MoO_3(010)表面吸附体系的密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着机动车尾气的危害日益严重,尾气中的NOx脱除已成为环境催化领域的重要研究课题。本文从第一性原理出发,采用量子化学计算手段考察了MoO3(010)表面NH3、 NO、 H2O、 O2的吸附状况及不同OT空位对吸附的影响。结果表明:
     (1)NH3只能以N端吸附的方式吸附于MoO3(010)面的OT空位,H端吸附的方式则不可行。吸附后NH3失电子并得到较小程度的活化,OT空位的Mo原子得到电子被还原。周围第二个OT空位的存在对吸附后NH3的平衡几何构型基本没有影响,但吸附能、电子电荷迁移量、Mo还原程度则发生一定的变化:间位Or空位的存在使NH3吸附的稳定性增强,而邻位OT空位的存在则使NH3吸附的稳定性降低;邻位OT空位和间位OT空位的存在均使电子电荷的迁移量有所减少;邻位OT空位和间位OT空位的存在降低了反应位Mo原子的还原程度,此时邻位OT空位的影响强于间位OT空位。另外,NH3在B酸位吸附的稳定性不如不如L酸位吸附稳定。
     (2)NO可以以N端吸附的方式吸附于OT空位,也可以以O端吸附的方式吸附于OT空位,但O端吸附时的稳定性明显不如N端吸附时的稳定性强,这是由于NO分子中N原子比O原子具有更强的给电子能力和更强的接收电子能力。NO以N端吸附的方式吸附于OT空位时为可自发的化学吸附,吸附后NO得电子的同时被活化,OT空位的Mo原子得到电子被还原。周围第二个OT空位的存在使NO氮端吸附的稳定性增强、Mo原子还原程度增大、电子电荷迁移量增大,同时进一步促进NO的活化。对于前三个方面间位OT空位的影响要大于邻位OT空位的影响,最后一个方面则是二者影响程度相当。电子电荷迁移量越大,吸附越稳定,表明电子贡献对NO在Mo03(010)面的N端吸附及其稳定性有着至关重要的作用。
     (3)H2O只能以O端吸附的方式吸附于MoO3(010)面的OT空位,H端吸附的方式则不可行。O端吸附时为可自发进行的化学吸附,吸附后H20失电子并得到一定程度的活化,OT空位的Mo原子失去电子被氧化。周围第二个OT空位的存在使H20吸附的稳定性降低、电子电荷迁移量降低,同时进一步促进H20的活化。H20吸附的稳定性与电子电荷迁移量、H20的活化程度存在线性相关性,即稳定性越低,电子电荷迁移量越低,活化度越大,表明电子贡献对H20在MoO3(010)面的吸附及其稳定性有着至关重要的作用。
     (4)当O2垂直吸附于MoO3(010)面的OT空位时为可自发进行的化学吸附,吸附后O2得电子并得到一定程度的活化,O丁空位的Mo原子失去电子被氧化。周围第二个OT空位的存在对02吸附稳定性基本没有影响,但是对电荷布居产生的一定的影响:使电子电荷迁移量增大、反应位Mo原子的氧化程度增大,同时进一步促进了被吸附物02的活化,邻位OT空位对这些方面的影响作用均要强于间位OT空位。
     (5) NH3、 NO, H2O、O2在存在OT空位的MoO3(010)表面均能进行稳定的化学吸附,表明形成的OT空位使Mo原子配位不饱和而具有较大的反应活性。NO以N端吸附的方式吸附于OT空位簇的稳定性最强;NH3和O2的吸附相对较弱且存在较强的竞争吸附,O2的吸附稳定性略强于NH3; H2O的吸附最弱。
     (6) NH3、 NO、 H2O、 O2稳定吸附于MoO3(010)面的OT空位后,被吸附物携带的电荷种类及电荷数量随被吸附物的不同而不同。NO和O2吸附后被吸附物携带负电荷,这是由于被吸附物的原子都具有较大的电负性而使被吸附物具有强的得电子能力;NH3和H2O吸附后被吸附物均携带正电荷。NH3、 NO、 H2O, O2稳定吸附于MoO3(010)面的OT空位后,反应位Mo原子得失电子情况取决于与之相键合原子类型。NH3和NO氮端吸附时,即Mo-N相键合,Mo原子得电子被还原;而H2O、 O2及NO氧端吸附时,Mo-O相键合,Mo原子则失电子被氧化。
In the recent year, the elimination of nitrogen oxides from automobile exhaust emissions is becoming important research subject in the field of environmental catalysis, as the harm of automobile exhaust emissions is an increasing problem. Based on first principle, in this work the adsorption of NH3、 NO、 H2O、 O2on MoO3(010) surface and the influences of different OT vacancies have been investigated by quantum chemistry calculations, the results are listed as follow:
     (1) NH3can adsorb on the OT vacancy of MoO3(010) surface as N-down not H-down. After adsorption NH3loses electrons and is activated slightly, Mo atom receives electrons and is reduced. The second OT vacancy around seems nothing to the optimized configurations, but affects adsorption energy, quantity of electron transfer and the reduction degree of Mo atom:the diagonal OT vacancies around strengthen the NH3adsorption stabilization but the adjacent OT vacancies around weaken the adsorption stabilization; both of the diagonal OT vacancies and the adjacent OT vacancies reduce the quantity of electron transfer; both of the diagonal OT vacancies and the adjacent OT vacancies weaken the reduction degree of Mo atom, but the effect of adjacent OT vacancies is stronger than that of diagonal OT vacancies. In addition, NH3adsorption on Lewis acid site is more stable than that on bronsted acid site.
