胺、酰胺类阴离子识别受体的设计及其光谱性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阴离子广泛存在于我们生活的每一个角落,因此对于阴离子在生命活动和环境改造的过程中的影响作用的研究越来越受到人们的重视。同时它还是很好的氢键受体,所以基于氢键作用的新型阴离子识别受体的设计已经成为现在研究的发展主流。提高阴离子识别的灵敏度是我们设计阴离子识别受体需要考虑的关键因素。但是究竟如何能够达到这些要求还是比较困难的,因此新型阴离子受体的研究到目前为止仍然是一项具有挑战性的工作。
     阴离子的识别位点存在方式有很多,但是目前研究的最多的则是由胺类、酰胺类、脲类等等一些能够形成氢键的基团构成。正是由于这些物质中都存在极化的N—H基团,N—H基团可以与含有孤对电子的阴离子相互作用形成氢键,因此被广泛的应用于阴离子识别受体的设计中。胺类、酰胺类衍生物在自然界中广泛的存在,并且是肽链的基本的结构,通过形成氢键影响着很多复杂的生命现象。所以胺、酰胺类受体分子作为氢键的质子供体,他们在阴离子识别过程以及研究过程中发挥着重要的作用。
     为了进一步的研究阴离子识别受体的氢键作用,本文设计了一系列以胺、酰胺中的N—H基团作为阴离子结合位点的八种受体分子。将这八种受体分子分别与Cl离子相互作用,结果都形成了非常稳定的氢键复合物。同时本文还采用B3LYP/aug-cc-pVDZ的方法对这些结构进行优化和频率计算。根据计算结果对电荷转移、复合物的稳定性以及结构参数变化的规律进行讨论。同时本次研究过程中,还进一步探索了不同取代基对阴离子识别受体分子的灵敏度存在什么程度的影响。此外,我们还在优化结构的基础上采用TD /B3LYP /aug-cc-pVDZ的计算方法得到各种物质的最大的吸收波长。
     主要内容概括如下:
     (一)我们分别将这八种复合物的结构进行优化计算,优化结果显示均为氢键构型。根据计算的几何参数的数值,我们发现:在这些氢键复合物中,电荷发生转移,N—H之间的距离都稍稍的有所增长。另外,根据NBO分析结果,我们得出结论:当N—H···Cl-氢键强度越强时,质子给予体和接受体的分子间的电荷迁移的数量就越多。并且我们还可以看出,复合物的稳定性与电荷迁移量的大小存在着一定的关系,也就是说电荷迁移的数量越大,则复合物的稳定性也随着电荷迁移量的增大而增强。
     (二)我们分别对这两类氢键复合物的作用能进行计算与比较,结果发现:苯环上取代基的吸电子的能力的大小能够改变胺、酰胺受体分子对阴离子的结合能力。苯环对位取代基引入某些强拉电子基(如硝基等),不仅可以增强受体分子中NH的质子酸性,还能够提高受体对阴离子的结合能力。同时我们也得到了结论:受体分子中有苯环的参与或者是苯环对位为吸电子基团时复合物的形成就变得更加的容易。
     (三)我们对氢键进行了NBO分析,NBO分析认为复合物的次级稳定化能(ΔΕ2)主要由n(4)Cl/σ*(N—H)电荷跃迁引起的,并且由ΔΕ2最大值来支配的。
     (四)我们利用TD /B3LYP /aug-cc-pVDZ得到最大的吸收波长。结果表明:阴离子与受体分子间的相互作用,进一步使得受体分子内的电荷转移现象发生的更加明显,同时也进一步促进了整个分子的共轭体系明显的增强。此外本次实验中形成的所有的阴离子复合物,它们的最大吸收波长处的吸收光谱均发生红移。在氢键结合位点附近引入吸电子能力较强的基团时,进一步极化了氢键给体,同时使得受体分子的给质子能力得到相应的提高,进而发生吸收光谱红移的现象。
Anions play an important role in biological sciences andenvironmental chemisty. Most of the anions are good hydrogenbonding receptors. Design and synthesis of new anion recognitionreceptors have become more and more interesting. Improvingselectivity and sensitivity of anion recognition should be the keyfactors to consider in the design process. So far, the designing ofnew anion receptor is still a challenging job. Hydrogen bonding isone of the interactions in anion recognition. The anion receptorscontaining N—H groups, for example, polyamines, ureas, pyrazolesand amides etc, have been paid much attention and have beenwidely used in the design of the anion recognition receptors andsensors.
