H_3O~+(T)的完整势能面计算及空穴-粒子对应在MRCISD中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要分为两个方面的工作:激发态H_3O~+(T)全局势能面的构建和空穴-粒子对应算法在MRCISD程序中的应用。
     在第一章,我们介绍了构造势能面的理论基础,包括数据点的计算、拟合,以及基于势能面的动力学计算。针对数据点的计算,我们主要介绍了目前较为流行的几种电子相关方法。鉴于多参考态方法在构建势能面时的重要性,文中重点讨论了MRCISD计算中的一些具体问题,如怎样选取参考态空间、对MRCISD的各种近似等,并对这些方法的优缺点作了简要评述。数据点的拟合是构建解析势能面的难点,我们介绍了几种常用的解析函数形式,以及拟合的一般思路和步骤,这一节是本论文的重点所在。对动力学计算的基础理论,文中也作了简单介绍。
     H_3~+离子与O原子的反应对星际云化学有着重要的意义,它为星际云中合成H_2O提供了可能的途径,为此,我们构造了激发态H_3O~+(T)的全局势能面。第二章详细介绍了本文构建激发态H_3O~+(T)全局势能面的方法和结果。我们用HONDO程序的CAS来选取参考态空间,采用多参考态的外收缩组态相互作用(MRECCISD)来计算数据点,最后用Aguado-Paniagua(AP)多体展开函数来拟合。通过本章的计算,我们对H_2O~+(~2B_1)和H_3O~+(T)的全局势能面拓扑结构作了详细的研究,同时我们也建立了构筑三原子或四原子体系AP型多体展开势能面的一般方法和步骤。
     第三章主要介绍空穴粒子对应在多参考态一级和二级组态相互作用(MRCISD)中的应用。我们采用不同于Paldus和Boyle的一种新的组态分类方法,定义了空穴LOOP形,根据从外空间LOOP形到空穴LOOP形的转化规则推导了总共244个空穴LOOP形的类型和数值,以此为基础提出了高效率的改进CI算法并将其程序化,给出了应用新算法程序的一些算例来说明新程序的功能和效率。算例结果表明,新程序有更高的效率,能大大节约存储所需的磁盘空间,可以容易地推广到更大规模的MRCISD计算。
     在附录早,主要给出了四原子体系AP型势能面计算及拟合程序的源代码,这些拟合程序可以应用于任何四个或四个以下原子的体系。二原子势能曲线的拟合程序中还给出了常用光谱常数的计算。
There are two main aspects in the doctoral dissertation, the construction of triplet H3O+ global potential energy surface (PES) and the applications of hole-particle correspondence in MRC1SD calculations.
    At Chapter 1. the theoretical basis of constructing the PES is presented, including the calculation, fitting and the dynamics study of the PES. On the calculation of data points, the most popular and well-developed post HF methods at present are discussed. Because it is most important to use the multi-reference methods when constructing the PES and investigating the chemical process, the realization and characteristics of MRCISD as well as its some approximations are discussed as the main subjects. Concise evaluation to these approximation methods and how to select the reference space are also discussed. Fitting the data points is the key process in the construction of the PES, and we have presented some basal analytic function form and the general process of fitting, too. At the end of this Chapter, some theories of dynamics calculation is introduced simply.
    The reaction of H3+ ion and 0 atom provides a pathway for synthesizing H2O in interstellar clouds, thus it has attracted a great deal of experimental and theoretical studies in the past few years. The aim of the Chapter 2 is to construct an accurate global PES of the triplet H3O+ based on the externally contracted multi-reference configuration interaction with single and doubly excitations (EC-MRCISD), which is developed by our research group. We use complete active space (CAS) of HONDO and MELD programs to select the reference space and the computed energies will be fitted as many-body expansion functions suggested by Aguado and Paniagua. By the way. the global PES of H2O+(2B1) is constructed. The results show that the fitted PESs are good. They will be helpful to study the reactions of H2O+(2B1) or triplet H3O+ in detail and accurately. At the same time, the general method of constructing three or four atomic system AP many-body expansion PES is developed.