     (2) NO can adsorb on the OT vacancy of MoO3(010) surface both as O-down and N-down, but the adsorption stabilization as O-down is weaker than that as N-down, which is owing to the stronger ability to receive electron and lose give electron of N atom than that of O atom for NO molecule. NO adsorption as N-down on the OT vacancy is spontaneous chemical adsorption, NO receives electrons and is activated while Mo atom receives electrons and is reduced. The second OT vacancy around strengthen the adsorption stabilization, increase the reduction degree of Mo atom, greater the quantity of electron transfer, here the effect of diagonal OT vacancies is greater than that of adjacent OT vacancies. In the same time the NO is activated further and the effect for both diagonal Ot vacancies and adjacent OT vacancies is equal. The more quantity of electron transfer is, the stronger adsorption stabilization is, which suggests that electron contribution is key factor for NO adsorption on the OT vacancy of MoO3(010) surface as N-down.
     (3) H2O can adsorb on the OT vacancy of MoO3(010) surface as O-down not H-down. H2O adsorption as O-down on the OT vacancy is spontaneous chemical adsorption, H2O loses electrons and is activated while Mo atom lose electrons and is oxidated. The second OT vacancy around reduce the adsorption stabilization and the quantity of electron transfer, in the same time H2O is activated further. A linear correlation is obvious between adsorption stabilization, quantity of electron transfer and the activation degree of H2O. The stronger adsorption stabilization is, the less quantity of electron transfer is and the higher activation degree is, which suggests that electron contribution is important for H2O adsorption on the OT vacancy of MoO3(010) surface.
     (4) O2adsorption on the OT vacancy vertically is spontaneous chemical adsorption, O2receives electrons and is activated while Mo atom lose electrons and is oxidated. The second OT vacancy around seems nothing to adsorption stabilization, but affects charge distribution: adding quantity of electron transfer, increasing the oxidation degree of Mo atom and activating O2further, here the effect of adjacent OT vacancies is greater than that of diagonal OT vacancies.
     (5) All adsorbates of NH3) NO, H2O, O2can adsorb on the OT vacancy of MoO3(010) surface stably, which shows that Mo atom is coordinated unsaturated and have great reactive activation owing to the presence of OT vacancy. NO adsorption as N-down is the most stable. There is competition between NH3adsorption and O2adsorption but O2 adsorption is more stable slightly. H2O adsorption is the least stable.
     (6) When NH3, NO, H2O, O2adsorb on the OT vacancy of MoO3(010) surface stably, the different adsorbate leads to different charge type and charge quantity. Refering to NO and O2adsorption the adsorbate takes with negative charges, which is caused by the great electronegativity of adsorbate atoms and the strong ability to receive electron of adsorbate. For NH3and H2O adsorption, the adsorbate takes with positive charges. The charge change of Mo atom depends on the atom type bonding to Mo atom. Refering to NH3and NO adsorption as N-down Mo-N bond is formed, Mo atom receives electron and is reduced. For H2O, O2and NO adsorption as O-down Mo-O bond is formed, Mo atom loses electron and is oxidated.