     In order to further understanding the hydrogen bondinginteraction between N—H groups and anions, this paper designed aseries of amine and amides as prototypes of hydrogen donor inhydrogen-bond complex. The geometry optimizations (acceptormolecule and hydrogen bonding complexes) were performed, usingB3LYP/aug-cc-pVDZ method. According to the calculation results,the strength of hydrogen bonding, the charge transfer (between accepter and the doner) and harmonic frequency were investigated.Based on the TD/B3LYP/aug-cc-pVDZ level, we got the absorptionspectra of these complexes. The hydrogen bonding interactioncaused a red shift in the absorption spectra.
     Main content summed up as follows:
     (a). We optimized the geometries of the complexes of Cl-withthe amines and amides. All of receptor molecules and Cl-werehelded together by hydrogen bonding. In all hydrogen bondingcomplexes, N—H bond lengths were slightly increased.
     (b). The substituents can change the acidity of N—H group inamines and amides. Introducing some strong pull electronic group(-NO2), the hydrogen bond between host and anion was graduallystrengthened. And N—H acidity of the molecules in the host wasincreased, and this is helpful to complex formation.
     (c). Based on NBO analysis, the stabilization energy of thecomplexes was determined by the maximum value of theΔΕ2caused by the electron transition of the n(4)Cl/σ*(N—H). The N—H…Cl-hydrogen bonds between the Cl-and amines ( amides) moleculespresent a charge transfer from the lone pairs of the proton acceptorto the antibonding orbitals of N—H bonds. At the same time, theamount of charge transfer were significant different. In addition,NBO analysis indicates that a stronger hydrogen bond in N—H…Cl-results in more charge transfer between the hydrogen bond donorand acceptor molecules. The more charge transfer was, the morestable complexes were.
     (d). Using the TD/B3LYP/aug-cc-pVDZ, we calculated theabsorption spectra. As shown by the calculated, a large shift of the maximum absorption wavelengths. The formation of hydrogen
     bonds promoted the infamolecular charge transfer, and increasedrigidity of the structure. Introducing strong pull electronic groups,the red shift phenomenon became more obvious.
引文
【1】Pedersen C J; The Discovery of Crown Ethers(Nobel Lecture). Angew, Chem., Int., Ed.,Engl, 1988, 27(8): 1021-1027.
    【2】Cram D J; The Design of Molecular Hosts, Guests, and Their Complexes(Nobel Lecture).Angew. Chem. Int. Ed. Engl. 1988, 27(8):l009-1020.
    【3】Lehn J M. Supramolecular Chemistry-Scope and Perspectives, Molecules, Supramolecules,And Molecular Devices. (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1988, 27(1): 89-112.
    【4】Forster R J; Dermot Diamond; Highlight Miniaturized Chemical Sensors[J]. Analytical. Communications. 1996. 33(1): 1H-4H.
    【5】Haugland R P; Handbook of Fluorescent Probes and Research Chemicals. Molecular Prob-es edition, in English- 6th ed. Eugene,OR, 1996.
    【6】Yu Liu; Yong Chen; Li Li; Gang Huang; Chang-Cheng You; Heng-Yi Zhang; Takehiko-Wada and Yoshihisa Inoue; Cooperative Multiple Recognition by Novel Calix[4]arene-Tethered-β-Cyclodextrin and Calix-4 arene-Bridged Bis(β-cyclodextrin)[J]. Organic, chemistry, 2001, 66(21): 7209-7215.
    【7】Lehn J M著,沈兴海(Shen X H)等译.超分子化学-概念和展望(Supramolecular Chemistry : Concepts and Perspectives). Beijing : Peking University Press, 2002: 12-33.
