SiC纤维增强Ti基复合材料界面反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC纤维增强Ti基复合材料在航空航天领域有重要的应用前景,但由于Ti的化学活性大,在复合材料的SiC-Ti界面处存在严重的界面化学反应,会极大的损害SiC/Ti基复合材料的力学性能。然而迄今为止,对SiC/Ti基复合材料的界面反应的研究特别是理论研究很不深入。因此本文运用量子化学、热力学、动力学、扩散等理论,并采用实验观察,对SiC/Ti基复合材料界面反应进行了多方面的研究,揭示了界面反应的本质。
     首次将量子化学计算理论运用于金属基复合材料界面反应的研究中,运用Gaussian 98量子化学计算程序,找到了适合于研究过渡族金属Ti的碳化物和硅化物的计算方法,获得了SiC/Ti基复合材料界面反应的热力学和动力学数据。
     根据Korler和Miedema模型,推导了三元合金各组元活度系数的对称计算公式,确定了经验常数a的值。对Ti-5Al-2.5Sn、Ti-6Al-4V、Ti_3Al、TiAl的计算表明计算值与试验值吻合较好,而且比非对称计算公式获得的结果更精确。结合量子化学研究结果,计算了SCS-6 SiC纤维与Ti-Al金属间化合物和典型的近α、α+β、近β及β钛合金组成的复合材料体系可能发生的16个界面反应的Gibbs函数变Δ_rG。计算表明,在所研究的温度范围内(600-1600K),16个界面反应均可正向进行。即TiSi、TiSi_2、Ti_5Si_3、Ti_3Si、TiC、Ti_5Si_4、Ti_3AlC、Ti_2AlC、Ti_3SiC_2、Ti_3SiC几种产物都可能形成。从热力学上预测了不同复合材料体系的界面反应性,表明SiC/TiAl、SiC/Ti_2AlNb、SiC/Ti40等体系的界面反应较轻。为复合材料体系的选材指明了方向,可大大减少试验工作量。
     在量子化学研究的基础上,建立了SCS-6 SiC/Ti基复合材料界面反应的反应动力学模型,即反应是通过原子态的中间态分二个步骤进行的。量子化学计算与经验估算相结合,求出了可能发生的界面反应的活化能,表明第一步骤的活化能远大于第二步骤的活化能,因而第一步骤是反应的动力学控制因素,在这一步骤中,原子态的Ti、Si、C分别从基体钛合金和纤维中分解出来。量子化学计算表明其离解能分别为108KJ/mol、499.7KJ/mol和626.1KJ/mol,与文献报道的试验值吻合。离解能数据及速率常数的计算均证明Ti的离解较为容易。活化能数据表明界面反应的第二步骤属于动力学快速反应,其中反应Ti+SiC=TiC+Si将优先进行,形成界面反应区中细小晶粒的第一反应层,该反应不受扩散所控制。尽管随后进行的界面反应仍
    
    西北工业大学博士学位论文
    属动力学快速反应,但受Ti、C、Si等元素的扩散所控制。
     根据活度系数研究结果,推导了对称的元素互扩散系数计算公式,比非
    对称的互扩散系数计算公式的计算结果更接近实验值。计算了个界面反应层
    中C和Si的互扩散系数,获得了SCS一6 SIC/TiZAINb复合材料界面反应过程
    中C和Si的浓度分布具体关系式,并计算了SCS一6 SIC/TiZAINb基复合材料-
    界面各产物层C和Si的浓度分布,与实验测定吻合较好。由于受到元素扩
    散的控制,界面反应产物的形成应当遵循相图上浓度与各相区之间的关系,
    因此,SCS一6 SIC/TiZAINb基复合材料中,可形成的界面反应产物为Tissi:、
    T 1351、TIC和Ti3AIC。
     采用透射电镜对SCS一6 SIC/TiZAINb复合材料和SCS一6 SIC/Ti3AI复合材
    料的界面反应进行了观察研究,发现界面反应产物呈层状分布,表现出明显
    的反应扩散特征。SCS一6 SIC/TiZAINb复合材料界面反应产物依次为:紧挨
    着纤维的晶粒细小的TIC层、晶粒细小的Ti5Si3层、等轴晶粒的TIC层及
    Ti3Si层。试样经过900oC长期热暴露后,各反应层的厚度增加,在TiZAINb
    基体中还发现一些个别的Ti3AIC颗粒。SCS一6 SIC/Ti3AI复合材料的界面反
    应产物可多达6层,依次为:紧挨着纤维的晶粒细小的TIC层、晶粒细小的
    Tissi;层、等轴晶粒的TIC层、Ti3Si层、Ti3AIC层及Ti5Si3层。t匕较而台,
    二种复合材料中SCS一6 siC/TiZAINb的界面反应程度较轻,与热力学预测结
    果一致。
     根据实验研究结果,从热力学、扩散动力学及晶体学上分析讨论了界而
    反应产物Ti3AIC的形成机理,表明是由于C的扩散进入Ti3AI晶粒,发生
    了Ti3A卜C分Ti3AIC的反应所致。在SCS一6 SIC/TiZ川Nb复合材料「「,,由,-
    基体TiZAINb中只有个别的Ti3AI晶粒,因此会形成个别的Ti3AIC颗粒,而
    在 SCS一6 SIC/Ti3AI复合材料中,则形成层状的Ti3AIC。
     研究了界面障碍涂层TIB:的作用,证明TIB:可以明显的阻止元素扩一散,
    但会与Ti反应生成TIB相。在SCS一6 SIC/ TIBZ/TiZAINb复合材料体系中,
    只有当TIB:消耗殆尽后,才‘会形成诸如TIC、Ti3si、r’15513、Ti3AIC等界由l
    反应产物。热力学和动力学分析表明,TIB:与Ti的反应过程为:所需活化
    能较小的Ti+TIBZ= 2 TIB反应优先进行并逐渐减弱,最终停止。随后所需
    活化能较大TIBZ令TIB+B反应开始进行并与Ti+B斗TIB反应构成循环,相
    互促进。
Continuous SiC fiber reinforced titanium matrix composites hold immense potential for advanced aircraft and aerospace structural applications. However, due to the high reactivity of titanium, brittle reactive products at fiber/matrix interface are easy to form and may lead to a degradation of the mechanical properties of SiC/Ti composites. In contrast, very little is reported on theory study of interfacial reaction in SiC/Ti composites. Therefore, in this paper, the interfacial reactions of SiC/Ti composites were studied by means of quantum chemistry, thermodynamics, kinetics, diffusion dynamics and experiment.