引文
[1]Bosch H,Janssen, F. Catalytic reduction of nitrogen oxides:A review on the fundamental and technology [J]. Catalysis Today.1988,2(4):369-379.
    [2]Armor J N. Environmental catalysis [J]. Applied Catalysis B:Environmental.1992, 1:221-256.
    [3]Manney G L, Froidevaux, L, Waters, J W, etc. Chemical depletion of ozone in the Arctic lower stratosphere during winter 1992-93 [J]. Nature.1994, 370(6489):429-434.
    [4]Sanchez-Escribano V, Montanari, T,Busca, G. Low temperature selective catalytic reduction of NOx by ammonia over H-ZSM-5:an IR study [J]. Applied Catalysis B:Environmental.2005,58(1-2):19-23.
    [5]Calatayud M, Mguig, B, Minot, C. Modeling catalytic reduction of NO by ammonia over V2O5 [J]. Surface Science Reports.2004,55(169-236.
    [6]CRC Handbook of Chemistry and Physics,58th ed.[M].Cleveland:CRC Press, 1978:
    [7]Koebel M, Madia, G,Elsener, M. Selective catalytic reduction of NO and NO2 at low temperatures [J]. Catalysis Today.2002,73(3-4):239-247.
    [8]Ferri D, Forni, L, Dekkers, M A P, etc. NO reduction by H2 over perovskite-like mixed oxides [J]. Applied Catalysis B:Environmental.1998,16(4):339-345.
    [9]Fokema M D,Ying, J Y. Mechanistic Study of the Selective Catalytic Reduction of Nitric Oxide with Methane over Yttrium Oxide [J]. Journal of Catalysis.2000, 192(1):54-63.
    [10]Costa C N, Stathopoulos, V N, Belessi, V C, etc. An Investigation of the NO/H2/O2 (Lean-deNOx) Reaction on a Highly Active and Selective Pt/La0.5Ce0.5Mn03 Catalyst [J]. Journal of Catalysis.2001,197(2):350-364.
    [11]Gongshin Q, Yang, R T,Thompson, L T. Catalytic reduction of nitric oxide with hydrogen and carbon monoxide in the presence of excess oxygen by Pd supported on pillared clays [J]. Applied Catalysis A:General.2004, 259(2):261-267.
    [12]Shen S C,Kawi, S. Mechanism of selective catalytic reduction of NO in the presence of excess O2 over Pt/Si-MCM-41 catalyst [J]. Journal of Catalysis. 2003,213(2):241-250.
    [13]Li Z, Shen, L T, Huang, W, etc. Kinetics of selective catalytic reduction of NO by NH3 on Fe-Mo/ZSM-5 catalyst [J]. Journal of Environmental Sciences.2007, 19(12):1516-1519.
    [14]Walker A P. Mechanistic studies of the selective reduction of NOx over Cu/ZSM-5 and related systems [J]. Catalysis Today.1995,26(2):107-128.
    [15]李哲,黄伟,谢克昌Mo/ZSM-5催化剂体系上NO的选择性催化还原研究[J].催化学报.2002,23(6):535-538.
    [16]Busca G, Larrubia, M A, Arrighi, L, etc. Catalytic abatement of NOx:Chemical and mechanistic aspects [J]. Catalysis Today.2005,107-108(0):139-148.
    [17]刘清雅,刘振宇,李成岳.NH3在选择性催化还原NO过程中的吸附与活化[J].催化学报.2006,27(7):636-646.
    [18]Anstrom M, Topsoe, N Y,Dumesic, J A. Density functional theory studies of mechanistic aspects of the SCR reaction on vanadium oxide catalysts [J]. Journal of Catalysis.2003,213(2):115-125.
    [19]Busca G, Saussey, H, Saur, O, etc. FT-IR characterization of the surface acidity of different titanium dioxide anatase preparations [J]. Applied Catalysis.1985, 14(0):245-260.
    [20]Farber M,Harris, S P. Kinetics of ammonia-nitric oxide reactions on vanadium oxide catalysts [J]. The Journal of Physical Chemistry.1984,88(4):680-682.
