mechnissm . J.Anal.Appl.Pyro. , 2008,82(1),42-69
    6.Torikai K,Yoshida S,Takahashi H. Effects of temperature, atmosphere and pH on the generation of smoke compounds during tobacco pyrolysis[J].Food Chem. Toxico. 2004,42(9),1409-1417
    7. Hoffmann D, Hecht S S. Advance in Tobacco Carcingoenesis. In Chemieal Carcinogenesis and Mutagenesis. Berlin: CS CooPPer and P.L.Grover,Eds.Spring-Verlag,1990:63-102.
    8.彭慧敏,吴名剑,任凤莲等.离子色谱法测定卷烟主流烟气中的氮氧化物.分析化学研究简报,2007,2(35):289-292
    9.谢复炜,吴鸣,夏巧玲,等.卷烟主流烟气中羰基化合物的改进分析方法[J].2006,12(5): 15-24
    10.Umemura S , Muramatsu M, Okada T1 A study on precurs ors of nitric oxide in sidestream smoke. Beitr Tabak forsch. Int. ,1986 , 13 (4) : 183– 190.
    11.HOONGSUN IM,et al. Formation of Nitric Oxide during Tobacco Oxidation. Agricultural and Food Chemistry. 2003,51,7366-7372.
    12. Baker RR.Sugars.The generation of formaldehyde in cigarettes—Overview and recent experiments.Food and Chemical Toxicology, 2006,44(11): 1799-1822
    13. Talhout R., Opperhuizen A., Amsterdam G.C.. Sugers as Tobacco Ingredient: Effects on Mainstream Smoke Composition,Food and Chemical Toxicology, 2006,44(11) 1789-1798.
    14. Seeman J I,Dixon M.Acetaldehyde in mainstream tobaccosmoke: formation and occurrence in smoke and bioavailability in the smoker. Chem Res. Toxicol., 2002, 15(11):1332-1350
    15. Paine J.B., Pithawalla Y B., Naworal J.D.. Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 1: The pyrolysis of glycerin: Discovery of competing fragmentation mechanisms affording acetaldehyde and formaldehyde and the implications for carbohydrate pyrolysis.J.Anal.Appl.Pyro. , 2007,80(2), 297-311
    16. Seminars in tobacco science.Beitr. Tabak forsch. Int.1996 ,17 (1) : 21–26.
    17.Umemura S , Muramatsu M, Okada T. A study on precurs ors of nitric oxide in sidestream smoke.Beitr. Tabak forsch. Int.,1986 , 13 (4):183-190.
    18. Greenbaum R ,Day J,Hargreaves MD ,et al. Effects of higher oxides of nitrogen on the anaesthetized dog.Br J Anaesth ,1967 ,39 :393-404.
    19.Fullerton DA ,Mclntyre RCJ r. Therapeutic applications in cardiothoracic surgery [J]. Ann Thorac Surg ,1996 ,61 :1857-1864.
    20.Haddad IY,Pataki G,Hu P ,et al. Quantitation of nitrot yrosine levels in lung sections of patients and animals with acute lung injury[J]. J Clin Invest ,1994 ,94 :2407-2413.
    21.Gaston B ,Drazen JM ,Loscalzo J ,et al. The biology of nitrogen oxides in the air2-ways[J]. Am J Respir Crit Care Med ,1994 ,149 :538-551.
    22.Nguyen T ,Brunsen D ,Crespi CL. DNA damage and mutation in human cells exposed to nitric oxide in vitro[J]. Proc Natl Acad USA ,1992 ,89 :3030-3034.
    23.张爱萍,刘立全.重新认识卷烟烟气中的一氧化氮[J].烟草科技,1999, (5) :30.
    24.Davis R W,Snead B H.Determination of total aldehyde and aerolein in mainstream vapor phase cigarette smoke[C].24th toba. Chem. ResConf. 1970:85.
    25.Takasi Miyake.Quantitative analysis by gas chromatograph of volatile carbonyl compounds in cigarette smoke[J].Journal of Chromatography A 1995, (693):376-381.
    26.毛友安,钟科军,魏万之等.LC/MS/MS法同时测定卷烟主流烟气中4种TsNAs[J].化学研究与应用.2005,17(4):571-573.
    27. Forehand J.B.Analysis of Polycyclic aromatic hydrocarbons, Phenols and aromatic amines in Particulate Phase cigarette smoke using simultaneous distillation and extraction as a sole sample clean-up step[J].Journal of Chromatography A, 2000, (898):111-124.
    28. Smith C.J. New techque using solid-phase extraction for the analysis of aromatic amines in mainstream cigarette smoke[J].Journal of Chromatography A. 2003, (991):99-107.
    29. Hardy D R,Hobbs M E.The use of 15N and of 15N and 16O in added nitrates for the study of some generated constituents of normal cigarette smoke.In Proceedings of the 173rd American Chemical Society Meeting (Agricultural and Food Chemistry DiVision meeting), Symposium on Recent adVances in the chemical composition of tobacco and tobacco smoke; New Oreans, LA, 1997; pp 489-510.