    Chapter 3 introduces the applications of hole-particle correspondence in MRCISD
    
    
    
    calculations. A new classification of spin adapted MRCISD states using hole-particle correspondence is suggested. The formulas and values of 244 hole loop shapes are derived according as the rule of transform from external space loop shapes to hole loop shapes. Based on the classification and the formulas for the hole loop shapes a new CI algorithm is presented and coded, which is efficient and memory saving indicated from some given examples.
    At appendix, the codes of calculation and fitting program are mainly presented for four-atomic systems. These fitting program may be applied to any systems including four or less than four atoms. In the code of fitting two-atomic potential energy curves some spectral constants are also calculated.
引文
1. 赵学庄,罗渝然等,《化学反应动力学原理》,下册,高等教育出版社,北京,1990
    2. W.H. Miller, ed., Dynamics of Molecular Collisions, Part A and B (Plenum, New York, 1976) .
    3. R.B. Bernstein, ed., Atom-Molecule Collision Theory, a Guide to Experimentalist (Plenum, New York, 1979) .
    4. D.G. Truhlar, ed., Potential Energy Surfaces and Dynamics Calculations (Plenum, New York, 1981) .
    5. M. Baer, ed., The Theory of Chemical Reaction Dynamics (CRC, Baco Raton, USA, 1984) .
    6. H. Keli, G.H. He, N.Q. Lou. J. Chem. Phys., 1996, 1059(19) : 8699-8703.
    7. M. Henchman. Advances in classical Trajectory Methods. 1994, Volume 2, JAI Press Inc, 255-293.
    8. F.J. Aoiz, L. Banares, T. Diez-Rojo, et al. J. Phys. Chem., 1996, 100(10) : 4071-4083.
    9. E.K. Cornelius, J. Polach. J. Phys. Chem., 1995,99(42) : 15396-15399.
    10. G.D. Carney, R.N. Porter. H3+: Geometry Dependence of Electronic Properties. J. Chem. Phys. 1974, 60(11) : 4251.
    11. Y.B. Wang, X.J. Hong, Z.Y. Wen. An Ab Initio Sorbie-Murrel Potential Energy Surface of Carbon Disulfide. Chin. Chem. Lett. 1995, 6(5) : 411.
    12. Y.B. Wang, Z.Y. Wen, X.J. Hong. Potential Energy Surface and Vibration Analysis for the CS2 Molecule. J. Molec. Scien. 1995, 11(2) : 108.
    13. Y.B. Wang, X.J. Hong, J. Liu, Z.Y. Wen. Structures and Potential Energy Surfaces of Lithium Isocyanide and its Isomers. J. Molec. Struc.(Theochem). 1996, 369: 173.
    14. D. Skouteris, D.E. Manolopoulos, W.S. Bian, et al., Science. 1999, 286: 1713.
    15. W.S. Bian, H.J. Werner. Global Ab Initio Potential Energy Surfaces for the C1H2 Reactive System. J. Chem. Phys. 2000, 112(1) : 220.
    16. G.S. Wu, G.C. Schatz, G. Lendvay, et al. A New Potential Surfaces and Quasiclassical Trajectory Study of H + H2O→OH + H2. J. Chem. Phys. 2000, 113(8) : 3150.
    17. T. Takayanagi, A. Wada. Reduces Dimensionality Quantum Reactive Scattering Calculations on the Ab Initio Potential Energy Surface for the O(1D) +N2O→NO + NO Reaction. Chem. Phys. 2001,
    
    269(1) : 37.
    18. M.H. Yang, D.H. Zhang, M.A. Collins, S.Y. Lee. Ab Initio Potential-Energy Surfaces for the Reactions OH + H2 H2O + H. J. Chem. Phys. 2001,115(1) : 174.