    [21]Inomata M, Miyamoto, A,Murakami, Y. Mechanism of the reaction of NO and NH3 on vanadium oxide catalyst in the presence of oxygen under the dilute gas condition [J]. Journal of Catalysis.1980,62(1):140-148.
    [22]Inomata M, Miyamoto, A,Murakami, Y. Determination of the number of vanadium=oxygen species on the surface of vanadium oxide catalysts.2. Vanadium pentoxide/titanium dioxide catalysts [J]. The Journal of Physical Chemistry.1981,85(16):2372-2377.
    [23]Janssen F J J G, Van den Kerkhof, F M G, Bosch, H, etc. Mechanism of the reaction of nitric oxide, ammonia, and oxygen over vanadia catalysts.1. The role of oxygen studied by way of isotopic transients under dilute conditions [J]. The Journal of Physical Chemistry.1987,91(23):5921-5927.
    [24]Janssen F J J G, Van den Kerkhof, F M G, Bosch, H, etc. Mechanism of the reaction of nitric oxide, ammonia, and oxygen over vanadia catalysts.2. Isotopic transient studies with oxygen-18 and nitrogen-15 [J]. The Journal of Physical Chemistry.1987,91(27):6633-6638.
    [25]Lietti L, Svachula, J, Forzatti, P, etc. Surface and catalytic properties of Vanadia-Titania and Tungsta-Titania systems in the Selective Catalytic Reduction of nitrogen oxides [J]. Catalysis Today.1993,17(1-2):1 31-139.
    [26]Ozkan U S, Cai, Y P,Kumthekar, M W. Investigation of the Mechanism of Ammonia Oxidation and Oxygen Exchange over Vanadia Catalysts Using N-15 and 0-18 Tracer Studies [J]. Journal of Catalysis.1994,149(2):375-389.
    [27]Ozkan U S, Cai, Y P,Kumthekar, M W. Investigation of the Reaction Pathways in Selective Catalytic Reduction of NO with NH3 over V2O5 Catalysts:Isotopic Labeling Studies Using 18O2,15NH3, 15NO, and 15N18O [J]. Journal of Catalysis. 1994,149(2):390-403.
    [28]Ramis G, Busca, G, Bregani, F, etc. Fourier transform-infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism of selective catalytic reduction [J]. Applied Catalysis.1990,64(0):259-278.
    [29]Ramis G, Busca, G, Lorenzelli, V, etc. Fourier transform infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on TiO2 anatase [J]. Applied Catalysis.1990,64(0):243-257.
    [30]Soyer S, Uzun, A, Senkan, S, etc. A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface [J]. Catalysis Today.2006,118(3-4):268-278.
    [31]Tops?e N Y. Characterization of the nature of surface sites on vanadia-titania catalysts by FTIR [J]. Journal of Catalysis.1991,128(2):499-511.
    [32]Topsoe N Y. Mechanism of the Selective Catalytic Reduction of Nitric Oxide by Ammonia Elucidated by in Situ On-Line Fourier Transform Infrared Spectroscopy [J]. Science.1994,265(5176):1217-1219.
    [33]Topsoe N Y, Dumesic, J A,Topsoe, H. Vanadia-Titania Catalysts for Selective Catalytic Reduction of Nitric-Oxide by Ammonia:I.I. Studies of Active Sites and Formulation of Catalytic Cycles [J]. Journal of Catalysis.1995,151(1):241-252.
    [34]Topsoe N Y, Topsoe, H,Dumesic, J A. Vanadia/Titania Catalysts for Selective Catalytic Reduction (SCR) of Nitric-Oxide by Ammonia:I. Combined Temperature-Programmed in-Situ FTIR and On-line Mass-Spectroscopy Studies [J]. Journal of Catalysis.1995,151(1):226-240.
    [35]Busca G, Larrubia, M A, Arrighi, L, etc. Catalytic abatement of NOX:Chemical and mechanistic aspects [J]. Catalysis Today.2005,107-108(139-148.
    [36]Kapteijn F, Singoredjo, L, Vandriel, M, etc. Alumina-Supported Manganese Oxide Catalysts:Ⅱ. Surface Characterization and Adsorption of Ammonia and Nitric Oxide [J]. Journal of Catalysis.1994,150(1):105-116.