    30. Lee M.L., Novotny M. Gas chromatograph/Mass spectrometer and nuclear magnetic resonance spectrometric studies of carcinogenic aromatic hydrocarbons in tobacco and marijuana smoke condensates[J].Ana.Chem.1976,48(2):405-416.
    31.Lyapina M, Zhelezova G, Petrova E, et al. Flowcytometric determination of neutrophil respiratory burst activity in workers exposed to formaldehyde[J]. Int Arch Occup Environ Health, 2004, 77(5):335-340.
    32. Cole P, Axten C. Formaldehyde and leukemia:an improbable causal relationship[J]. Regul Toxicol Pharmacol, 2004, 40(2):107-112
    33.万家龙,刘玉瑛.乙醛及其毒性[J].国外医学:卫生学分册.1996,23(2),102-105
    34.刘兴余等.丙烯醛致突变性研究进展[J].中国烟草学报,2009,15(3) 76-82.
    35.IARC. Monogr Eval Carcinog Risks Human 1995: 337-372.
    36.张志虎等.巴豆醛及其检测方法的研究进展[J].中国职业医学,2007,34(6).503-505.
    37. STEIN S, LAO Y, YANG I Y, et al. Genotoxicity of acetaldehyde and crotonaldehyde- induced 1, N2-propanodeoxyguanosine DNA adducts in human cells[J].MutatRes,2006,608(1):1-7.
    38.KAWANISHIM,MATSUDA T, SASAKIG, et al. A spectrum of mutations induced by crotonaldehyde in shuttle vector plasmids propagated in human cells[J]. Carcinogenesis, 1998, 19(1): 69-72. 2
    39. Toxicological Review of Methyl Ethylketone, 2003,U.S. Environmental Protection Agency, Washington, DC.
    40. Foiles P.G, Akerkar S.A , Chung, F.L. Application of an immunoassay for cyclic acrolein deoxyguanosine adducts to assess their formation in DNA of Salmonella typhimurium under conditions of mutation induction by acrolein[J]. Carcinogenesis, 1989, 10 : 87-90 .
    41.IARC, Monographs on the evaluation of the carcinogenic risks to humans. Formaldehydes,
    2-Butoxyethanol and 1-ter-Butoxy-2-Propanol.2004,Vol. 88. International Agency for Research on Cancer,Lyon,France.
    42.Muramatsu,M.Studies on the transport phenomena in naturally smouldering cigarettes[J]. Sci.Papers Central Res.Inst.Japan Tob.Salt Mon. Crop.,1981,123,9-77.
    43. Layten Davis D.和Mark T.Nielsen编,王彦亭等译,烟草-生产,化学和技术[M],化学工业出版社.2002,380-421.
    44.邓发达等.卷烟烟气中一氧化氮研究进展[J].烟草科技/烟草化学,2004,208(11),23-25.
    45.Norman V , Ibrig A M, Lars on T M, et al1 The effect of s ome nitrogenous blend components on NO/ NOx and HCN- levels in mainstream and sidestream smoke[J]. Beitr1 Tabak forsch1 Int. , 1983,12 (2) ;55–58.
    46.Umemura S , Muramatsu M, Okada T1 A study on precurs ors of nitric oxide in sidestream smoke [J]. Beitr Tabak forsch. Int. ,1986 , 13 (4) : 183– 190.
    47. TARORA WAKA, TORIKAI KOJI, TAKAHASHI HIDEKI.烟气中羰基化合物生成研究[C].第57届烟草科学研究会议论文集(摘要).北京:中国烟草学会,2004:57
    48. RICHARD R BAKER, STEVEN COBUM,CHUAN LIU,et al. Pyrolysis of saccharide tobacco ingredients:a TGA-FTIR investigation [J].J Anal Appl Pyrolysis,2005,74:171-180
    49.Qi G, Yang R T. A superior catalyst for low-temperature NO reduction with NH3. Chem C omm ,2003 (7) : 848 - 849.
    50.Chan L K, Bens on S A. Pilot-scale studies of NOx reduction by activated lignite high-sodium lignite chars: a demonstration of the carbon process. Ind Eng Chem Res , 2004 , 43 : 5820 - 5827.
    51.黄华存等.ACF表面改性及其脱除氮氧化物的研究进展[J]合成纤维工业. 2009, 29(6).40-43
    52.刘炜,张俊丰,童志权.选择性催化还原法(SCR)脱硝研究进展[J].工业安全与环保. 2005,31,(1). 25-28
    53. Iwamoto M. Removal of nitrogen monoxide from exhaust gases through novel catalytic processes[J].Catalysis Today ,1991 (10): 57-65.
    54.武鹏,刘运霞,章福祥,等.Pt/SAPO-34在低温H2选择催化还原NO反应中的催化活性.催化学报,2008,29(2):191-196.