    19. 徐光宪,黎乐民,王德民,《量子化学基本原理和从头计算法》,科学出版社,北京,1999.
    20. J.A. Pople, M.H. Gordon, K. Raghavachari. J. Chem. Phys., 1987, 87(10) : 15.
    21. I. Shavitt. Modern Thoeretical Chemistry, Method of Electron Structure Theory. Edited by Shaefer Ⅲ, 1977, Vol.3, p. 189.
    22. P.E.M. Siegbahn. Chem. Phys. Letters. 1984,109: 417.
    23. W.C. Bauschlicher, S.R. Langhoff, P.R. Taylor. Advances in Chemical Physics. 1990, 77: 103.
    24. J. cizek. Advan. Chem. Phys., 1969, 14: 35.
    25. GD. Purvis Ⅲ, RJ. Bartlett. J. Chem. Phys., 1982,76(4) : 15.
    26. M. Urban, J. Noga, S.J. Cole, et al., J. Chem. Phys., 1985, 83(8) : 15
    27. J. Noga, R.J. Bartlett. J. Chem. Phys., 1987, 86(12) : 15.
    28. L. Adamowicz, R. Caballol, J.P. Malrieu, et al., Chem. Phys. Letters. 1996, 259: 619.
    29. P.O. Lowdin. J. Math. Pyys., 1962, 3: 969.
    30. I. Lindgren, J. Morrison. Atomic Many-Body Theory. Springer-Verlag Berlin Heidelberg, 1982.
    31. S. Wilson. Comput. Phys. Rep., 1985, 2: 389.
    32. J.P. Finley. J. Chem. Phys., 1998, 103: 1081.
    33. W. Wenzel, M.M. Steiner. J. Chem. Phys., 1998, 108: 4714.
    34. R.G. Parr, W.T. Yang. Density Functional Theory of Atoms and Molecules. Oxford Univ. Press, Oxford, 1989.
    35. Z. Wen, J. Avery. J. Math. Phys., 1985, 26: 396.
    36. A.P. Scott, L. Radom, J. Phys. Chem., 1996, 100: 16502.
    37. 魏俊,西北工业大学硕士论文,2001.
    38. Gaussian 98 (Revision A.7) , M. J. Frisch, G W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J.
    
    Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
    39. CGUGACI is a package of graphical unitary group configuration interaction programs written by our research groups.
    40. Meld is a package of ab initio programs written by Davidson E.R. and Feller D., with contributions from Daasch R., et al..
    41. S.R. Langhoff, E.R. Davidson. Int. J. Quant. Chem., 1978,14: 561.
    42. E.R. Davidson, D. Feller, L.E. McMarchie, et al., MELD, Bloomington, Indianna Univ., 1994.
    43. J.A. Pople, R.Seeger, R. Krishnan. Int. J. Quant Chem., 1977, S11: 149.
    44. L. Messner. Chem. Phys. Lett., 1988,146: 204.
    45. L. Messner. Chem. Phys. Lett., 1996, 263: 3 51.
    46. W. Duck, J. Karwowski. Theort. Chem. Acta, 1987, 71:187.
    47. W. Duck, G.H. Dierckson. J. Chem. Phys., 1994, 101: 3048.
    48. S.R. Langhoff, E.R. Davidson. Int. J. Quant. Chem., 1974, 8: 61.
    49. E.R. Davidson, D.W. Silver. Chem. Phys. Lett., 1977, 52: 403.
    50. B.O. Roos. Chem. Phys. Lett., 1972,15: 153.
    51. B.O. Roos, P.E.M. Siegbahn, in Modern Theoretical Chemistry, H.F. Schaefer, Ed. Plenum, New York, 1977, Vol.3, Chap.7.