    [37]Kijlstra W S, Brands, D S, Smit, H I, etc. Mechanism of the Selective Catalytic Reduction of NO with NH3over MnOx/Al2O3 [J]. Journal of Catalysis.1997, 171(1):219-230.
    [38]Qi G, Yang, R T,Chang, R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures [J]. Applied Catalysis B:Environmental.2004,51(2):93-106.
    [39]Otto K,Shelef, M. The adsorption of nitric oxide on iron oxides [J]. Journal of Catalysis.1970,18(2):184-192.
    [40]Otto K,Shelef, M. Studies of surface reactions of nitric oxide by isotope labeling. IV. Reaction between nitric oxide and ammonia over copper surfaces at 150-200.deg [J]. The Journal of Physical Chemistry.1972,76(1):37-43.
    [41]Centi G,Perathoner, S. Nature of active species in copper-based catalysts and their chemistry of transformation of nitrogen oxides [J]. Applied Catalysis A: General.1995,132(2):179-259.
    [42]Centi G,Perathoner, S. Adsorption and Reactivity of No on Copper-on-Alumina Catalysts:Ⅱ. Adsorbed Species and Competitive Pathways in the Reaction of No with NH3 and O2 [J]. Journal of Catalysis.1995,152(1):93-102.
    [43]Centi G, Perathoner, S, Biglino, D, etc. Adsorption and Reactivity of No on Copper-on-Alumina Catalysts: 1. Formation of Nitrate Species and Their Influence on Reactivity in No and NH3 Conversion [J]. Journal of Catalysis. 1995,152(1):75-92.
    [44]Ramis G, Yi, L, Busca, G, etc. Adsorption, Activation, and Oxidation of Ammonia over SCR Catalysts [J]. Journal of Catalysis.1995,157(2):523-535.
    [45]Larrubia M A, Ramis, G,Busca, G. An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe2O3-TiO2 SCR catalysts [J]. Applied Catalysis B:Environmental.2001,30(1-2):101-110.
    [46]Brandenberger S, Krocher, O, Wokaun, A, etc. The role of Br?nsted acidity in the selective catalytic reduction of NO with ammonia over Fe-ZSM-5 [J]. Journal of Catalysis.2009,268(2):297-306.
    [47]Richter M, Eckelt, R, Parlitz, B, etc. Low-temperature conversion of NOx to N2 by zeolite-fixed ammonium ions [J]. Applied Catalysis B:Environmental.1998, 15(1-2):129-146.
    [48]Wallin M, Karlsson, C-J, Palmqvist, A, etc. Selective catalytic reduction of NOx over H-ZSM-5 under lean conditions using transient NH3 supply [J]. Topics in Catalysis.2004,30-31(1):107-113.
    [49]Li J,Li, S. New insight into selective catalytic reduction of nitrogen oxides by ammonia over H-form zeolites:a theoretical study [J]. Physical Chemistry Chemical Physics.2007,9(25):3304-3311.
    [50]Kihlborg L. Least Squares Refinement of the Crystal Structure of Molybdenum Trioxide [J]. Arkiv for kemi.1963,21(34):357-364.
    [51]Braithwaite E R,Haber, J:Molybdenium:an outline of its chemistry and uses, Studies in Inorganic Chemistry [M].Amsterdam, Elsevier,1994,487-492,19.
    [52]Baiker A, Dollenmeier, P,Reller, A. Influence of the grain morphology of molybdenum trioxide on its catalytic properties:Reduction of nitric oxide with ammonia [J]. Journal of Catalysis.1987,103(2):394-398.
    [53]Okazaki S, Kumasaka, M, Yoshida, J, etc. Effect of sulfate ion on the catalytic activity of molybdenum oxide-titanium dioxide (MoOx-TiO2) for the reduction of nitric oxide with ammonia [J]. Industrial & Engineering Chemistry Product Research and Development.1981,20(2):301-304.
    [54]Matralis H, Theret, S, Bastians, P, etc. Selective catalytic reduction of nitric oxide with ammonia using MoO3/TiO2:Catalyst structure and activity [J]. Applied Catalysis B:Environmental.1995,5(4):271-281.