    【8】L Brunsveld; B J B Folmer; E W Meijer and R P Sijbesma; Supramolecular Polymers[J].Chem, Rev, 2001, 101(12): 4071-4097.
    【9】Farnik D; Kluger C; Kunz M J; Machl D; Petraru L; Binder W H; Special Issue: Contributions from 6th Austrian Polymer Meeting[J]. Macromol.Symposia. 2004, 217:247-266.
    【10】Wang Y J; Tang L M; Hydrogen Bonding Recognition in Supramolecular Polymers[J].Progress in Chemistry, 2006, 18(2/3): 308-316.
    【11】王晓钟,陈英奇,陈新志.有机分子识别和聚集体组装中的非共价键协同作用[J].化学进展.2005, 17(3): 451-458.
    【12】A. Prasanna de Silva; H Q Nimal Gunaratne; Thorfinnur Gunnlaugsson; Allen J M; Hu-xley; Colin P; Mc Coy; Jude T; Rademacher and Terence E. Rice Signaling RecognitionEv-ents with Fluorescent Sensors and Switches[J]. Chemical Reviews, 1997, 97(5): 1515–1566.
    【13】Schmidtchen F P and Michael B. Artificial Organic Host Molecules for Anions[J]. Che-m.Rev. 1997, 97: 1609-1646.
    【14】Marta Ansa Hortala; Luigi Fabbrizzi; Designing the Selectivity of the Fluorescent Detection of Amino Acids: A Chemosensing Ensemble for Histidine[J]. J. Am. Chem. Soc. 2003. 125(1): 20-21.
    【15】Gale P A; Anion coordination and anion-directed assembly: highlights from 1997 and 19-98[J]. Coord, Chem, Rev. 2000, 199: 181-233.
    【16】Beer P D; Gale P A; Anion Recognition and Sensing: The State of The Art and Future Perspectives[J]. Angew. Chem. Int. Ed. 2001, 40: 486-516.
    【17】Gerhard J Mohr; New chromogenic and fluorogenic reagents and sensors for neutral an-d ionic analytes based on covalent bond formation-a review of recent developments[J]. Analyt-ical and Bioanalytical Chemistry, 2006, 5: 1201-1214.
    【18】Marcetta Y; Tuntulani T. Sulfur Site Adducts of Sulfur Dioxide in Nickel-Bound Thiolat-es and Their Conversion to Sulfate Inorg. Chem. 1994, 33: 611-613.
    【19】Schmidtchen F P; Berger M; Artificial Organic Host Molecules for Anions[J]. Chem.Re-v. 1997, (97): 1609-1646.
    【20】Camiolo S; Gale P A; Pyrrolic and polypyrrolic anion binding agents[J]. Coord, Chem,Rev, 2003, 240: 167-189.
    【21】Beer P D; Hayes E J. Transition metal and organicmetallic anion complication agents[J].Coord.Chem. Rev. 2003, 240: 167-189.
    【22】Gale P A; Anion and ion - pair receptor chemistry: High-lights from 2000 and 2001[J].Coord. Chem. Rev, 2003, 240: 19l-221.
    【23】Suksai C,Tuntulani T. Chromomeric Anion Sensors[J]. Chem. Soc. Rev. 2003, 32: 192-202.
    【24】Aoki S; Kimura E; Recent progress in artificial receptors for phosphate anions in aqueo-us solution[J]. Journal of Biotechnology, 2002, 90: l29-155.
    【25】吴芳英,温珍昌,江云宝.硫脲类阴离子受体的研究进展[J].化学进展, 2004, 16: 776-784.
    【26】曾振亚,何永炳,孟令芝.阴离子荧光受体研究进展[J],化学进展, 2005, 17: 254-265.
    【27】E T R. Guzman; E O Regil; L R R Gutierrez; M V E Alb Erich; A R Hernandez; EO Regal; Contamination of corn growing areas due to intensive fertilization in the high planeof Mexico[J]. Water Air and soil pollution. 2006, 175; 77-98.