    55.Seehofer F , Kausch E. Method for the removal by elimination of nitric oxide and carbon monoxide from tobacco smoke and also from tobacco materia, smoke filters and cigarette paper[ P] G BPatent :2003720 , 1979 - 03– 21.
    56.Seehofer F, Kausch E. Removal of nitric oxide and carbon monoxide from tobacco smoke[P].US. Patent :4182348 , 1980 -01 -08.
    57.Lelah , Dennis M. Method and device for removing nitric oxide from cigarette smoke[P]. E.P. Patent :0250806 , 1988 - 07– 01.
    58.Cvetkovic N , Adnadjevic B , Nikolic M. Catalytic reduction of NO and NOx content in tobacco smoke [J]. Beitr. Tabak forsch. Int. 2002 , 20 (1) : 43–48.
    59..叶非、冯世德主编.有机化学第二版[M].中国农业出版社.2008年版.146-159.
    60.Sasaki, et al. Cigarette filter[P].US:7487782,2009-02-10.
    61.李八方,于广利,梁平方.甲壳质及其衍生物降低香烟焦油和烟碱含量研究[J].中国海洋药物,1996, (1) :48-51.
    62.KAMIYAAKIHIKO.CigatteFilter[P].JP7031452A2,1995 202203.
    63.PAUL ROLLAND AUSTIN,WLIMINGTON DEL. Chitin as an extender and filter for tobacco[P] .USP3987802,1976 -12-26.
    64.王晓葵.壳聚糖对卷烟烟气中低相对分子质量醛类物质的特殊作用[J].无锡轻工大学学报.2002,21 (4):397-400.
    65.田保中等.蚕丝纤维降低香烟主流烟气中醛类物质含量的效果[J].纺织学报.2008,29, (9): 30-33.
    [1].Rodgman R A. Some studies of the effects of additives on cigarette mainstream smoke properties. II. Casing materials and humectants[J].Beit. Zur Tabak. Inter,2002,20,279-299
    [2].Carmines E L,Gaworski C L.Toxicological evaluation of glycerin as a cigarette ingredient[J]. Food Chem. Toxico.,2005,43(10),1521-1539
    [3]. Paine J.B.,Y B. Pithawalla,J.D. Naworal. Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 1: The pyrolysis of glycerin: Discovery of competing fragmentation mechanisms affording acetaldehyde and formaldehyde and the implications for carbohydrate pyrolysis[J]J.Anal.Appl.Pyro. , 2007,80(2),297-311
    [4].IARC,2004.Monographs on the evaluation of the carcinogenic risks to humans. Formaldehydes, 2-Butoxyethanol and 1-ter-Butoxy-2-Propanol,Vol. 88. International Agency for Research on Cancer,Lyon, France.
    [5].Jeffrey I.S,Susan W.L,Allen J.K. Evaluation of Relationships Between Mainstream Smoke Acetaldehyde and "Tar" and Carbon Monoxide Yields in Tobacco Smoke and Reducing Sugars in Tobacco Blends of U.S. Commercial Cigarettes [J].Inhalation Toxicology, 2003 , 15(4): 373– 395.
    [6]. Gaca MD, K Kalirai, ED Massey.Antioxidants reduce cell cytotoxic responses to cigarette smoke. CORESTA Congress,Paris,2006,Smoke Science/Product Technology Groups, abstract SSPOST21
    [7].Torikai K,Yoshida S,Takahashi H. Effects of temperature, atmosphere and pH on the generation of smoke compounds during tobacco pyrolysis[J].Food Chem. Toxico. 2004,42(9),1409-1417
    [8] Stein Y S,Michael J, Maitland J M. A study of the gas-phase pyrolysis of glycerol [J]. J Anal. App.Pyro.,1983,4(4),283-296
    [9]郭玉华.分子筛催化的烯烃裂解及戊烯异构反应机理的理论研究[D]:[博士学位论文].北京:北京化工大学化学工程系,2007
    [10].崔彦斌,王惠,冉新权,等.碳/碳复合材料碳源化合物乙苯热裂解机理的热力学研究[J].有机化学,2004,24(9):1075-1081
    [11]乔占平,王惠,赵文立.甲基苯热裂解机理的理论研究[J].燃料化学学报, 2002, 30(1):49-53
    [12].翟高红,朱卡克,王惠等.碳前驱体热解机理的量子化学理论研究——几何结构、反应焓变、化学键和热反应活性[J].材料科学与工程,2000,18(4):10-15
    [13]. Hui Wang, Haifeng Yang, Xinquan Ran,et al. The pyrolysis mechanism of carbon matrix precursor toluene used as carbon material[J]. Journal of Molecular Structure: THEOCHEM, 2002,581(1):1-9
    [14]. Peterson S D, Francisco J S. Theoretical study of the thermal decomposition pathways of 2-H heptafluoropropane [J]. Journal of Physical Chemistry A,2002,106 (13):3106-3113.