    [55]Wang X P, Yu, S S, Yang, H L, etc. Selective catalytic reduction of NO by C2H2 over Mo03/HZSM-5 [J]. Applied Catalysis B:Environmental.2007, 71(3-4):246-253.
    [56]Salgado A L S M, Passos, F B,Schmal, M. NO reduction by ethanol on Pd and Mo catalysts supported on HZSM-5 [J]. Catalysis Today.2003,85(1):23-29.
    [57]张海荣,李哲,黄伟.Mo源对Mo-ZSM-5分子筛粒径、Mo元素引入分子筛骨架的影响[J].石油学报(石油加工).2008,24(z1):350-354.
    [58]Li Z, Xie, K-C, Huang, W, etc.:Molybdenum loaded on HZSM-5:A catalyst for selective catalytic reduction of nitrogen oxides [M] Elsevier,2005,1741-1748, 158.
    [59]李哲,张海荣,黄伟,etc.不同Si/Al比对Mo/ZSM-5催化性能的影响[J].分子催化.2005,19(2):105-108.
    [60]Cadus L E, Abello, M C, Gomez, M F, etc. Oxidative dehydrogenation of propane over Mg-Mo-O catalysts [J].1996,35(14-18.
    [61]韩灵翠,任攀杰,李哲,etc. Mo/ZSM-5催化剂上NO催化还原反应机理与动力学研究[J].分子催化.2008,22(3):254-259.
    [62]Chen M, Waghmare, U V, Friend, C M, etc. A density functional study of clean and hydrogen-covered a-MoO3(010):Electronic structure and surface relaxation [J]. Journal of Chemical Physics.1998,109(16):6854-6860.
    [63]Hermann K, Witko, M,Michalak, A. Density functional studies of the electronic structure and adsorption at molybdenum oxide surfaces [J]. Catalysis Today. 1999,50(3-4):567-577.
    [64]Yuan S P, Wang, J G, Li, Y W, etc. Study of MoO3 (0 1 0) surface clusters by ab initio HF approaches [J]. Catalysis Today.2000,61(1-4):243-247.
    [65]袁淑萍,王建国,李永旺,etc.氧化钼表面不同氧位对氢吸附性能的从头计算研究[J].催化学报.2001,22(3):263-266.
    [66]Hermann K, Michalak, A,Witko, M. Cluster model studies on oxygen sites at the (010) surfaces of V2O5 and MoO3 [J]. Catalysis Today.1996,32(1-4):321-327.
    [67]Michalak A, Hermann, K,Witko, M. Reactive oxygen sites at MoO3 surfaces:ab initio cluster model studies [J]. Surface Science.1996,366(2):323-336.
    [68]Bruckman K, Grabowski, R, Haber, J, etc. The role of different MoO3 crystal faces in elementary steps of propene oxidation [J]. Journal of Catalysis.1987, 104(1):71-79.
    [69]Smith M R,Ozkan, U S. The Partial Oxidation of Methane to Formaldehyde: Role of Different Crystal Planes of MoO3 [J]. Journal of Catalysis.1993, 141(1):124-139.
    [70]Moberg D R, Thibodeau, T J, Amar, F o G, etc. Mechanism of Hydrodeoxygenation of Acrolein on a Cluster Model of MoO3 [J]. The Journal of Physical Chemistry C.2010,114(32):13782-13795.
    [71]Smith M R,Ozkan, U S. Transient Isotopic Labeling Studies under Steady-State Conditions in Partial Oxidation of Methane to Formaldehyde over MoO3 Catalysts [J]. Journal of Catalysis.1993,142(1):226-236.
    [72]Tokarz-Sobieraj R, Hermann, K, Witko, M, etc. Properties of oxygen sites at the MoO3(010) surface:density functional theory cluster studies and photoemission experiments [J]. Surface Science.2001,489(1-3):107-125.
    [73]Tokarz-Sobieraj R, Witko, M,Grybos, R. Reduction and re-oxidation of molybdena and vanadia:DFT cluster model studies [J]. Catalysis Today.2005, 99(1-2):241-253.
    [74]Witko M,Tokarz-Sobieraj, R. Surface oxygen in catalysts based on transition metal oxides:What can we learn from cluster DFT calculations? [J]. Catalysis Today.2004,91-92(0):171-176.