    It is the first time to study the mechanism of interfacial reaction in SiC/Ti composites by quantum chemistry computation methods. A suitable method to calculate titanium carbide and silicide was found and the thermodynamic and dynamic data involved in interfacial reaction of SiC/Ti composites have been obtained.
    Based on Kohler's ternary solution model and Miedema's model for calculating the heat of formation of binary solution, the integral equation has been established for calculating activity coefficients in ternary alloys and intermetallics. The constant, a, in the formula was determined. The activity coefficients for components in alloys Ti-5Al-2.5Sn, Ti-6Al-4V and intermetallics TiAl, TiaAl have been calculated with the equation. The calculated data coincide well with the experimental ones found in literatures, which are more accuracy than ones calculated by dissymmetry formula. After getting thermo-chemical data of some compounds by using Gaussian 98 software of quantum chemistry and obtaining activities of elements in Ti matrix, the Gibbs function increments, rG, for 16 chemical reactions at the interface of 12 SCS-6 SiC/ Ti composites were calculated. Results predicted by thermodynamic calculation indicate that 16 interfacial reactions may take place spontaneously from the left to the right, namely reactio
    n products TiSi, TiSi2, Ti5Si3, Ti3Si, TiC, Ti5Si4, TiaAlC, Ti2AlC, Ti3SiC2 and TisSiC may form. It is shown that the interfacial reactions of SCS-6 SiC/TiAl, SCS-6 SiC/Ti2AlNb and SCS-6 SiGTi40 are not so severe as in other SCS-6 SiC/Ti composites. The result is useful for us to choose the Ti matrices.
    Based on quantum chemistry, a two-step dynamic model of interfacial reaction in SCS-6 SiC/ Ti composites was built up. Combining quantum chemistry calculation with experimental evaluation, the activation energies of possible interfacial reaction were calculated. It is shown that the first step in which the atomic Ti, C and Si were decomposed from Ti matrices and fiber, respectively, is a rate-controlling step because the activation energy of the step is larger than second one. It is indicated by quantum chemistry calculation that dissociation energy of Ti, C and Si is 108KJ/mol, 499.7 KJ/mol and 626.1 KJ/mol, respectively, coincided well with the experimental ones found in literatures. It was shown from both dissociation energy and rate constant that dissociation of Ti is much easier than others. It was confirmed that the first reaction layer of TiC with very fine crystal grains is due to the reaction Ti+SiC-TiC+Si. This reaction is a reaction-controlled one. However, the other reactions in the second step a
    re controlled by elements diffusion.