    【28】Buhlmann P; Pretest E, Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors[J]. Chemical Reviews. 1998, 98(4): 1593-1688.
    【29】Kavallieratos K; Crabtree R H, Hydrogen Bonding in Anion Recognition: A Family ofVersatile, Nonpreorganized Neutral and Acyclic Receptors[J]. J. Org. Chem, 1999, 64(5): 1675-1683.
    【30】史春越,曹家庆,范平.辽宁大学学报自然科学版[J], 2003, 30: 82.
    【31】Beer P D; Szemes F; Balzani V; etal. Anion selective recognition and sensing by novelmacrocyclic transition metal receptor systems: 1HNMR, electrochemical and photophysical Investigations[J]. J. Am. Chem. Soc. 1997, 119: 11864-11875.
    【32】Llinares J M; Powell D; Bowman-James K; Ammonium based anion Receptors[J]. Coord, Chem. Rev. 2003, 240, 57-75.
    【33】Bowman-James K; Alfred Werner; Revisited: the coordination chemistry of anions[J].Acc, Chem, Res, 2005, 38(8): 67l-678.
    【34】Martinez-Manez R; Saneenon F; New Advances In Fluorogenic Anion Chemosensors[J].Chem. Rev. 2005, 15: 267-285.
    【35】Garcia-Espafia E; Diaz P; Lliares I M; Bianchi A. Anion coordination chemistry in aqu-eous solution of polyammonium receptors[J]. Coord.Chem. Rev. 2006, 250: 2952-2986.
    【36】Wichmann K; Antonioli B; Sohnel T; Polyamine-based anion receptors: extraction andstructural studies[J]. Coord.Chem. Rev. 2006, 250: 2987-3003.
    【37】Bondy C R; Loeb S J; Amide based receptors for anions[J]. Coord.Chem. Rev, 2003, 240: 77-99.
    【38】Raposo C; Perez N; Almaraz M; et a1. A cyclohexane spacer for phosphate receptors[J].Tetrahedron Lett, 1995, 36(18): 3255-3258.
    【39】Zhang X; Guo L; Wu F Y; Development of fluorescent sensing of anions under excitedstate intermolecular proton transfer signaling mechanism[J]. Org. Lett. 2003, 5(15): 2667-2670.
    【40】黎朝;陈瑶函;江云宝; 3-羟基-2-萘甲酰胺基苯基硫脲激发态分子内质子转移阴离子荧光传感[J].中国科学杂志社,化学, 2009, 39(2): 144-152.
    【41】Liu B; Tian H; A ratiometric fluorescent chemosensor for fluoride ions based on aproton transfers signaling mechanism[J]. J. Mater. Chem, 2005, 15: 2681-2686.
    【42】Zhou J H; Wang P F; Zhang X H; Wu S K. New fluorescent chemosensor based onexciplex signaling mechanism[J]. Org. Lett. 2005, 7(11): 2133-2136.
    【43】Chen Q Y; Chen C F; Tetrahedron Lett, 2004, 45: 6493-6496.
    【44】范宁娟,郭炜,新型2,6-二羰酰胺基吡啶类肽的合成及其对卤离子的识别作用[J].化学研究. 2005,16: 13-16.
    【45】和芹,孙建武, 5-氟尿嘧啶与甲酸及甲酰胺氢键作用的理论研究[J].南开大学学报. 2010, 43(2); 60-66.
    【46】毛淑才,余向阳,沈勇,郑康成.苯酚-酰胺系列氢键复合物从头计算研究.有机化学[J].2000.20(2):243-247.
    【47】Chakrabarti P; Anion binding sites in protein structures[J]. J. Mol. Biol. 1993, 234: 463-482.
    【48】Berger M; Franz P; Schmidchen, Electroneutral Artificial Hosts for Oxoanions Active inStrong Donor Solvents[J]. J. Am.Chem. Soc, 1996, 118(37): 8947-8948.
    【49】Czanik A W; Chemical Communication in Water Using Fluorescent Chemosensors[J].Acc. Chem. Res, 1994, 27(10): 302-308.