    [75]Coquet R,Willock, D J. The (010) surface of α-MoO3, a DFT + U study [J]. Physical Chemistry Chemical Physics.2005,7(22):3819-3828.
    [76]Chen M, Friend, C M,Kaxiras, E. A density functional theory study of site-specific methyl reaction on MoO3(010):The effects of methyl coverage [J]. The Journal of Chemical Physics.2000,112(21):9617-9623.
    [77]Chen M, Friend, C M,Kaxiras, E. The Chemical Nature of Surface Point Defects on MoO3(010):Adsorption of Hydrogen and Methyl [J]. Journal of the American Chemical Society.2001,123(10):2224-2230.
    [78]Remediakis I N, Kaxiras, E, Chen, M, etc. Dinitrosyl formation as an intermediate stage of the reduction of NO in the presence of MoO3 [J]. The Journal of Chemical Physics.2003,118(13):6046-6051.
    [79]Allison J N,Goddard Iii, W A. Oxidative dehydrogenation of methanol to formaldehyde [J]. Journal of Catalysis.1985,92(1):127-135.
    [80]Cora F, Patel, A, Harrison, N M, etc. Anab initio Hartree-Fock study of α-MoO3 [J]. Journal of Materials Chemistry.1997,7(6):959-967.
    [81]Papakondylis A,Sautet, P. Ab Initio Study of the Structure of the a-MoO3 Solid and Study of the Adsorption of H2O and CO Molecules on Its (100) Surface [J]. The Journal of Physical Chemistry.1996,100(25):10681-10688.
    [82]Bielanski A,Haber, J:Oxygen in Catalysis [M].New York, Marcel Dekker Inc., 1991,
    [83]Heisenberg W. Uber quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen [J]. Z Phys.1925,33(879-893.
    [84]Schrodinger E. Quantisierung aIs Eigen-wertproblem [J]. Ann der Phys.1926, 79(361-376.
    [85]Heitler W,London, F. Wechselwirkung neutraler Atome und homopolare Bindung nach der Quantenmechanik [J]. Z Phys.1927,44(455-472.
    [86]Pauling L.The Nature of the Chemical Bond[M].Cornell University Press,1960:
    [87]Mulliken R S. Note on the Visible Halogen Bands, with Special Reference to ICI [J]. Phys Rev.1931,37(1412-1415.
    [88]Fukui K,Fujimoto, H.Frontier Orbitals and Reaction Paths:Selected Papers of Kenichi Fukui[M].World Scientic Publishing Company,1997:
    [89]Hartree D R. The wave mechanics of an atom with non-coulombic central field: parts Ⅰ, Ⅱ, Ⅲ [J]. Proc Camb Phil Soc.1928,24(111-132.
    [90]Fork V. Naherungsmethode zur losung des quantenmechanischen mehrkorperproblems [J]. Z Phys.1930,61(126.
    [91]Roothaan C C J. New Developments in Molecular Orbital Theroy [J]. Rev Mod Phys.1951,23(69-89.
    [92]Hohenberg P,Kohn, W. Inhomogeneous Electron Gas [J]. Phys Rev B.1964, 136(864-871.
    [93]Kohn W,Sham, L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys Rev A.1965,140(1133-1138.
    [94]Sham L J,Kohn, W. One-Particle Properties of an Inhomogeneous Interacting Electron Gas [J]. Physical Review.1966,145(2):561-567.
    [95]Dirac P A M. Note on exchange phenomena in the Tomas atom [J]. Proc Camb Phil Soc.1930,26(376-395.
    [96]Weizsacker C F v. Theory of nuclear masses [J]. Z Phys.1935,96(431-444.
    [97]Martin R M.Electronic Structure:Basic Theory and Practical Methods [M].Canbridge University Press,2004:
    [98]Perdew J P, Chevary, J A, Vosko, S H, etc. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B.1992,46(11):6671-6687.
    [99]Perdew J P, Chevary, J A, Vosko, S H, etc. Erratum:Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B.1993,48(7):4978-4978.
    [100]Perdew J P, Burke, K,Ernzerhof, M. Generalized Gradient Approximation Made Simple [J]. Physical Review Letters.1996,77(18):3865-3868.
    [101]Perdew J P, Burke, K,Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system [J]. Physical Review B. 1996,54(23):16533-16539.