    52. P.E.M. Siegbahn. Chem. Phys. Lett., 1984, 109: 417.
    53. H. Lischka, R. Shepard, R.D. Brown, et al., Int. J. Quant. Chem., 1981,15:91.
    54. P. Saxe, D.J. Fox, H.F. Schaefer ED, et al., J. Chem. Phys., 1982, 77: 5.
    55. Y.B. Wang, Z.Y. Wen, Q.S. Dou, et al., J. Comput. Chem., 1992,13: 187.
    56. H. Dachsel, H. Lischka, R. J. Harrison. J. Comput. Chem., 1997,18:430.
    57. V.R. Saunders, J.H.V. Lenthe. Mol. Phys., 1983,48: 923.
    58. W. Duch, J. Karwowski. Theor. Chem. Acta. 1987, 71: 187.
    59. A. Guldberg, S. Rettrup, GL. Bendazzoll, et al., Int. J. Quant. Chem., 1987, 521:513.
    60. P.L. Knowles, H. Werner. Chem. Phys. Lett., 1988,145: 514.
    
    
    61. M. Hanrath, B. Engels. Chem. Phys., 1997,225: 197.
    62. P.E.M. Siegbahn,. Int. J. Quant. Chem., 1983,23: 1869.
    63. T.J. Lee. J. Chem. Phys., 1987, 87: 2825.
    64. H.J. Werner, P.J. Knowles. J. Chem. Phys., 1988, 89(9) : 5803.
    65. A.J. Dobbyn, P.J. Knowles, R.J. Harrison. J. Comput. Chem., 1998, 19: 1215.
    66. 王育彬,甘正汀,苏克和,文振翼,中国科学,B辑,1999,29:489.
    67. Y.B. Wang, Z.T. Gan, K.H. Su, Z.Y. Wen. Chem. Phys. Lett., 1999, 312: 277.
    68. P.M. Kozlowski, E.R. Davidson. Considerations in constructing a multi-reference second order perturbation theory. J. Chem. Phys., 1994, 100: 3672.
    69. J.A. Pople, M.H. Gordon, and K. Raghavachari. J. Chem. Phys., 1987, 87: 5968
    70. C. Lee, W. Yang, and R.G Parr. Phys. Rev., 1988, B37: 785.
    71. A.D. Becke. J. Chem. Phys., 1988, 88: 1053.
    72. A.D. Becke. Phys. Rev., 1988, A38: 3098.
    73. K. Burke, J.P. Perdew and Y. Wang, in Electronic Density Functional Theory: Recent Progress and New Directions, Ed. J.F. Dobson, G. Vignale and M.P. Das (Plenum, 1998) .
    74. J.P. Perdew, in Electronic Structure of Solids '91, Ed. P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991) 11.
    75. J.P. Perdew, J.A. Chevary, S.H. Vosko, et al., Phys. Rev. B46, 1992.
    76. J.P. Perdew, J.A. Chevary, S.H. Vosko, et al., Phys. Rev. B48,1993.
    77. J.P. Perdew, K. Burke and Y. Wang, Phys. Rev., 1996, B54: 16533.
    78. P.M.W. Gill. Mol. Phys., 1996, 89: 433.
    79. C. Adamo and V. Barone. J. Comp. Chem., 1998,19: 419.
    80. C. Lee, W. Yang and R.G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev., 1988, B37: 785.
    81. B. Miehlich, A. Savin, H. Stoll and H. Preuss. Chem. Phys. Lett., 1989, 157: 200.
    82. A.D. Becke. J. Chem. Phys., 1996,104: 1040.
    83. J. von Neumann and E.P. Wigner. Z. Phys., 1929,30:467
    84. E. Teller. J. Phys. Chem., 1937,41: 109.
    85. G. Herzberg, and H.C. Longuet-Higgins. Transact. Faraday Soc., 1963,35: 77.
    
    