    Based on the thermodynamics for getting activity coefficient, a symmetry equation was
    
    
    
    established for calculating inter-diffusion coefficient. The calculated data coincide well with the experimental ones found in literatures. It means that the data from the symmetry equation are more accurate than the ones from dissymmetry formula By calculation, the distribution of C and Si in the interfacial layers of SCS-6 SiC/Ti2AlNb composite were gained, which is consistent well with the experimental ones. It is obviously that the interfacial reaction is diffusion controlled. Therefore, the form of interfacial reaction products should follow the phase rule in phase diagram, So interfacial reaction products existed in SCS-6 SiC/Ti2AlNb composite sh
引文
1 傅恒志.未来航空发动机材料面临的挑战与发展趋向.航空材料学报.1998,18(4):52-61
    2 Zaretsky V. NASA reports. 1996,No. 1361
    3 Ward-Close. Inter. J. Powder Metall. 1997,33/34: 72
    4 Vassel A, Guedou J Y., Aero-engines applications: present and future. 9th World Conf. on Titanium, St
    
    Petersburg, Russia, 1999: 7-11
    5 Ward-Close C M, Loader C. PVD processing of fibre reinforced composites. In: Recent Advances in Titanium Metal Matrix Composites. Froes F H, Storer J eds. TMS Press, 1995: 9-32
    6 McConnel V P, Advanced Composites. 1993, 1-2
    7 Beaulair N, Taverna M. Inter. Avia. 1995, 12
    8 Ravenhall R. GE Report.TM 1989, 89-357
    9 Singerman S A, Jackson J. in: Superalloys. TMS Press, 1996: 579
    10 张国定,赵昌正.金属基复合材料.上海交通大学出版社,1994
    11 NaTional Advanced Composites Strategic Plan, Sept. 1991. An Initiotive of the Aerospace Industries Association
    12 Jim Sorensen, Continuous fiber reinforced intermetallic composites. In: Structural Intermetallics, Darolia R, Lewandowski J J, Liu C T, t al, eds. TMS, 1993: 717-726
    13 吕毓雄,石南林,李斗星,马宗义,毕敬.真空热压扩散制备SiC纤维增强钛基复合材料.金属学报.1999,35(增刊1):375
    14 杨延清,朱艳,陈彦,张清贵,张建民.SiC纤维增强Ti基复合材料的制备及性能.稀有金属材料与工程.2002,3:201-203
    15 Ward-Close C M, Handrasekaran L C, Robertson J G, Godfrey S P, Murgatroyde D P. Advances in the fabrication of Titanium matrix composite. In: Tatanium'98, Proc. Xi'an Int. Titanium Conf, Zhou.L, Eylon D, Lutjering.,eds. Beijing: Int. Acad. Publisher, 1998: 341
    16 杨延清,朱艳,马志军,陈彦.SiC长纤维增强Ti基复合材料的制备.机械科学与技术.2002,21(3):424-426
    17 Ward-Close C M, Loader C. Recent Advances in tTitanium Metal Matrix Composites. TMS, 1994
    18 Subrramanian P R, Krisbnamurthy S, Keller S T, Mendiratta M G. Fabrication of SiC fiber reinforced Titanium matrix composites by magnetron sputtering. Mater. Sci. Eng..1998, A244: 1
    19 Dudek H J, Leucht R, Weber K, Kaysser W A. Development of metal matrix composite for high temperature. Proc. IMMC-11, Australia, 1997
    20 Leucht R, Dudek H J, Weber K, Werner A, Magnetron sputtering for inetal matrix composite processing. Z. Metallkd. 1996, 87: 424-427
    21 Yang Y Q, Dudek H J and Kumpfert J. TEM investigations of the fibre/matrix interface in SCS-6SiC/Ti-25Al-10Nb-3V-1Mo. Composite Part A. 1908, 29A: 1235-1241
    22 Dudek H J. in: Advanced Aerospace Materials. Buhl H, ed. Springer-Verlag. 1992, 137
    23 Yang Y Q, Dudek H J, Kumpfert J, Interfacial reaction of SCS-6 SiC/Ti-22Al-25Nb composite. In: Titanium'98, Zhou L, Eylon D, eds. Beijing: Inter. Acad. Publishers, 1999: 931-936
    24 Smith P R, Rhodes C G and Revelos W C., Interfacial Evaluation in a Ti-25Al-17Nb/SCS-6 Composite. Interfaces in Metal-Ceramics Cmposites, Edited by Lin RY, Arsenault R J, MarTins G P and Fishman. The Minerals, Metals & Materials Society, 1989: 35-58