    [15].Hu Y H,Li S F.The effects of magnesium hydroxide on flash pyrolysis of polystyrene[J]. J Anal Appl Pyrolysis,2007,78(1):32-39
    [16].黄云,王裔耿,缪明明,等.快速分离柱高效液相色谱法测定卷烟主流烟气中的主要羰基化合物[J].色谱,2007,25(2):230-233
    [17].Callam C.S,Singer S.J,Lowary T.L,et al. Computational Analysis of the Potential Energy Surfaces of Glycerol in the Gas and Aqueous Phases: Effects of Level of Theory, Basis Set, and Solvation on Strongly Intramolecularly Hydrogen-Bonded Systems[J]. J. Am. Chem. Soc.2001, 123(47):11743-11754
    [18].Nimlos M K,Blanksby S T,Qian X H,et al.Mechanism of Dehydration[J].J Phys. Chem. A,2006,110(18): 6145-6156
    [19].傅献彩,陈瑞华.物理化学(下册)[M].北京:人民教育出版社,1982,214-228
    [20].王华静,傅尧,刘垒,等.碳氟键均裂解离能的密度泛函理论研究[J].化学学报,2007, 65(18):2039-2045
    [21].Jerry M.Advanced Organic Chemistry:Reactions,Mechanisms,and structrue.Fourth Edition,New York,Wiley-Interscience Publication.1992,24
    [22].Michael B S,Jerry M. Advanced Organic Chemistry:Reactions,Mechanisms,and structrue.Fifth Edition,New York,Wiley-Interscience Publication.1994,20
    [23].王庆文,杨玉恒,高鸿宾.有机化学中的氢键问题[M].天津:天津大学出版社,1993,15
    [24].Nimols M R,Blanksby S T,Ellison G B,et al.Enhancement of 1,2-dehydration of alcohols by alkali cations and protons:a model for dehydration of carbohydrates.J Anal Appl Pyrolysis, 2003,66(1):3-27
    [25].Lewis D,Keil M,Starr M. Gas Phase Thermal Decomposition of tert-Butanol.J Am Chem Soc,1974,96():4398-4404
    [26].Tsang W. Thermal stability of alcohols[J] .Int chem Kinet, 1976,8(2): 173-192
    [27].张永敏.物理有机化学[M].上海:上海科学技术出版社,2001,338-342
    [28].Pakariment J M H,Vainiotalo P,Pakkanen T A,et al.An Experimental and theoretical study of ionized hydroxyacetone:a stable,hydrogen-bridged radical cation.J Am chem soc., 1993,115(26):12431-12440
    1.Hoffmann D, Hecht S S. Advance in Tobacco Carcingoenesis. In Chemieal Carcinogenesis and Mutagenesis. Berlin: CS CooPPer and P.L.Grover,Eds.Spring-Verlag,1990:63-102.
    2. Baker RR.Sugars.The generation of formaldehyde in cigarettes—Overview and recent experiments [J].Food and Chemical Toxicology, 2006,44(11): 1799-1822.
    3. Baker RR., Pereira da Silva JR., Smith G..The effect of tobacco ingredients on smoke chemistry. Part II: Casing ingredients[J].Food and Chemical Toxicology, 2004,42, (S1): 39-52.
    4. Baker RR., Pereira da Silva JR., Smith G..The effect of tobacco ingredients on smoke chemistry.Part I:Flavourings and additives [J].Food and Chemical Toxicology, 2004,42, (S1): 3-37.
    5. Baker RR, Massey ED, Smith G.An overview of the effects of tobacco ingredients on smoke chemistry and toxicity[J]. Food and Chemical Toxicology, 2004,42, Supplement 1, 53-83.
    6. R.Talhout, A.Opperhuizen, G.C. Amsterdam. Sugers as Tobacco Ingredient: Effects on Mainstream Smoke Composition[J],Food and Chemical Toxicology, 2006,44(11) 1789-1798.
    7. Esterbauer H,Schaur RJ,Zollner H.Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes[J]. Free Radic Biol Med. 1991;10(6):371-377.
    8. J.D. Backhurst.Subjiective response to suspected irritatants in cigarette smoke.B
    9.J.D. Backhurst.Subjective response to a mixture of irritatants added to cigarette smoke.
    10.J.D.Backhurst,T.Hirji.Irritation in cigarette smoke.BAT report No.1130-R.
    11. W.H.Steinhagen,C.S.Barraw.Sensory irritation structure-active study of inhaled aldhydes in B6C3F1 and Swiss-Webster mice[J].Taxicology and Applied Pharmacology,1984, 72:495-503.
    12. Noguchi M, SatohK Y ,Nishidi, S. Andoh ,et al.Studies on storage and aging of leaf tobacco., AGRIC. BIOL. CHEM., 35, 65-70 (1971).