    【50】Silva A P; Gunaratne H Q N; Gunnlaugsson T; Signaling Recognition Events with Fluo-rescent Sensors and Switches[J]. Chem. Rev, 1997, 97: 1515-1556.
    【51】Xiao K P; Buhlmann P; Amemiya S; et al. A Chloride Ion-Selective Solvent PolymericMembrane Electrode Based on a Hydrogen Bond Forming Ionophore[J]. Anal.Chem.1997. 69(6): 1038-1044.
    【52】Niikura K; Metzger A; Anslyn E V; Chemosensor Ensemble with Selectivity for Inositol-Trisphosphate[J]. J .Am .Chem. Soc, 1998, 120: 8533-8534.
    【53】Davis F; Collyer S D; Higson S P J; The construction and operation of anion sensorscurrent status and future perspectives[J]. Topics in Current Chemistry, 2005, 97: 255-124.
    【54】R S Kaplan; Structure and function of mitochondrial anion transport proteins[J]. Journalof Membrane Biology, 2001, 179(3): 165-183.
    【55】Beer P D; Anion selective recognition and optical/electrochemical sensing by novel transition- metal receptor systems[J]. Chem.Communications. 1996(6): 689-696.
    【56】Gale P A; Anion receptor chemistry: Highlights from 1999[J]. Coord.Chem. Rev, 2001,213(1): 79-128.
    【57】许胜,刘斌,田禾.阴离子荧光化学传感器新进展[J].化学进展. 2006, 18(6): 687-697.
    【58】Liao J H; Chen C T; Fang J M; A Novel Phosphate Chemosensor Utilizing Anioninduc-ed Fluorescence Change[J]. Org. Lett. 2002, 4(4): 561-564.
    【59】Fabbrizzi L; Licchelli M; Rabaioli G; et al. The design of luminescent sensors foranions and ionisable analytes[J]. Coord.Chem. 2000, 205: 85-108.
    【60】Hennrich G; Sonnenschein H; et al. Fluorescent anion receptors with iminoylthioureabinding site selective hydrogen bond mediated recognition of CO32-, HCO3-and HPO42-. Tetrahedron Lett, 2001, 42: 2805-2808.
    【61】Y Kubo; Tsukahara M; Ishihara S; et al. A simple anion chemosensor based on a naphthalenethiouronium dyad[J]. Chem.Communications. 2000, 8: 653-654.
    【62】Gunnalaugsson T;Davis A P; Glynn M; et al. Fluorescent Photoinduced electron transfer(PET) sensing of anions using charge neutral chemosensors[J]. Chem.Communications. 2001, 24: 2556-2557.
    【63】解宏智,伊珊,杨晓萍等,多足开链化合物与阴离子的相互作用[J].中国科学, 2000, 30:328-333.
    【64】Nishizawa S; Kato Y; Teramae N; Fluorescence sensing of anions via intramolecular eximer formation in a pyrophosphate induced self-assembly of a pyrene-functionalized guanidinium receptor[J]. J. Am. Chem. Soc, 1999, 121(40): 9463-9464.
    【65】Pavel Anzenbacher; Jr Karolina Jursikova; Sessler J L; Second Generation CalixpyrroleAnion Sensors[J], J. Am. Chem. Soc, 2000, 122: 9350-9351.
    【66】Shi Y; Zhou Z Y; Zhang H T;Density functional theory study of the hydrogen bondinginteraction of 1:1 complexes of formamide with glysine[J]. Phys. Chem. A, 2004, 108(30): 6414-6420.
    【67】李权. 1, 2, 4-三氮杂苯- (H2O) n复合物氢键相互作用的密度泛函理论研究[J].化学学报,2005, 63: 985-989.
    【68】Li Q; Huang F Q; Many-body interaction in 1, 2, 3- triazine-(water)3complexes [J]. Chem, 2005, 23: 1314-1318.
    【69】Zhang B; Cai Y; Mu X L; et al. Multiphoton ionization and DFT studies of pyramiding-(water)n clusters[J]. Phys, Chem. 2002, 117: 3701-3710.
