线虫全基因组筛选细胞自噬活性调控基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞自噬是一种从酵母到哺乳动物细胞在进化上高度保守的基于溶酶体调节的降解过程。这种独特的生物学过程通常依次分为以下几个步骤:隔离膜的形成(又称为细胞自噬的起始或者细胞自噬前体结构的形成)、细胞自噬小体膜的成核和延伸直至完整自噬小体的形成、细胞自噬小体的成熟、细胞自噬溶酶体的降解以及降解产物的循环再利用。细胞自噬能够有效清除冗余的细胞质成分或损伤的细胞器,因而在细胞胞内蛋白质和细胞器的质量控制中发挥举足轻重的作用。细胞自噬的缺陷将导致胞内异常蛋白聚集体的累积,这些累积的蛋白聚集体可能损坏细胞或有机体的正常生理功能。因此,各种各样的人类疾病都与细胞自噬密切相关,尤其是神经退行性疾病,比如亨廷顿症和阿尔兹海默症。细胞自噬能够被许多种胁迫刺激所激活,比如营养饥饿、能量缺失、活性氧类物质的累积等等。迄今为止,研究发现了许多种可以调节细胞自噬活性的信号转导通路,如mTOR信号通路、Ras/PKA信号通路、胰岛素/类胰岛素样生长因子信号通路和AMPK信号通路。
     虽然目前发现了许多可以调节细胞自噬活性的因子,但对于多细胞生物有机体发育过程中细胞自噬的调节和发育信号转导通路是如何协调的相关机制尚不清楚。在本篇论文中,研究发现核糖体大亚基蛋白RPL-43的功能缺失会导致SQST-1(哺乳动物细胞p62同源物)蛋白聚集体在线虫肠道细胞中的累积。这些累积的蛋白聚集体能够被上调的细胞自噬活性有效降解清除。所以以此为模型,本研究进行了线虫全基因组范围RNAi饲养筛选,试图寻找那些功能缺失后能够上调细胞自噬活性的基因。经过几轮反复的确认,最终发现了139个基因在被RNAi干扰掉的情况下能够有效地上调细胞自噬活性从而促进rpl-43突变体中累积的SQST-1蛋白聚集体的降解。进一步的研究工作发现许多发育信号转导通路,包括Sma/Mab TGF-β信号通路、LIN-35/Rb信号通路、XBP-1调节的内质网应激信号通路以及ATFS-1调节的线粒体应激信号通路能够在转录水平调控细胞自噬基因的表达。
     之前人们对于细胞自噬的调控的了解都来自体外的细胞生物学研究工作,而体外的研究在许多时候并不能反映体内的真实情况。本研究工作以经典的多细胞模式生物—线虫的遗传突变体rpl-43为模型,筛选获得了许多细胞自噬活性调控基因,并发现了各种信号转导通路可以通过转录水平调节细胞自噬活性。因此,本研究对于人们深入理解各种信号转导通路在生理条件下如何调节细胞自噬活性具有重要意义。
Autophagy is an evolutionarily conserved lysosome-mediated degradation process from yeast to mammals. This unique biological process is always divided into several sequential steps:Isolation membrane formation (initiation or PAS formation), membrane nucleation and expansion until complete autophagosome formation, autophagosome maturation, auto-lysosomal degradation and utilization of degradation products. Autophagy plays a very important role in protein or organelle quality control by eliminating unneeded cytoplasmic contents or damaged organelles. Defective autophagy will cause accumulation of ectopic protein aggregates which may disrupt the normal physiological function of the cells or organisms. Thus, defective autophagy is linked with all kinds of human diseases, especially neuron-neurodegenerative diseases such as Huntington's or Alzheimer's diseases. Autophagy can be activated by many kinds of stress, including nutrient starvation, energy deprivation, reactive oxygen species and so on. Up to now, multiple signaling pathways have been suggested be involved in regulation of autophagy activity, such as mTOR pathway, Ras/PKA pathway, Insulin/IGF-1signaling pathway and AMPK pathway.
     Although numerous factors have been uncovered that regulate autophagy activity, the mechanisms which coordinate regulation of autophagy with developmental signaling during multicellular organism development remain largely unknown. In this study, we showed that impaired function of ribosomal protein RPL-43causes accumulation of SQST-1(homolog of mammalian p62) aggregates in the larval intestine and these aggregates are removed upon autophagy induction. So basing on this model, we perform genome-wide RNAi screen to find those genes inactivation of which can up-regulate autophagy activity. After several rounds of confirmation, finally we identified139genes which, when inactivated, effectively up-regulate autophagy activity and thus promote degradation of SQST-1aggregates in rpl-43mutant. Further studies demonstrated that a variety of developmental signaling pathways, including Sma/Mab TGF-β signaling, LIN-35/Rb signaling, the XBP-1-mediated ER stress response and the ATFS-1-mediated mitochondrial stress response, transcriptionally regulate the expression of autophagy genes.
     People's understanding of autophagy regulation all comes from cell biology studies in vitro in the past. However, in vitro studies always are not the truth. This study used rpl-43mutant from the classical model organism—C. elegans to perform RNAi screen and found many genes involved in autophagy regulation. Further studies suggested that different signaling pathways can mediate autophagy activity on transcriptional level. Therefore, this study has great significance for people to understand the role of signaling pathways in regulation of autophagy under physiological conditions.
引文
Arico, S., Petiot, A., Bauvy, C., Dubbelhuis, P.F., Meijer, A.J., Codogno, P., and Ogier-Denis, E. (2001). The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem.276,35243-35246.
    Balderhaar, H.J., and Ungermann, C. (2013). CORVET and HOPS tethering complexes-coordinators of endosome and lysosome fusion. J. Cell Sci.126,1307-1316.
    Bejarano, E., and Cuervo, A.M. (2010). Chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA.7, 29-39.
    Bernales, S., McDonald, K.L. and Walter, P. (2006). Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol.4, e423.
    Boya, P., Reggiori, F., and Codogno, P. (2013). Emerging regulation and functions of autophagy. Nat. Cell Biol.15,713-720.
    Brocker, C., Engelbrecht-Vandre, S., and Ungermann, C. (2010). Multisubunit tethering complexes and their role in membrane fusion. Curr. Biol.20, R943-R952.
    Budovskaya, Y.V., Stephan, J.S., Deminoff, S.J. and Herman, P.K. (2005). An evolutionary proteomics approach identifies substrates of the cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA. 102,13933-13938.
    Byfield, M.P., Murray, J.T., and Backer, J.M. (2005). hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J. Biol. Chem.280,33076-33082.
    Cardoso, C.M., Groth-Pedersen, L., Hoyer-Hansen, M., Kirkegaard, T., Corcelle, E., Andersen, J.S., Jaattela, M., and Nylandsted, J. (2009). Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells. PLoS ONE 4, e4424.
    Chan, E.Y., Longatti, A., McKnight, N.C., and Tooze, S.A. (2009). Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol. Cell Biol.29,157-171.
    Chang, C.Y., and Huang, W.P. (2007). Atg19 mediates a dual interaction cargo sorting mechanism in selective autophagy. Mol. Biol. Cell 18,919-929.
    Chen, D., Fan, W., Lu, Y., Ding, X., Chen, S., and Zhong, Q. (2012). A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol. Cell 45, 629-641.
    Chen, Y., McMillan, WE., Kong, J., Israels, SJ., and Gibson, SB. (2007). Mitochondrial electron-transportchain inhibitors of complexes Ⅰ and Ⅱ induce autophagic cell death mediated by reactive oxygen species. J. Cell Sci.120,4155-4166.
    Chen, Y., and Klionsky, D.J. (2011). The regulation of autophagy-unanswered questions. J. Cell Sci. 124,161-170.
    Codogno, P., and Meijer, A.J. (2013). Autophagy in the liver. J. Hepatol.59,389-391.
    Crighton, D., Wilkinson, S., O'Prey, J., Syed, N., Smith, P., Harrison, P.R., Gasco, M., Garrone, O., Crook, T., and Ryan, K.M. (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126,121-134.
    Cui, M., Kim, EB., and Han, M. (2006). Diverse chromatin remodeling genes antagonize the Rb-involved SynMuv pathways in C. elegans. PLoS Genet.2, e74.
    DeRenzo, C., Reese, K.J., and Seydoux, G. (2003). Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation. Nature 424,685-689.
    Deretic, V., Saitoh, T., and Akira, S. (2013). Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol.13,722-737.
    Ding, Y., Kim, J.K., Kim, S.I., Na, H.J., Jun, S.Y., Lee, S.J., and Choi, M.E. (2010). TGF-β1 protects against mesangial cell apoptosis via induction of autophagy. J. Biol. Chem.285,37909-37919.
    Dou, Z., Pan, J.A., Dbouk, H.A., Ballou, L.M., Deleon, J.L., Fan, Y., Chen, J.S., Liang, Z., Li, G.B., Backer, J.M., and Lin, R.Z., et al. (2013). Class IA PI3K p110β subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation. Mol. Cell 50,29-42.
    Fader, C.M., Sanchez, D.G., Mestre, M.B., and Colombo, M.I. (2009). TI-VAMP/VAMP7 and VAMP3/cellubrevin:two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim. Biophys. Acta.1793,1901-1916.
    Farre, JC., Manjithaya, R., Mathewson, R.D., and Subramani, S. (2008). PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell 14,365-376.
    Fass, E., Shvets, E., Degani, I., Hirschberg, K., and Elazar, Z. (2006). Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J. Biol. Chem.281,36303-36316.
    Filimonenko, M., Stuffers, S., Raiborg, C., Yamamoto, A., Maler(?)d, L., Fisher, E.M., Isaacs, A., Brech, A., Stenmark, H., and Simonsen, A. (2007). Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179,485-500.
    Fujita, N., Itoh, T, Omori, H., Fukuda, M., Noda, T., and Yoshimori, T. (2008). The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Bio. Cell 19, 2092-2100.
    Fukuda, M., and Itoh, T. (2008). Direct link between Atg protein and small GTPase Rab:Atg16L functions as a potential Rab33 effector in mammals. Autophagy 4,824-826.
    Furuta, N., Fujita, N., Noda, T., Yoshimori, T., and Amano, A. (2010). Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vtilb mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol. Biol. Cell 21, 1001-1010.
    Ganley, I.G. (2013). Autophagosome maturation and lysosomal fusion. Essays Biochem.55,65-78.
    Ganley, I.G., Wong, P.M., Gammoh, N., and Jiang, X. (2011). Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol. Cell 42,731-743.
    Ge, L., Melville, D., Zhang, M., and Schekman, R. (2013). The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. eLife 2, e00947.
    Ghislat, G., and Knecht, E. (2013). Ca2+-sensor proteins in the autophagic and endocytic traffic. Curr. Protein Pept. Sci.14,97-110.
    Hailey, D.W., Rambold, A.S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., Kim, P.K., and Lippincott-Schwartz, J. (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141,656-667.
    Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., Oomori, H., Noda, T., Haraguchi, T., Hiraoka, Y., et al. (2013). Autophagosomes form at ER-mitochondria contact sites. Nature 495,389-393.
    Hanada, T., Noda, N.N., Satomi, Y, Ichimura, Y, Fujioka, Y, Takao, T., Inagaki, F., and Ohsumi, Y. (2007). The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem.282,37298-37302.
    Hansen, M., Chandra, A., Mitic, L.L., Onken, B., Driscoll, M., and Kenyon, C. (2008). A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet.4, e24.
    Haynes, C.M., Yang, