双氰乙基偶氮染料的合成、表征、量化计算及吸收光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双氰乙基系列偶氮染料是一类重要的分散染料,其结构特征是偶合环上的氨基连有两个氰乙基,两个芳环之间以-N=N-键连,含有共轭π电子体系。芳香环上取代基不同,共轭体系的电子能级会有一定的差别,进而影响其光谱性质。
     本文采用氰乙基化反应和重氮偶合反应合成了12个双氰乙基偶氮染料,应用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)对其电子结构和吸收光谱进行了计算,通过实验结果与理论计算相结合,分析了染料分子的电子结构与最大吸收波长(λmax)之间的关系。
     首先,以苯胺、间甲苯胺和间氯苯胺为原料,使用无水AICl3为催化剂,分别催化3个芳胺与丙烯腈发生加成反应,合成了3个双氰乙基芳胺偶合组分(N,N-二氰乙基苯胺、N,N-二氰乙基间甲基苯胺和N,N-二氰乙基间氯苯胺);将3个双氰乙基芳胺偶合组分分别与4个重氮组分(对硝基苯胺、对硝基邻氯苯胺、2,4-二硝基-6-氯苯胺和2,4-二硝基-6-溴苯胺)经过重氮化、偶合反应,合成了12个双氰乙基偶氮染料,探讨了其合成工艺,并采用核磁共振氢谱、红外光谱、质谱、元素分析和紫外可见光谱对其进行了结构表征。
     然后,采用Gaussian 03程序包对合成的3个双氰乙基芳胺偶合组分和12个双氰乙基偶氮染料进行几何构型全优化和频率分析,得到表征分子特征的量子化学参数,键长、二面角、自然电荷布居、前线轨道能量及组成,并且用TD-DFT/PCM方法计算了分子的吸收光谱。结果表明:1)、对于3个双氰乙基芳胺偶合组分,预测了其进行重氮偶合反应最佳位点在苯环的C(6)位,CH3和Cl的引入使分子的前线轨道能降低,能隙变小;2)、对于12个双氰乙基偶氮染料,随着取代基引入数目的增加,增加了取代基与苯环的共轭,但是,由于取代基之间的空间阻碍效应,分子骨架的平面性降低,进而降低了分子骨架中π电子云共轭,因此,取代基的共轭效应与空间阻碍效应使得分子的电子能级有增有减,可以预测吸收光谱会产生红移或蓝移;3)、12个双氰乙基偶氮染料的前线轨道能量随着吸电子取代基的引入而降低,随着供电子取代基的引入而升高;前线轨道能隙随着重氮环上吸电子取代基的引入而降低,随着偶合环上CH3和Cl的引入而升高,其HOMO电子云主要集中在分子的偶合部分,LUMO电子云主要集中在分子的重氮部分,当分子吸收光谱时,电子云从偶合环向重氮环转移,-N=N-起到了很好的桥梁作用。
     最后,通过对实验检测结果和理论计算结果的深入分析,总结出了双氰乙基偶氮染料中不同取代基对分子的电子结构和吸收光谱的影响。结果表明:12个双氰乙基偶氮染料的λmax实验值和计算值有着很好的一致性,在重氮环上,随着取代基的增加,染料分子的λmax依次出现红移;在偶合环上,引入CH3和Cl,染料分子的λmax均蓝移。λmax实验值与前线轨道能隙的相关系数R2=0.9177,λmax实验值与λmax气态条件下得到的计算值相关系数R2=0.9531,λmax实验值与λmax丙酮溶液中得到的计算值相关系数R2=0.8187。由此可见,理论计算对染料分子的设计与吸收光谱的预测有很好的指导意义。
Double-cyanoethyl azo dyes are an important class of disperse dyes. Their molecular structures have the characteristic of amino of coupling ring with two cyanoethyls,-N=N- between the two aromatic rings, and having the conjugatedπelectron system. With the difference of substituted groups of aromatic ring, the electronic energy levels of conjugated system will have a certain differences, and then it will affect its spectral properties.
     In this paper, we have synthesized twelve double-cyanoethyl azo dyes by cyanoethyl reaction and diazo coupling reaction. Furthermore, we have calculated their electronic structures and absorption spectras by density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The relationship between their electronic structures and their maximum absorption wavelength (λmax) was analyzed by combining experimental results and theoretical calculations.
     First, three double-cyanoethyl aromatic amines were synthesized by the addition reaction of aniline, m-toluidine and m-chloroaniline with acrylonitrile in the present of anhydrous AlCl3, they were N,N-2-cyanoethyl aniline, N,N-bis (2-cyanoe-thyl)-m-toluidine and N,N-bis (2-cyanoethyl)-m-chloroaniline. Subsequently, twelve double- cyanoethyl azo dyes were synthesized by diazo coupling reaction of coupling component with diazo components, which obtained by diazotizing p-nitroaniline, p-nitro-o-chloroaniline,2,4-dinitro-6-chloroaniline and 2,4-dinitro-6- bromoaniline. Their synthetic technology was explored, at the same time their structures were characterized by 1H NMR, IR, MS, elementary analysis and UV-Vis spectrum.
     Secondly, The geometry of three double-cyanoethyl aromatic amine coupling component and twelve double-cyanoethyl azo dyes were fully optimized by Gaussian 03, meanwhile, their frequencies were analysed. Then we gained the quantum chemical parameters, bond length, dihedral angle, the natural charge population, frontier molecular orbital energy and composition, the molecular absorption spectras were gained by the method of TD-DFT/PCM. The results showed that:1), For three double-cyanoethyl aromatic amine coupling component, C(6) of benzene ring was predicted the best site in diazo coupling reaction. Frontier orbital energy was decreased with the introduction of CH3 and Cl, the energy gap also becomes small.2), For twelve double-cyanoethyl azo dyes, the substituted groups conjugated with the benzene ring were increased with increasing of the number of substituted groups, however, the plane of molecular skeleton were lower because the space baffle effect between substituted groups, furthermore, the conjugated ofπelectron cloud of molecular skeleton were reducing. So, the molecular electronic energy levels have increases and decreases because of the conjugate effect and the space baffle effect of substituted groups. we can predict the absorption spectra red shift or blue shift.3), Frontier orbital energy was decreased with the introduction of electron withdrawing substituted groups, it was increased with the introduction of electron donor substituted groups. Frontier orbital energy gap was decreased with the introduction of electron withdrawing substituted groups on diazo ring, it was increased with the introduction of CH3 and Cl on coupling ring. The HOMO electron cloud of twelve double-cyanoethyl azo dyes was concentrated in the coupling part of the molecule, the LUMO electron cloud was concentrated in the molecular diazo part, the electron cloud moved from the coupling ring to the diazo ring when the molecular was absorbing spectrum.-N=N- played the role of a bridge.
     Finally, The experimental results and calculation results were deeply analyzed. The impact of different substituted groups of double-cyanoethyl azo dyes on molecular electronic structure and absorption spectras was summarized. The results showed that theλmax of experimental data and calculated data of twelve double-cyanoethyl azo dyes have a good consistency. On the diazo ring, theλmax of dye molecules turn red shift with the increase of substituted groups, on the coupling ring, theλmax of dye molecules turn blue shift with the introduction of CH3 and Cl. The correlation coefficient ofλmax was R2=0.9177 between experimental data and the frontier orbital energy gap, the correlation coefficient ofλmax was R2=0.9531 between experimental data and calculated data under the gaseous condition, the correlation coefficient ofλmax was R2=0.8187 between experimental data and calculated data under acetone. This shows that the theoretical calculation has a good guiding significance for the design of dye molecular and forecast of absorption spectrum.
引文
[1]吴祖望,董振堂,卢圣茂,等.近十年活性染料的技术进展—纪念活性染料开发五十年[J].染料与染色,2004,41(1):1-13.
    [2]Kanerlcar V R, Shankarling G S, Patil S. Recent developments in reactive dyes part 1: introduction and bifunctional reactive dyes[J]. Colourage,2000,47(3):35-46.
    [3]Kozisek M, Svatos A, Budesinsky M, et al. Molecular design of specific metal-binding peptide sequences from protein fragments:theory and experiment[J]. Chemistry,2008, 14(26):7836-7846.
    [4]Chen C Y, Lin T P, Chen C K, et al. New chromogenic and fluorescent probes for anion detection:formation of a [2+2] supramolecular complex on addition of fluoride with positive homotropic cooperativity[J]. The Journal of Organic Chemistry,2008,73(3): 900-911.
    [5]Joseph B D, Rochester N Y. P-nitro-o-trifluoromethyl benzene azo N-β-cyanoethyl-N-hydroxyal-kylaniline dye compounds[P]. USP:2492972,1950.
    [6]Lange A, Nahr U, Sieber W, et al. Mixtures of azo dyes for navy to black hues[P]. USP: 187486,1994.
    [7]赵莹,叶翠层,李姣娟,等.无水AlCl3催化氯苯胺与丙烯腈的加成反应[J].化学通报,2005,69(6):438-441.
    [8]赵莹,谭晓艳,杨志,等.无水AlCl3催化合成N,N---氰乙基甲基苯胺的研究[J].有机化学,2005,25(11):1469-1472.
    [9]Pandeya S N, Yogeeswari P, Sausville E A, et al. Synthesis and antitumour evaluation of 4-bromophenyl semicarbazones[J]. Arzneimittelforschung,2002,52(2):103-108.
    [10]Habibi M H, Tangestaninejad S, Khaledisardashti M. Photodegradation kinetics of o-nitroaniline (ONA), m-nitroaniline (MNA), p-nitroaniline (PNA), p-bromoaniline (PBrA) and o-chloroaniline (OClA) in aqueous suspension of zinc oxide[J]. Polish Journal of Chemistry,2004,78:851-859.
    [11]赵莹,杨志,汤林.AlCl3催化的有机化学反应[J].有机化学,2003,23(11):1219-1229.
    [12]赵莹,叶翠层,谭晓燕,等.AlCl3催化对位取代苯胺与丙烯腈加成反应的研究[J].有机化学,2009,29(4):643-647.
    [13]Arora K, Sharma K P, Khan A R. Synthesis and spectral studies of thorium (Ⅳ) and dioxouranium (Ⅵ) complexes of a schiff base ligand[J]. Oriental Journal of Chemistry, 2003,19(2):489-491.
    [14]Shanbhag G V, Kumbar S M, Halligudi S B. Chemoselective synthesis of beta-amino acid derivatives by hydroamination of activated olefins using AISBA-15 catalyst prepared by post-synthetic treatment[J]. Journal of Molecular Catalysis A-Chemical,2008,284(1-2): 16-23,20.
    [15]Amore K M, Leadbeater N E, Miller T A, et al. Fast, easy, solvent-free, microwave-promoted michael addition of anilines to alpha-beta-unsaturated alkenes:synthesis of N-aryl functionalized beta-amino esters and acids[J]. Tetrahedron Letters,2006,47(48): 8583-8586.
    [16]姚蒙正,陈侣柏,王家儒.精细化工产品合成原理[M].北京:中国石化出版社,1992,281.
    [17]Heininger S A. Cupric acetate catalyzed monocyanoethylation of aromatic amines[J]. The Journal of Organic Chemistry,1957,22(10):1213-1217.
    [18]Peterli H J, Switzerland L B. Process for the cyanoethylation of aromatic amines[P]. USP:3231601,1966.
    [19]钟为慧,张永敏.三碘化钐促进的芳胺与α,β-不饱和腈(酯)的共轭加成[J].有机化学,2000,20(5):747-749.
    [20]郑立红,王宪花,赵从伊.N-氰乙基邻氯苯胺的合成[J].染料工业,2001,38(4):26.
    [21]Amore K M, Leadbeater N E, Miller T A, et al. Fast, easy, solvent-free, microwave-promoted michael addition of anilines to alpha-beta-unsaturated alkenes:synthesis of N-aryl functionalized beta-amino esters and acids[J]. Tetrahedron Letters,2006,47(48): 8583-8586.
    [22]Braunholtz J T, Mann F G. The preparation of bis-2-cyanoethyl derivatives of aromatic primary amines, and their conversion into 1:6-diketojulolidines. Part Ⅱ[J]. Journal of the Chemical Society,1953,1817-1824.
    [23]Brennan M E, Y E L. Cyanoethylation of aromatic amines[P]. USP:3943162,1976.
    [24]Gimbert C, Moreno-Manas M, Perez E, et al. Tributylphosphine, excellent organocatalyst for conjugate additions of non-nucleophilic N-containing compounds[J]. Tetrahedron,2007,63 (34):8305-8310.
    [25]赵莹.合成N,N-二氰乙基苯胺新工艺[J].染料工业,2001,38(3):39-40.
    [26]赵莹.无水AlCl3催化合成N,N-二氰乙基苯胺的研究[J].精细化工偶合组分,2001,31(1):29-31.
    [27]赵莹.无水三氯化铝催化合成N,N-二氰乙基间甲苯胺的研究[J].化学工程师,2001,82(1):13-15.
    [28]赵莹.一种N,N-二氰乙基芳胺的制备方法[P].中国专利:01128554,2001,8.
    [29]傅正生,郭宏仓,廖乐星,等.两个偶氮化合物的合成及其光致变色性质和线性吸收关系[J].精细化工,2009,26(2):119-121,135.
    [30]祁秀秀,李娜君.含有不同取代基的芳香族偶氮化合物的光学性能研究[J].应用化工,2008,37(4):367-369,372.
    [31]Janus M, Choina J, Kusiak E, et al. Study of nitrogen-modified titanium dioxide as an adsorbent for azo dyes [J]. Adsorption Science & Technology,2008,26(7):501-513.
    [32]Dolaz M, Yilmaz H. Synthesis, Characterization and applications of new azo compounds containing phosphonic acid[J]. Asian Journal of Chemistry,2009,21(7): 5085-5094.
    [33]Mohamed G, Gadelkareem M A M. Synthesis, characterization and thermal studies on metal complexes of new azo compounds derived from sulfa drugs[J]. Spectrochimica Acta. Part A,2007,68(5):1382-1387.
    [34]Grirrane A, Corma A, Garcfa H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics[J]. Science,2008,322(5908):1661-1664.
    [35]Ivanov M, llieva D, Minchev G. Temperature-dependent light intensity controlled optical switching in azobenzene polymers[J]. Applied Physics Letters,2005,86(18):1-3.
    [36]Shiki Y, Takashi K, Akihide K. Photocontrollable self-assembly[J]. chemistry,2005, 11(14):4055-4063.
    [37]付华,王清成.光学活性偶氮染料的光学机理探讨及应用进展[J].江苏化工2005,33(3):26-29.
    [38]刘军娜.染料结构与性能关系的研究[D].杭州:浙江大学,2006,4-6.
    [39]赵雅琴,魏玉娟.染料化学[M].北京:中国纺织出版社,2006,60-61.
    [40]阮伟祥,章建新,欧其,等.一种偶氮分散染料组合物[P].中国专利:101020789A,2007-08-22.
    [41]曹阳,吕春绪,蔡春,等.现代量子化学在染料工业中的应用—量子化学对染料分子结构、性质和反应的研究[J].染料工业,2002,39(2):29-32.
    [42]肖刚,孙朝晖.近年我国染料学科的理论创新和技术进步[J].染料与染色,2005,42(1):1-4.
    [43]李宗石,孙育贤,程侣柏.用HMO法计算偶氮化合物的吸收光谱[J].大连工学院学报,1979,18(4):70-82.
    [44]Brown D A, Dewar M J S. Fluorene analogues of triphenylmethane dyes:calculation of their light absorption by the molecular-orbital method[J]. Journal of the Chemical Society B,1954,54(6):2134-2136.
    [45]侯毓芬,吴祖望.颜色与有机分子结构[M].北京:化学工业出版社,1982,12.
    [46]Chu K Y, Griffiths J. Colour and constitution of the nitro-and dintro-p-phenylene- diamines and their N-methyl derivatives[J]. Journal of the Chemical Society,1978,78(10): 1194-1198.
    [47]Griffiths J. Practical aspects of colour prediction of organic dye molecules[J]. Dyes and Pigments,1982,3(2):211-233.
    [48]Chu K Y, Griffiths J. Naphthoquinone colouring matters, part 2[J]. Journal of Chemical Research,1978,78(5):180-181.
    [49]Chu K Y, Griffiths J. Naphthoquinone colouring matters, part 1[J]. Journal of the Chemical Society, Perkin Tran.1,1978,78(9):1083-1087.
    [50]Chu K Y, Griffiths J. Naphthoquinone colouring matters, part 3[J]. Journal of the Chemical Society, Perkin Tran.1,1979,79(3):696-701.
    [51]陈兴,高昆玉,程侣柏,等.杂环偶氮染料的结构与颜色的研究(Ⅱ)[J].染料工业,1986,23(5):14-17.
    [52]Cheng L B, Chen X, Gao K Y, et al. Colour and constitution of azo dyes derived from 2-Thioalkyl-4,6-diaminopyrimidines and 3-cyano-1,4-dimethy1-6-hydroxy-2-pyridone as coupling components[J]. Dyes and Pigments,1986,7(5):373-388.
    [53]程侣柏,李宗石,孙育贤.用PPP-SCF-CIS法计算简单有机化合物的吸收光谱[J].大连工学院学报,1980,19(2):51-63.
    [54]Kogo Y, Kikuchi H, Matsuoka M, et al. Colour and constitution of anthraquinonoid dyes, part 1-modified PPP calculations and substituent effects[J]. Journal of the Society of Dyers and Colourists,1980,96(9):475-480.
    [55]Tiirke L. Theoretical optical spectra of some [22] (1,4)-cyclophane fused tetraazapor-phyrins[J]. Journal of Molecular Structure:THEOCHEM,2002,588(1-3):133-138.
    [56]Blattmann H R, Heilbronner E, Wagniere G. Electronic states of perimeter π systems, IV[J]. Journal of the American Chemical Society,1968,90(18):4786-4789.
    [57]Griffiths J, Lockwood M. Chromogens based on non-benzenoid aromatic systems, part III[J]. Journal of the Chemical Society,1976,76(1):48-54.
    [58]Machado A E H, Miranda J A, Guilardi S, et al. Photophysics and spectroscopic properties of 3-benzoxazol-2-yl-chromen-2-one[J]. Spectrochimica Acta Part A,2003, 59(2):345-355.
    [59]Melo J S, Fernandes P F. Spectroscopy and photophysics of 4-and 7-Hydroxycouma-rins and their thione anologs[J]. Journal of Molecular Structure,2001,565-566:69-78.
    [60]Griffiths J, Lockwood, M, Roozpeikar, B. Orientation effects in the benzene chromophore bearing one donor and two acceptor groups[J]. Journal of the Chemical Society,1977,77(4):1608-1610.
    [61]Nepras M, Machalicky O, Seps M, et al. Structure and properties of fluorescent reactive dyes:electronic structure.and spectra of some benzanthrone derivatives[J]. Dyes and Pigments,1997,35(1):31-44.
    [62]Maud J M. Optical. Transitions in oligothiophene radical cations (positive polarons):a semi-empirical study[J]. Synthetic Metals,1999,101(1-3):575-578.
    [63]Lukes V, Breza M, Laurinc V. Structure dependence of optical properties of bridged bis-thienyls, I:simple five-membered aromatic bridges[J]. Journal of Molecular Structure: THEOCHEM,2002,582(1-3):213-224.
    [64]任爱民,封继康,孙秀云,等.两种C60双炔衍生物的结构、光谱和二阶非线性光学性质的理论研究[J].化学学报,1999,57(7): 730-739.
    [65]张锁秦,封继康,任爱民,等.C60-TTF及其衍生物的二阶非线性光学性质的理论研究[J].化学学报,2000,58(12):1582-1588.
    [66]阚玉和,苏忠民,孙世玲,等.2,5-取代基-3,4-C60吡咯衍生物的电子光谱和非线性光学性质规律的理论研究[J].高等学校化学学报,2002,23(3):444-447.
    [67]Zhou X, Ren A M, Feng J K. Theoretical investigation on the two-photon absoprtion of C60[J]. Journal of Molecular Structure:THEOCHEM,2004,680(1-3): 237-242.
    [68]Gorelsky S I, Lever A B P, Ebadi M. Ruthenium d-orbital delocalization in bis (bipyridine) ruthenium derivatives of redox active quinonoid ligands[J]. Coordination Chemistry Reviews,2002,230(1-2):'97-105.
    [69]Gorelsky S I, Lever A B P. Electronic structure and spectra of ruthenium Diimine complexes by density functional theory and INDO/S, comparison of the two methods[J]. Journal of Organometallic Chemistry,2001,635(1-2):187-196.
    [70]Oliveira K M T, Trsic M. Comparative theoretical study of the electronic structures and electronic spectra of Fe2+-, Fe3+-porphyrin and free base porphyrin[J].Journal of Molecular Structure:THEOCHEM,2001,539(1-3):107-117.
    [71]Yang L F, Peng Z H, Ren X M, et al. Spectroscopic and theoretical studies on copper (Ⅱ) complex of maleinitriledithiolate and 1,10-phenanthroline[J]. Spectrochimica Acta Part A,2001,57(14):2745-2754.
    [72]尚兴宏,贡雪东,肖鹤鸣,等.4种著染料化合物结构和性能的密度泛函理论研究[J].南京理工大学学报,2002,26(2):186-191.
    [73]Peszke J, Sliwa W. AM1 CI and ZINDO/S study of quaternary salts of diazaphenan-threnes with haloalkanes[J]. Spectrochimica Acta Part A,2002,58(10):2127-2133.
    [74]Moustafa H, Shalaby S H, Sawy K M E, et al. Electronic structure of some-aderiosine receptor antagonists, Ⅲ:quantitative investigation of the electronic absorption spectra of alkyl xanthines[J]. Spectrochimica Acta Part A,2002,58(9):2013-2027.
    [75]Belletete M, Morin J F, Beaupre S, et al. Electronic spectroscopy and photophysics of phenylene-fluorene derivatives as well as their corresponding polyesters[J]. Synthetic Metals,2002,126(1):43-51.
    [76]Yuan S F, Chen Z R, Cai H X. Calculation of visible absorption maxima of phthalocyanine compounds by quantum theory[J]. Chinese Chemical Letters,2003,14(11): 1189-1192.
    [77]Parr R G, Yang W. Density functional theory of atoms and molecules[M]. Oxford University Press:Oxford,1989.
    [78]Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B,1988,37:785-789.
    [79]Becke A D. Correlation energy of an inhomogeneous electron gas:A coordinate-space model[J]. Journal of Chemical Physics,1988,88(2):1053-1062.
    [80]Brownsord R.A, Herbert L.B, Smith I W M, et al. Pressure and temperature depen-dence of the rate eonstants for the assoeiation reaetions of CH radieals with CO and N2 between 202 and 584 K[J]. Journal of the Chemical Society. Faraday Transactions articles, 1996,92(7):1087-1094.
    [81]Manaa M R, Fried L E. Intersystem crossings in model energetic ma.terials[J]. The Journal of Physical Chemistry A,1999,103(46):9349-9354.
    [82]Sengupta D, Peeters J, Nguyen M T. Theoretical studies on CH2+NO reactions: mechanism for HCN+CO and HCO+CN formation[J]. Chemical Physics Letters,1998, 283:91-96.
    [83]Carl S A, Nguyen H M T, Nguyen M T, et al. An experimental and theoretical study of the reaetion of ethynyl radicals with nitrogen dioxide (C2H2+NO2)[J]. Journal of Chemical Physics,2003,18(24):10996-11008.
    [84]Sumathi R, Nguyen H M T, Nguyen M T, et al. Eleetronic structure calculations on the reaetion. of vinyl radical with nitric oxide[J]. The Journal of Physical Chemistry A,2000, 104(9):1905-1914.
    [85]Arora K, Sharma K P, Khan A R. Synthesis and spectral studies of thorium (Ⅳ) and dioxouranium (Ⅵ) complexes of a schiff base ligand[J]. Oriental Journal of Chemistry, 2003,19(2):489-491.
    [86]Casida M E, Casida K C, Salahub D R, et al. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold[J]. The Journal of Chemical Physics,1998,108(11):4439-4449.
    [87]Stratmann R E, Frisch M J, Scuseria G E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules[J]. The Journal of Chemical Physics, 1998,109(19):8218-8224.
    [88]Marques M A L, Gross E K U. Time-dependent density functional theory[J]. Annual Review of Physical Chemistry,2004,55:427-455.
    [89]Dreuw A, Head-Gordon M. Single-reference ab initio methods for the calculation of excited states of large molecules[J]. Chemical Reviews,2005,105(11):4009-4037.
    [90]Belletete M, Durocher G, Hamel S, et al. A first principles calculations and experimental study of the ground-state and excited-state properties of ladder oligo (p-aniline)s[J]:Journal of Chemical Physics; 2005,122(10):104303.
    [91]范建训,任爱民,封继康,等.7-氮杂吲哚衍生物分子基态和激发态性质的理论研究[J]:高等学校化学学报,2006,27(6):1091-1095.
    [92]许海,杨兵,何凤,等.联苯桥联的PPV齐聚物基态构型、电子能级和吸收光谱的理论研究[J].高等学校化学学报,2006,27(3):510-512.
    [93]李会学,萧泰.3-苯基-6-芳基-1,2,4-三唑并[3,4-b]-1,3,4-噻二唑的电子结构和光谱性质的含时密度泛函理论研究[J].高等学校化学学报,2007,28(4):747-750.
    [94]刘军娜,陈志荣,袁慎峰.吡啶酮系偶氮类化合物可见吸收光谱的预测[J].物理化学学报,2005,21(4):402-407.
    [95]梁晓琴,蒲雪梅,舒远杰,等.苯及其含氮等电子体化合物的结构和性质的理论研究[J].化学学报,2006,64(20):2057-2064.
    [96]陈沁闻,王兰英,翟高红,等.苯乙烯基-β-萘噻唑染料电子光谱的含时密度泛函研究[J].化学学报,2005,63(1):39-43.
    [97]薛运生,贡雪东,肖鹤鸣,等.靛蓝及其取代物的密度泛函理论研究[J].化学学报,2004,62(10):963-968.
    [98]Runge E, Gross E K U. Density functional theory for time-dependent systems[J]. Physical Review Letters,1984,52:997-1000.
    [99]Dabbagh H A, Teimouri A, Chermahini A N, et al. DFT and ab initio study of structure of dyes derived from 2-hydroxy and 2,4-dihydroxy benzoic acids[J]. Spectrochimica Acta Part A,2008,69(2):449-459.
    [100]Toro C, Thibert A, Boni L D, et al. Fluorescence emission of disperse red 1 in solution at room temperature[J]. The Journal of Physical Chemistry B,2008,112(3): 929-937.
    [101]Onsager L. Electric moments of molecules in liquids[J]. Journal of the American Chemical Society,1936,-58:1486-1493.
    [102]Barone V, Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model[J]. The Journal of Physical Chemistry A,1998, 102(11):1995-2001.
    [103]Foresman J B, Keith T A, Wiberg K B, et al. Solvent effects.5. Influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations[J]. The Journal of Physical Chemistry,1996,100(40):16098-16104.
    [104]Frish M J, Trucks G W, Schlegel H B, et al. Revision B.02. Gaussian, Inc., Pittsburgh PA,2003.
    [105]Liu S B, Govind N. Toward understanding the nature of internal rotation barriers with a new energy partition scheme:ethane and n-butane[J]. The Journal of Physical Chemistry A,2008,112(29):6690-6699.
    [106]Xia Y, Yin D L, Rong C Y et al. Impact of lewis acids on diels-alder reaction reactivity:a conceptual density functional theory study[J]. The Journal of Physical Chemistry A,2008,112:9970-9977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700