    【70】Dkhissi A; Adamowicz L; Maes G; et al. DFT study of the hydrogen-bond pyridine-H2O complex: A Comparison with RHF and MP2 Methods and with Experimental Data[J]. Phys. Chem. A. 2000, 104(10): 2112-2119.
    【71】Frisch M J; Trucks G W; Schlegel H B; et al. Gaussian03, Gaussian Inc: Pittsburgh, PA, 2003.
    【72】McDowell S A C; Buckingham A D; On the Correlation between Bond-Length Changeand Vibrational Frequency Shift in Hydrogen-Bonded Complexes: A Computational Study ofY…HCl Dimers(Y=N2, CO, BF)[J]. J. Am Chem. Soc, 2005,127, 15515-15520.
    【73】A E Reed; L A Curtiss; F Weinhold; Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Chem. Rev. 1988, 88(6): 899-926.
    【74】黄方千,李权,赵可清. s-四嗪-水簇复合物的理论研究.化学学报[J], 2006, 64: 1642-1668.
    【75】Belletete M.; Durocher G.; Hamel S; Cote M.; Wakim S; LeclercM; A first principles calcutations and experimental study of the ground- and excited-state properties of ladder oligo(p-aniline)[J]. Chem. Phys. 2005, 122: 104303.
    【76】Fan Jian-Xun; Ren Ai-Min; Feng Ji-Kang; Bo Dong-Sheng. Theoretical Studies on theGround State and Excited State of 7-Azaindole Derivatives[J]. Chemical Journal of ChineseUniversities, 2006, 27(6): 1091-1095.
    【77】Xu H; Yang B; He F; Xie Z Q; Tian L L; Liu X D; Yu J S ; Ma Y G; TheoreticalStudies on Ground State Structure, Electronic Energy Level and Absorption Spectra of PPV Oligomers with Biphenyl Bridge[J], Chem. J. Chinese University 2006, 27(3): 510-514.
    【78】李会学,秦泰; 3-苯基-6-芳基-1,2,4-三唑并[3,4-b]-1,3,4-噻二唑的电子结构和光谱性质的含时密度泛函理论研究[J].化学学报, 2007, 28(4): 747-751.
    【79】LIU Jun-Na.; CHEN Zhi-Rong.; YUAN Shen-Feng; Prediction of Visible Absorption ofPyridone Azo Compounds[J], Acta. Phys.Chim. Sin. 2005, 21(4): 402-407.
    【80】梁晓琴,蒲雪梅,舒远杰,田安民.苯及其含氮等电子体化合物的结构和性质的理论研究[J].化学学报. 2006,20: 2057-2064.
    【81】陈沁闻,王兰英,翟高红,文振翼,张祖训.苯乙烯基-β-萘噻唑染料电子光谱的含时密度泛函研究[J].化学学报. 2005, 63(1): 39-43.
    【82】Xue-YS; Gong-XD; Xiao-HM; Tian-H; A density functional theory study of indigo andits derivatives[J], Acta. Chim.Sin. 2004, 62(10): 963-968.
    【83】E Runge; Gross E K U; Density functional theory for time-dependent systems[J]. Phys.Rev. Lett, 1984, 52: 997-1000.
    【84】Sessler J L; Camiolo S; Gale P A.; Pyrrolic and polypyrrolic anion binding agents[J].Coord. Chem. Rev. 2003, 240(1-2): 17-55.
    【85】Ghosh T; Maiya B G; Fluoride Ion Receptors Based on Di-pyrrolyl Derivatives BearingElectron-Withdrawing Groups; Synthesis, Optical and Electrochemical Sensing, and Computational Studies[J]. J. Phys. Chem. 2004, 108(51): 11249-11259.
    【86】Beer P D; Hayes E J; Transition metal and organ metallic anion complications agents[J],Coord. Chem. Rev. 2003, 240(1-2): 167-189.