    13. Bacon, C W, Wenger R., Bullock J F.Chemical changes in tobacco during fluecuring.IND. ENG. CHEM., 1952,44(2): 292
    14.Johnstone R A., Plimmer J R..The chemical constituents of tobacco and tobacco smoke.CHEM. REV., 1959,59(5):885-936
    15. Carmines E L,Gaworski C L.Toxicological evaluation of glycerin as a cigarette ingredient. Food Chem. Toxico.,2005,43(10):1521-1539
    16.Steinhagen W H, Barrow C S.Sensory irritation structure-activity study of inhaled aldehydes in B6C3F1 and Swiss-Webster mice[J]. Toxico. Appl. Pharmaco.,1984,72(3): 495-503
    17谢剑平,刘惠民,朱茂祥,等.卷烟烟气危害性指数研究[J].2008,(9): 5-15
    1.王丽萍,任凤莲,谢慧玲.卷烟主流烟气中挥发性羰基化合物分析研究进展[J].广州化学,2008,33(2):73-79
    2.郭磊,索卫国,田耀伟,等. LC-MS /MS法对卷烟主流烟气中8种羰基化合物的测定[J].分析测试学报,2008,27:99-102
    3.黄云,王裔耿,缪明明,等.快速分离柱高效液相色谱法测定卷烟主流烟气中的主要羰基化合物[J].2007,25(2):230-233
    4.姚伟,冯学伟,王邵雷,等.卷烟烟气中挥发性羰基化合物的检测方法[J].2005,31(1): 110-114
    5. Seeman J I,Dixon M.Acetaldehyde in mainstream tobaccosmoke: formation and occurrence in smoke and bioavailability in the smoker. Chem Res. Toxicol., 2002, 15(11):1332-1350·
    6.谢复炜,吴鸣,夏巧玲,等.卷烟主流烟气中羰基化合物的改进分析方法[J].2006,12(5): 15-24
    7. IARC, Monographs on the evaluation of the carcinogenic risks to humans. Formaldehydes,
    2-Butoxyethanol and 1-ter-Butoxy-2-Propanol.2004,Vol. 88. International Agency for Research on Cancer,Lyon,France.
    8.Toxicological Review of Methyl Ethylketone, 2003,U.S. Environ- mental Protection Agency, Washington, DC.
    9. IARC,Monographs on the evaluation of the carcinogenic risks to humans. Dry Cleaning, Sorne Chlorinated Solvents and Other Industrial Chemicals. 1995,Vol.63. International Agency for Research on Cancer,Lyon,France.
    10. International Chemical Safety Cards (WHO/IPCS/ILO): Propionaldehyde.
    11.Baker R R.Sugars.The generation of formaldehyde in cigarettes—Overview and recent experiments.Food and Chemical Toxicology, 2006,44(11): 1799-1822.
    12. Foiles P.G, Akerkar S.A , Chung, F.L. Application of an immunoassay for cyclic acrolein deoxyguanosine adducts to assess their formation in DNA of Salmonella typhimurium under conditions of mutation induction by acrolein[J]. Carcinogenesis, 1989, 10 : 87-90 .
    13.IARC.monographs on the evaluation of the carcinogenic risk of chemicals to humans.1999,Vol.71, International Agency for Research on Cancer,Lyon,France.
    14.Rinaudo M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. ,2006, 31(4):603–632
    15. Wang X H, Du Y M, Liu H. Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydrate Polymers , 2004,56(1): 21–26
    16.王瑾,陈均志,刘毅,等.壳聚糖及其衍生物作为果蔬保鲜剂和食品助剂的研究进展及应用[J]. 2009,30(6):388-391
    17.尚佳健.壳聚糖在口腔医学中的应用研究[J].北京口腔医学,2004,12(2):114-116
    18.郭立民,张谋真.壳聚糖在卷烟滤嘴中的应用[J].延安大学学报(自然科学版),2000,19(3):60-62.
    19.任军林,李小斌,杜红梅等.壳聚糖在卷烟滤嘴中的应用[J].烟草科技,2005,5:32-33.
    20.王进,杨占平,曹建华等.壳聚糖改性醋纤滤嘴对烟碱和焦油的吸附效果[J].无锡轻工大学学报,2004,23(5):34-37.
    21.V.Norman,C.Hill,T.B.Williams,et al.Tobacco Smoke Filter[P].US:3664352,1972-5-23.
    22.C.B.Browne,S.C.Clover,R.M.Robertson,et.al.Removal of Nicotine From Tobacco Smoke[P]. US,5462072,1995-10-31.
    23.N.B.Rainer,C.B.Hoelzel.Smoke Article[P].US,4022223,1977-5-10.