    86. G Herzberg. The Electronic Spectra of Polyatomic Molecules. Van Nostrand, Princeton. 1966,442.
    87. T. Carrington. Disc. Faraday Soc., 1972,53:27.
    88. L.Landau. Phys. Z. Sowjet 1932,2:46.
    89. C. Zener. Proc. Roy. Soc., 1932, A137: 696.
    90. E.C.G. Stueckelberg. Helv. Phys. Acta. 1933, 5: 369.
    91. H. Labhart. Chem. Phys., 1977,23: 1.
    92. J.N. Murrell, S. Carter, S.C.Farantos, P. Huxley and A.J.C. Varandas. Molecular Potential Energy Functions. Mid-County Press and St. Edmundsbury Press Ltd., London. 1984:17
    93. E.P. Wigner, and E.E. Witmer. Z. Phys., 1928, 51: 859.
    94. J.-A. Muller. Bull. Soc. Chim. Fr., 1886,45: 438; E. Peytral. ibid. 1921,29: 39.
    95. J.-A. Muller, and E. Peytral. Comptes Rendus Acad. Sci, 1924,179: 831.
    96. F.O. Rice, and E. Teller. J. Chem. Phys., 1938, 6:489; ibid. 1939, 7: 199.
    97. J. Franck, and E. Rabinowitch. Z. Elektrochem. 1930,36: 794.
    98. G.S. Hammond. J. Am. Chem. Soc., 1955, 77: 334.
    99. L. Salem. Electron in Chemistry Reactions: First Principles. USA. 1982: 51.
    100. L. Salem. Electron in Chemistry Reactions: First Principles. USA. 1982:38.
    101. R.A. Marcus. J. Chem. Phys., 1966,45: 4493.
    102. R.A. Marcus. J. Chem. Phys., 1968,49: 2610.
    103. J.C. Light. Methods Comput.Phys., 1971,10: 111.
    104. J.C. Light, and R.B. Walker. J. Chem. Phys., 1976,65:1598.
    105. A. Kuppermann, J.A. Kaye, and J.P. Dwyer. Chem. Phys. Lett, 1980, 74: 257.
    106. L.M. Delves. Nucl. Phys., 1959, 9: 391; 1960,20: 275.
    107. V. Aquilanti, G Grossi, and A. Lagana. Chem. Phys. Lett., 1982,93: 174.
    108. J.A. Kaye, and A. Kuppermann. Chem. Phys. Lett., 1981,77:573; 1981,78: 546.
    109. J. Manz and J. Romelt. Chem. Phys. Lett., 1981, 77: 172.
    110. G. Hauke, J. Manz and J. Romelt. J. Chem. Phys., 1980,73: 5040.
    111. N. Sathyamurthy and L.M. Raff, J. Chem. Phys. 1975,63: 464.
    112. P.J. Kuntz, in: Dynamics of Molecular Collisions, part B, ed. W.H. Miller (Plenum, New York, 1976) chap. 2.
    
    
    113. S.K. Gray and J.S. Wright, J. Chem. Phys. 1977,66:2867.
    114. J.N.L. Connor, Comput. Phys. Commun. 1979,17: 117.
    115. N. Sathyamurthy. Computational Fitting of Ab Initio Potential Energy Surfaces. Elsevier Science Publishers B.V., 1985.