    【87】Fabbrizzi L; Licchelli M; Togliatti A; The design of fluorescent sensors for anions: Taking profit from the metal-ligand interaction and exploiting two distinct paradigms[J]. Dalton Trans, 2003, 18: 3471-3479.
    【88】Zeng Z Y; He Y B; Wei L H; et al. The synthesis of two novel neutral receptors andtheir anion binding properties[J]. Canadian Journal of Chemistry, 2004, 82(3): 454-460.
    【89】Gunnlaugsson T; Glynn M; Tocci G.M; Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors[J], Coord. Chem. Rev. 2006, 250(23-24): 3094-3117.
    【90】Fillaut J L; Andires J; Perruchon J; Desvergne J P; Alkynes Ruthenium Colorimetric Sensors: Optimizing the Selectivity toward Fluoride Anion[J]. Inorg.Chem, 2007, 46(15): 5922-5932.
    【91】Kim S Y; Hong J I; Chromogenic and Fluorescent Chemo dosimeter for Detection of Fluoride in Aqueous Solution[J], Org. Lett. 2007, 9(16): 3109-3112.
    【92】Batista R M F; Oliveira E; Costa S P G; Fluormetric Chemosensors Based on Bithienyl-imidazo-Anthraquinone Chromospheres[J]. Org. Lett, 2007, 9(17): 3201-3204.
    【93】Lehn J M;超分子化学概念和展望[M],沈兴海译,北京大学出版社, 2002.
    【94】Aoki S; Kimura E; Recent Progress in Artificial Receptors for Phosphate Anions in Aqueous Solution[J], Rev, Mol, Bio. 2002, 90: 129.
    【95】Sessler J L; Cho W S; Gale P A; Anion receptor chemistry[J].RSC. 2006.
    【96】吴芳英,博士论文[D],厦门:厦门大学, 2003.
    【97】罗榕,硕士论文[D],甘肃:西北师范大学, 2006.
    【98】Vega I E D; Camiolo S; Gale P A; et al, Anion Complexation Properties of2,2-bisamidodipyrrolylmethanes[J]. Chem.Communications. 2003, 34(43): 1686.
    【99】Camiolo S; Gale P A; Hursthouse M B; et al. 2, 5-diamidofuran Anion Receptors[J]. Tetrahedron.Lett. 2003, 4: 1367.
    【100】Albelda M T; Arguilar J; Alves S; et al. Potontiometric, NMR and Fluorescence Emission Studies on the Binging of Adenosine5’-Triphosphate (ATP) by Open-Chain Polyamine Receptors Containing Naphtylmethyl Groups[J]. Helv. Chem.cla. 2003, 86(9): 3118.
    【101】Sun Yue; Wang Guo-Feng; Guo Wei; Colorimetric detection of cyanide with N-nitro phenyl Benz amide derivatives[J]. Tetrahedron, 2009, 65: 3480-3485.
    【102】Ghosh K; Saha I; Patra A; Design and synthesis of an ortho-phenylenediamine-basedopen cleft: a selective fluorescent chemosensor for di-hydrogen phosphate[J]. Tetrahedron Letters, 2009, 50: 2392-2397.
    【103】Shao Jie; Qiao Yan-Hong; Lin Hua-Kuan; A turn-on fluorescent anion receptor basedon N,N-di-β-naphthyl-1,10-phenanthroline-2,9-diamide[J]. Journal of Luminescence, 2008, 128:1985-1988.
    【104】Shao jie; Lin hai; Cai Zun-Sheng; Lin Hua-Kuan; A simple colorimetric and ON-OFFfluorescent chemosensor for biologically important anions based on amide moieties[J]. Journalof Photochemistry and Photobiology B: Biology, 2009, 95: 1-5.
    【105】Mhin B J; Park B H; Relationship between charge transfer and the structural deformation in para-substituted aniline derivatives[J]. Chem. Phys.Lett. 2000,25: 61-68.
    【106】Martinez-Manez R, Sancenon F; Fluorogenic Chromogenic Chemosensors and Reagentsfor Anions[J]. Chem. Rev, 2003, 103(11): 4419-4476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700