    25 Luo Guozhen, Zhen Quanpu, Deng Ju. The research and development of TMCs. Titanium'95 Science and Technology, Edited by Blenkinsop P A, Evans W J, Flower H M. The Institute of Materials, 1995: 2704-2713
    26 Yang Y Q and Dudek H J, Interface Stability in SCS-6 SiC/Superα_2 Composites. Scripta Materialia.1997, 37(4): 503-510
    27 Yang Y Q, Dudek H J, and Kumpfert J. Microstructure of interfacial reaction zone in SCS-6 SiC liber reinforced super α_2 composites. Materials Science and Technology. 1998, 14: 1122-1126
    28 Yang Y Q, Dudek H J and Kumpfert J. Interfacial Reaction and Stability of SCS-6 SiC/Ti-25Al-10Nb-3V-1Mo Composites. Materials Science and Engineering. 1998, A246: 213-220
    29 Rhodes C G. Mat. Res. Soc. Symp. Proc. 1992, 273: 17
    
    
    30 Baumann S F, Brindley P K and Smith S D. Metall Trans. 1990, 21A: 1559
    31 Badini C, Terraris M and Marchet T E J. Mater Sci.. 1994, 2
    32 Dudek H J, Borath R, Leucht R, Kaysser W A. Transmission electron microscopy of the fibre-matrix interface in SiC-SCS-6 fibre-reinforced IM1834 alloys. Journal of Materials Science. 1997,32. 5355-5362
    33 Goo G K, Graves J A and Mecartney M L. Scipta Metal. 1992, 26: 1043
    34 Hall I W, Lira J L. Journal of Materials Science.1992, 27: 3835-3842
    35 Yang Y Q, Werner A, Dudek H J. TEM investigations ofinterfacial processes in SCS-6 SiC/TiB_2/Super α_2 composites. Composites Part A. 1999, 30: 1209-1214
    36 Mogilevsky P, Werner A and Dudek H J, Investigation of barrier properties of TiB_2 protective layer for SiC/C Ti alloy composites. Defect and diffusion forum vols. 1997, 143-147: 1291-1296
    37 Dudek H J, Werner A, Leucht R. Graded Titanium boride fibre protective coatings for titanium matrix composites. Materials Science and Engineering.1996,A212: 42-246
    38 Vahlas C, Hall I W, Ni CY, Chevalier PY. Thermodynamic and Experimental Modeling of Interfacial Reactivity in Metal Matrix Composites. Key Eng. Mater. 1997, 127-131: 359-366
    39 Gorsse S and Le Y PeTitcorps. A new approach in the understanding of the SiC/Ti reaction zone composition and morphology. Composites Part A. 1998, 29A: 1221-1227
    40 Misra A K. Thermodynamic analysis of chemical interactions between reinforcement materials and matrices in aluminide-based high temperature intermetallic matrix composites, Interthces in MetalCeramica Composites. edited by Lin R Y, Arsenault R J, Martins G P and Fishman S G. The Minerals, Metals & Materials Society. 1989, 85-102
    41 司为民.钛铝化合物基复合材料界面的研究.上海交大博士论文.1992
    42 Dudek.J, Borath R, Leucht R., Kaysser W A. J. Mater Sci.1997, 2: 5355
    43 Perepezko J P. Composites Interfaces. 1993, 1: 463
    44 Hall I W, Ni C Y. Mater Sci Eng. 1995; A192/193: 987
    45 Hall E L, Ritter A M. J. Mater. Res. 1993, 8: 1158
    46 Warier S G, Chen S H, Wu S K, Lin R Y, Met Trans. 1996, 27A: 1379
    47 Hans Jürgen Seifert, Hans Leo Lukas and Günter Petzow. Z. Metallkd. 1996, 87: 1
    48 d'Heurle F M, Gas P and Philibert J. Defect and Diffusion Forum. 1997, 143-147: 529-540
    49 张冬菊,刘成卜.过渡金属离子与烷烃反应机理的理论研究.化学学报.2001,59(9):1406-1412
    50 李来才,瘳显威,王欣,田安民.单态卡宾与臭氧反应机理的量子化学研究.化学学报.2001,59(4):516-519
    51 Becke A D.J.Chem.Phys.1992, 97: 9173
    52 王遵尧,陈兆旭、肖鹤鸣等.F_2+2HCl→2HF+Cl_2反应机理的密度泛函理论研究.化学学报.2000,58(3):267-272
    53 Yasushi O, Ohgi T, Osamu K,Theochem..1998,429: 187
    54 郝金库,杨恩翠,赵增国.吡啶光氯化反应过渡态和反应途径的量子化学研究.化学学报.2001,59(5):696-700
    55 李来才,王欣,田安民.O_4+NH→ONH+O_2反应机理的量子化学研究.化学学报.2000,58(9):099-1102.
    56 王惠.碳/碳复合材料碳前驱体热解机理研究.西北工业大学博士论文.2000
    57 王惠,翟高红,杨海峰,杨延清等.碳前驱体CH_3ArCH_2NH_2热解反应的热力学和动力学DFT研究.高等学校化学学报.2001,22(5):800-804
    58 王惠,罗瑞盈,杨延清等.2,4-二甲基卤代苯热解机理的理论研究.西北大学学报.2001,31(1):33-36
    59 王惠,罗遄盈,杨延清等.杨延清等.一种碳前驱体热解机理的热力学及动力学的研究.材料研究学
    
    报.2001,15(2):159-165
    60 王惠,翟高红.冉新权,杨延清等.碳前驱体热解机理的理论研究-反应能量、自由基的轨道能级及相对稳定性.无机材料学报.2001,16(2):230-236
    61 翟高红,朱卡克,王惠,杨延清等.碳前驱体热解机理量子化学理论研究-几何结构、反应焓变、化学键和热反应活性.材料科学与工程.2000,18(4):10-15
    62 王惠,翟高红,冉新权,杨延清等.碳材料用碳源化合物热解机理的理论研究.无机化学学报.2000,16(6):879-887
    63 傅献彩.物理化学.人民教育出版社.2000
    64 戚正风.固态金属中的扩散与相变.机械工业出版社.1998
    65 Jan C H, Swenson D, Zheng X Y, Lin J C and Chang Y A. Acta Metall. Mater.1991, 39(3): 303-315
    66 Nesbitt J A, Heckel R W, Metallurgical Transactions A. 1987, 18: 2087
    67 Kirkaldy J S. Diffusion in multicomponent metallic systems, Ⅱ. Solutions for two-phase systems with applications to transformations in steel. Can J Phys. 1958, 36: 907-916
    68 Kirkaldy J S, Diffusion in multicomponent metallic systems,Ⅲ.The motion of planar phase interfaces. Can J Phys. 1958, 36: 917-925
    69 丁学勇,陈星秋.三元合金中组元扩散系数的预测模型.金属学报.2000,36(8):823-827
    70 Gaussian 98 User's Reference.Gaussian Inc. USA, 1999
    71 James B Foresma. Exploring Chemistry with Electronic Structure Methods. 1996
    72 乔芝郁,许志宏,刘洪霖.计算物理化学冶金和材料.北京:冶金工业出版社,1999
    73 Su Yanqing, Liu Yuan, Guo Jingjie. Calculation of Activity Coefficients for Components in Ti-15-3 Melt. Journal of Harbin Institute of Technology. 1999, 6(1): 54
    74 丁学勇,王文忠.三元系熔体中组元活度的计算公式.金属学报.1994,30B(10):444-447
    75 丁学勇,范鹏,韩其勇.三元系金属熔体中的活度和活度相互作用系数模型.金属学报.1994,30B(2):49-59
    76 Kohler F. Monatsh Chemie. 1960, 91: 738
    77 Midema A R., De Chatel P F, De Boer F R. Cohesion in alloys-fundamentals of a semi-empirical model. Physica. 1980, 100B:1-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700