    [102]Becke A D. Density functional calculations of molecular bond energies [J]. The Journal of Chemical Physics.1986,84(8):4524-4529.
    [103]Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Physical Review A.1988,38(6):3098-3100.
    [104]Lacks D J,Gordon, R G. Pair interactions of rare-gas atoms as a test of exchange-energy-density functionals in regions of large density gradients [J]. Physical Review A.1993,47(6):4681-4690.
    [105]Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules [J]. The Journal of Chemical Physics.1990, 92(1):508-517.
    [106]Delley B. Fast Calculation of Electrostatics in Crystals and Large Molecules [J]. The Journal of Physical Chemistry.1996,100(15):6107-6110.
    [107]Matsuzawa N, Seto, J e,Dixon, D A. Density Functional Theory Predictions of Second-Order Hyperpolarizabilities of Metallocenes [J]. The Journal of Physical Chemistry A.1997,101(49):9391-9398.
    [108]Kresse G,Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B.1996, 54(16):11169-11186.
    [109]Kresse G,Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science.1996,6(1):15-50.
    [110]Kresse QHafner, J. Ab initio molecular dynamics for liquid metals [J]. Physical Review B.1993,47(1):558-561.
    [111]Payne M C, Teter, M P, Allan, D C, etc. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients [J]. Reviews of Modern Physics.1992,64(4):1045-1097.
    [112]姜月顺,杨文胜.化学中的电子过程[M].北京:科学出版社,2004:128-135.
    [113]Geerlings P, De Pro ft, F,Langenaeker, W. Conceptual Density Functional Theory [J]. Chemical Reviews.2003,103(5):1793-1874.
    [114]Yang W,Mortier, W J. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines [J]. Journal of the American Chemical Society.1986,108(19):5708-5711.
    [115]Florez E, Tiznado, W, Mondragon, F, etc. Theoretical Study of the Interaction of Molecular Oxygen with Copper Clusters [J]. The Journal of Physical Chemistry A.2005,109(34):7815-7821.
    [116]Poater A, Duran, M, Jaque, P, etc. Molecular Structure and Bonding of Copper Cluster Monocarbonyls CunCO (n= 1-9) [J]. The Journal of Physical Chemistry B.2006,110(13):6526-6536.
    [117]Sekhar De H, Krishnamurty, S,Pal, S. Understanding the Reactivity Properties of Aun (6≤ n≤ 13) Clusters Using Density Functional Theory Based Reactivity Descriptors [J]. The Journal of Physical Chemistry C.2010,114(14):6690-6703.
    [118]王惠,翟高红,冉新权,etc.碳前驱体热解机理的理论研究——反应能量、自由基的轨道能级及相对稳定性 [J].无机材料学报.2001,16(2):230-236.
    [119]谢有畅,邵美成.结构化学[M].北京:人民教育出版社,1979:141.
    [120]Lide D R:CRC Handbook of Chemistry and Physics [M].Boca Raton, CRC Press,2000,9-22,
    [121]潘道皑,赵成大,郑载兴:物质结构(第二版) [M].北京,高等教育出版社,1989,200,
    [122]Bredow T,Pacchioni, G NO adsorption on the stoichiometric and reduced SnO2(110) surface [J]. Theoretical Chemistry Accounts:Theory, Computation, and Modeling (Theoretica Chimica Acta).2005,114(1):52-59.
    [123]Liu Z, Ma, L,Junaid, A S M. NO and NO2 Adsorption on Al2O3 and Ga Modified Al2O3 Surfaces:A Density Functional Theory Study [J]. The Journal of Physical Chemistry C.2010,114(10):4445-4450.
    [124]Valero R, Gomes, J R B, Truhlar, D G, etc. Density functional study of CO and NO adsorption on Ni-doped MgO(100) [J]. The Journal of Chemical Physics. 2010,132(10):104701-104713.
    [125]Yang Z, Woo, T K,Hermansson, K. Adsorption of NO on unreduced and reduced CeO2 surfaces:A plane-wave DFT study [J]. Surface Science.2006, 600(22):4953-4960.
    [126]Yin X, Han, H,Miyamoto, A. Structure and adsorption properties of MoO3: insights from periodic density functional calculations [J]. Journal of Molecular Modeling.2001,7(7):207-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700