    24.薛光荣,沈志希.火焰原子吸收光谱法快速测定氢氧化锂中铜、铁、锌、镁和钴[J].化学分析计量,2007,16(2):30-32
    26.谢复炜,赵明月,王昇,等.卷烟主流、侧流烟气中酚类化合物的高效液相色谱测定[J].烟草科技,2004,5:6-10
    27. Muzzarelli R AA. Chitin[M]. NewYork, Pergamon press, 1977,134
    28. Tseng R L, Wu F C, Juang R S. Effect of complexing agents on liquid-phase adsorption and desorption of copper(II) using chitosan .J Chem.Technol Biot, 1999,74(6): 533~538
    29. Dong S K, Byoung Y P. Effects on the removal of Pb2+ from aqueous solution by crab shell .J Chem.Technol Biot, 2001,76(11):1179~1184
    30.季君晖. Cu2+-壳聚糖螯合物及壳聚糖吸附Cu2+机理的XPS研究[J].应用化学,2000,
    17(1):115-116
    31.吕仁庆.金属离子与壳聚糖配位氧原子相互作用的密度泛函理论研究[J].鲁东大学学报(自然科学版),2008,24(1):47-52
    32.Braier N C,Jishi R A. Density functional studies of Cu2+ and Ni2+ binding to chitosan.J mol. Struct.,2000,499(1):51-55
    33.王莉娥.一氧化碳神经毒性的研究进展[J].国外医学卫生学分册,1991,3:134-137
    34.杜咏梅,肖协忠,王允白.烟气焦油与卷烟安全性[J].中国烟草科学,2002,2:31-34
    35. Shimada T, Sakata K, Homma T, et al. Density functional theory study on the oxidation mechanisms of aldehydes as reductants for electroless Cu deposition process. Electrochimica Acta,2005,51(5):906-915
    36. MercéB, Marcos M, Francesc I. Origin of chemoselective behavior of S-covered Cu(1 1 1) towards catalytic hydrogenation of unsaturated aldehydes. Surface Science, 2008, 602( 21): 3284-3290
    37.戴亚,祁祯祥,宣晓泉,等.引起卷烟不良吸味的几类化学物质[J].烟草科技,1999, 5:28-29.
    38.朱杰,孟祥光,臧蓉蓉,等.金属铜(Ⅱ)配合物催化2,6-二甲基苯酚氧化偶合反应的动力学研究[J].催化学报,2005,26(4):317-322
    39.陈开波,孙俊举,葛少林.离子色谱法测定卷烟主流烟气中氢氰酸[J].中国烟草学报,2007, 13(5):23-25
    40.胡建明,李奕,章永凡,等.Cu(100)表面吸附HCN和HNC的密度泛函研究[J].化学学报,2003,61(4):476-480
    1. V.I.Parvulescu,P.Grange,B.Delmon.Catalytic removal of NO.Catalysis Today,1998, 46(4): 233-316
    2. Souvik Bhattacharyya,Randip K.Das.Catalytic control of automotive NOx:A review.International Journal of Energy Research,1999,23(4):351-369
    3. Runduo Zhang,Adrian Villanueva,Houshang Alamdari,Serge Kaliaguine.Catalytic reduction of NO by propene over LaCo1-xCuxO3 perovskites synthesized by reactive grinding.Applied Catalysis B:Environmental,2006,64(3):220-233
    4. Jaime Benitez.Process Engineering and Design for Air Pollution Control.Englewood Cliffs.NJ:Prentice-Hall,1993:254-280
    5. Hanna Sjovall,Louise Olsson,Erik Fridedd,Richard J.Blint.Selictive catalytic reduction of NOx with NH3 over Cu-ZSM-5-The effect of changing the gas composition. Applied Catalysis B:Environmental,2006,64(3):180-188
    6. N.Apostolescu,B.Geiger,K.HIzbullah,M.T.Jan,S.Kureti.Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts. Applied Catalysis B:Environmental, 2006,62(2):104-114
    7. F.Eigenmann,M.Maciejewski,A.Baiker.Selective reduction of NO by NH3 over manganese-cerium mixed oxides:Relation between adsorption ,redox and catalytic behavior. Applied Catalysis B:Environmental,2006,62(2):104-114
    8. Lucjan Chmielarz,Piotr Kustrowski,Alicja Rafalska-Lasocha,Roman Dziembaj. Selective oxidation of ammonia to nitrogen on transition metal containing mixed metal oxides. Applied Catalysis B:Environmental,2005,58(3):235-244
    9. A.E.Giannakas,A.K.Ladavos,P.J.Pomonis. Preparation, characterization and investigation of catalytic activity for NO + CO reaction of LaMnO3 and LaFeO3 perovskites prepared via microemulsion method. Applied Catalysis B:Environmental,2004,49(3):147-158
    10. S.D. Peter,E. Garbowski,V. Perrichon and M. Primet. NO reduction by CO over aluminate‐supported perovskites. Catalysis Letters,2000,70(1):27-33
    11. Laure Simonot,Francois Garin,Gilbert Maire. A comparative study of LaCoO3, Co304 and a mix of LaCoO3-Co304 II. Catalytic properties for the CO + NO reaction. Applied Catalysis B: Environmental, 1997, 11(2):181-191
    12. Emmanuel Joubert,Xavier Courtois,Patrice Marecot,Danied Duprez. NO reduction by hydrocarbons and oxygenated compounds in O2 excess over a Pt/Al2O3 catalyst A comparative study of the efficiency of different reducers (hydrocarbons and oxygenated compounds). Applied Catalysis B: Environmental, 2006, 64(2):103-110