    116. P.M. Morse. Phys. Rev., 1929,34: 57.
    117. J.E. Lennard-Jones. Proc. Roy. Soc., 1924: A106:463.
    118. H.M. Hulbert and J.O. Hirschfelder. J. Chem. Phys., 1941, 9: 61.
    119. J.G.Schubert and P.R. Certain, unpublished; cited in E. Herbst, Chem. Phys. Lett., 1977,47: 517.
    120. O. Kafiri and M.J. Berry. Faraday Discuss. Chem. Soc., 1977,62:127.
    121. O. Kafri. Chem. Phys. Lett, 1979,61: 538.
    122. P.J. Kuntz and A.C. Roach. J. Chem. Soc., Faraday Trans. 2,1972,68: 259.
    123. B.S. Navati and V.M. Korwar. Pramana. 1983,20: 457.
    124. R. Rydberg. Z. Phys., 1931,73:376.
    125. J.N. Murrell and K.S. Sorbie. J. Chem. Soc., Faraday Trans. 2,1974, 70: 1552.
    126. A.J.C. Varandas. J. Chem. Soc., Faraday Trans. 2,1980,76:129.
    127. K.P. Huber and G. Herzberg. Constants of Diatomic Molecules. Van Nostrand, Princeton, 1979.
    128. J.L. Dunham. Phys. Rev., 1932,41: 721.
    129. K.D. Jordon. Chem. Phys., 1975,9: 199.
    130. J.W. Downing, J. Michl, J. Cizek and J. Paldus. Chem. Phys. Lett., 1979,67: 377.
    131. K.S. Sorbie and J.N. Murrell. Mol. Phys., 1975,19:1387.
    132. S. Carter and J.N. Murrell. Mol. Phys., 1975,29: 1387.
    133. A.J.C. Varandas and J.N. Murrell. Faraday Discuss. Chem. Soc., 1977,62: 92.
    134. J.N. Murrell. Isr. J. Chem., 1980,19:283.
    135. S. Carter, I.M. Mills and J.N. Murrell. Mol. Phys., 1980,39: 203.
    136. F. London. Z. Electrochem., 1929,35,552.
    137. J.C. Polanyi. J. Quant. Spectros. Radiat. Transfer. 1963,3: 471.
    138. J.C. Polanyi and J.L. Schreiber. in: Physical Chemistry, an Advanced Treatise, Vol. 6A, Kinetics of Gas Reactions, Eds. H. Eyring, W. Jost and D. Henderson (Academic Press, New York, 1974) chap.6.
    
    
    139. C.A. Parr and D.G Truhlar. J. Phys. Chem., 1971, 75: 1844.
    140. I. NoorBatcha and N. Sathyamurthy. J. Chem. Phys., 1982, 76: 6447.
    141. H. Schor, S. Chapman, S. green, and R.N. Zare. J. Chem. Phys., 1978, 69: 3790.
    142. H. Schor, S. Chapman, S. green, and R.N. Zare. J. Phys. Chem., 1979, 83: 920.
    143. P.J. Kuntz. Dynamics of Molecular Collisions. Ed. W.H. Miller (Plenum, New York, 1976) , Part B.
    144. P.J. Kuntz. Chem. Phys. Lett., 1972,16: 581.
    145. P.J. Brown and E.F. hayes. J. Chem. Phys., 1971, 55: 922.
    146. C. Stroud and L.M. Raff. Chem. Phys., 1980, 46: 313.
    147. D.R. McLaughlin and D.L. Thompson. J. Chem. Phys., 1979, 70: 2748.
    148. N. Sathyamurthy, R. Rangarajan and L.M. Raff. J. Chem. Phys., 1976, 64:4606.
    149. C. Stroud, N. Sathyamurthy, R. Rangarajan and L.M. Raff. Chem. Phys. Lett., 1977,48: 350.
    150. N. Sathyamurthy, J.W. Duff, C. Stroud and L.M. Raff. J. Chem. Phys., 1977,67: 3563.
    151. N. Sathyamurthy. Chem. Phys. Lett., 1978, 59: 95.
    152. A. Aguado and M. Paniagua. A new functional form to obtain analytical potentials of triatomic molecules. J. Chem. Phys., 1992,96(2) : 1265.
    153. C. Daniels and F.S. Wood. Fitting Equations to Data (John Wiley, New York), 1980.
    154. H. Rabitz. Computers and Chemistry. 1981, 5: 167.
    155. C.P. Shukla, A.K. Bachhawat and N. Sathyamurthy. Chem. Phys., 1982, 70: 83.
    156. Polyrate is a computer program for the calculation of chemical reaction rates written by D.G Truhlar, et al.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700