    13. Martin Petersson, Thomas Holma, Bengt Andersson, Edward Jobson, Anders Palmqvist. Lean hydrocarbon selective catalytic reduction over dual pore system zeolitemixtures.Journal of Catalysis,2005,235(1):114-127
    14. Ken-ichi Shimizu,Atsushi Satsuma. Selective catalytic reduction of NO over supported silver catalysts—practical and mechanistic aspects.Physical Chemistry Chemical Physics,2006,8(23):2677-2695
    15. Andrzej Adamski, Edyta Tabor, Barbara Gil, Zbigniew Sojka. Interaction of NO and NO2 with the surface of CexZr1?xO2 solid solutions– Influence of the phase composition.Catalysis Today, 2007, 119(2): 114-119
    16. S.Mendioroz,A.B.Martin-Rojo,F.Rivera,J.C.Martin,A.Bahamonde,M.Yates. Selective catalytic reduction of NOx by methane in excess oxygen over Rh based aluminium pillared clays. Applied Catalysis B: Environmental, 2006, 64(3):167-170
    17. A.P. Ferreira, C. Henriques, M.F. Ribeiro, F.R. Ribeiro. SCR of NO with methane over Co-HBEA and PdCo-HBEA catalysts: The promoting effect of steaming over bimetallic catalyst.Catalysis Today, 2005, 107-108:181-191
    18. Luis Fernando Cordoba,Wolfgang M.H.Sachtler,Consuelo Montes de Correa. NO reduction by CH4 over Pd/Co-sulfated zirconia catalysts. Applied Catalysis B: Environmental, 2005, 56(4):269-277
    19. F.Lonyi,J.Valyon,L.Gutierrez,M.A.Ulla,E.A.Lombardo. The SCR of NO with CH4 over Co-, Co,Pt-, and H-mordenite catalysts. Applied Catalysis B: Environmental, 2007, 73(1):1-10
    20. Pietraszek, P. Da Costa, R. Marques, P. Kornelak, T.W. Hansen, J. Camra, M. Najbar. The effect of the Rh–Al, Pt–Al and Pt–Rh–Al surface alloys on NO conversion to N2 on alumina supported Rh, Pt and Pt–Rh catalysts.Catalysis Today,2007,119(3):187-193
    21. Pietraszek,D.Zemlyanov,M.Muhler,G Ertl. The catalytic reduction of NO by H_2 on Ru_(0001): Observation of NH_(ads) species. Surface Science,2006, 600 (2):370-379
    22. Costas N. Costa, Angelos M. Efstathiou. Low-temperature H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst.Applied Catalysis B: Environmental, 2007, 72(3):240-252
    23. Yoshitake Hasegawa, Masaaki Haneda, Yoshiaki Kintaichi, Hideaki Hamada. Zn-promoted Rh/SiO2 catalyst for the selective reduction of NO with H2 in the presence of O2 and SO2. Applied Catalysis B: Environmental, 2005, 60(1):41-47
    24. Nikolopoulos, E. S. Stergioula, E. A. Efthimiadis, I. A. Vasalos. Selective catalytic reduction of NO by propene in excess oxygen on Pt- and Rh-supported alumina catalysts.Catalysis Today, 1999, 54(4): 439-450
    25. Tatyana V. Mironyuk, Svetlana N. Orlyk. Effect of rhodium on the properties of bifunctional MxOy/ZrO2 catalysts in the reduction of nitrogen oxides by hydrocarbons. Applied Catalysis B: Environmental, 2007, 70(1):58-64
    26. Yasuaki Okamoto,Takeshi Kubota,Yoshiharu Ohto,Saburo Nasu.Physicochemical characterization of FE/ZrO2 catalysts for NO-CO reaction.Journal of Catalysis,2000,192(2): 412-422
    27. Simona Bennici, Antonella Gervasini. Catalytic activity of dispersed CuO phases towards nitrogen oxides (N2O, NO, and NO2). Applied Catalysis B: Environmental, 2006, 62(4): 336-344
    28. Masakazu Iwamoto. Heterogeneous catalysis for removal of NO in excess oxygen. Progress in 1994.Catalysis Today,1996,29(1):29-35
    29. Ying Wan, Jianxin Ma, Zheng Wang, Wei Zhou, Serge Kaliaguine. Selective catalytic reduction of NO over Cu-Al-MCM-41.Jounal of Catalysis,2004,227(1):242-252
    30. S. Morfis, C. Philippopoulos, N. Papayannakos. Application of Al-pillared clay minerals as catalytic carriers for the reaction of NO with CO. Applied Clay Science, 1998,13(3): 203-212
    31. Neli B. Stankova, Mariana S. Khristova, Dimitar R. Mehandjiev. Catalytic Reduction of NO with CO on Active Carbon-Supported Copper, Manganese, and Copper–Manganese OxidesJournal of Colloid and Interface Science,2001,241(2):439-447
    32. X.S.Peng,H.Lin,W.F.Shangguan,Z.Huang.Surface Properties and Catalytic Performance of La0.8K0.2CuxMn1-xO3 for Simultaneous Removal of NOx and Soot.Chemical Engineering Technology, 2006, 30(1):99-104
    33. Kwan-Young Lee, Kensuke Watanabe, Makoto Misono. Removal of NO by absorption and the subsequent reduction method using YBa2Cu3Oy and Ce-ZSM-5. Applied Catalysis B: Environmental, 1997, 13(4):241-249
    34. M. Richter, R. Eckelt, B. Parlitz, R. Fricke. Low-temperature conversion of NOx to N2 by zeolite-fixed ammonium ions. Applied Catalysis B: Environmental, 1998, 15(2):129-146
    35. Ronald M. Heck. Catalytic abatement of nitrogen oxides–stationary applications. Catalysis Today,1999, 53(4):519-523
    36. W. E. J. van Kooten, B. Liang, H. C. Krijnsen, O. L. Oudshoorn, H. P. A. Calis, C. M. van den Bleek. Ce-ZSM-5 catalysts for the selective catalytic reduction of NOx in stationary diesel exhaust gas. Applied Catalysis B: Environmental, 1999, 21(3):203-213
    37. Norman V,Keith C H.Nitrogen Oxide in tobacco smoke.Nature,1965,205(4974):915-916
    38. Hardy D R,Hobbs M E.The use of 15N and of 15N and 16O in added nitrates for the study of some generated constituents of normal cigarette smoke.In Proceedings of the 173rd American Chemical Society Meeting (Agricultural and Food Chemistry DiVision meeting), Symposium on Recent adVances in the chemical composition of tobacco and tobacco smoke; New Oreans, LA, 1997; pp 489-510.
    39. Hoongsun I,Firooz R,Mohammad H.Formation of Nitric oxide during tobacco oxidation.J Agric food chem.,2003,51(25):7366-7372
    40.周君富,郭芳珍,钱志君,等.一氧化氮等自由基对吸烟者损害效应的研究[J].中国公共卫生,1997,13(2):90-92
    41. Tanja Kolli,Katariina Rahkamaa-Tolonen,Ulla Lassi,Auli Savim?ki,Riitta L.Keiski. Comparison of catalytic activity and selectivity of Pd/(OSC + Al2O3) and (Pd + OSC)/Al2O3 catalysts.Catalysis Today,2005,100(3):297-302
    42. T.N.Burdeinaya,V.A.Matyshak,V.F.Tret’yakov,L.S.Glebov,A.G. Zakirova, M.A.Carvajal Garcia,M.E.Arias Villanueva.Design of catalysts for deNOx process using synergistic phenomenon .Applied Catalysis B: Environmental,2007,70(1):128-137
    43.彭慧敏,吴名剑,任凤莲等.离子色谱法测定卷烟主流烟气中的氮氧化物[J].分析化学研究简报,2007,2(35):289-292
    44. W.M.Shaheen,A.A.Ali.Thermal solid–solid interaction and physicochemical properties of CuO–Fe2O3 system .International Journal of Inorganic Materials, 2001,3(3): 1073-1081
    45. B.S.Uphade,Y.Yamada, T.Akita,T.Nakamura,M. Haruta.Synthesis and characterization of Ti-MCM-41 and vapor-phase epoxidation of propylene using H2 and O2 over Au/Ti-MCM-41.Applied Catalysis A: General,2001,215(1):137-148
    46. Graham J. Hutchings, Masatake Haruta.A golden age of catalysis:A perspective.Applied Catalysis A: General,2006,291(1):2-5
    47. Tomoki Akita,Mitsutaka Okumura,Koji Tanaka,Masanori Kohyama,Masatake Haruta.Analytical TEM observation of Au nano-particles on cerium oxide.Catalysis Today,2006,117(1):62-68
    48. R.Burch,A.R.Flambard.Strong metal-support interactions in nickel/titania catalysts:The importance of interfacial phenomena. Journal of Catalysis,1982,78(2):389-405
    49. Burdeinaya T N ,Matyshak V A ,Tret’yakov V F.Selective NO reduction by propane over commercial oxide catalysts and their mechanical mixture:II. Intermediate complexes and reaction mechanism.2000,41(3):377-382
    50. Chikafumi Yokoyama,Makoto Misono. Catalytic reduction of NO by propene in the presence of oxygen over mechanically mixed metal oxides and Ce-ZSM-5.Catalysis Letters,1994,29(1):1-6
    51. K.A.Bethke,H.H.Kung. Supported Ag Catalysts for the Lean Reduction of NO with C3H6. Journal of Catalysis,1997,172(1):93-102
    52. J.C. Yan,H.H.Kung,W.M.H.Sachtler,M.C.Kung.Synergistic Effect in Lean NOxReduction by CH4 over Co/Al2O3and H-Zeolite Catalysts.Journal of Catalysis,1998,175(2):294-301
    53.田凯,涂学炎,戴树珊.在Rh(111)面上NO+CO反应机理的密度泛函理论研究[J].高等学校化学学报,2008,29(12):2360-2364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700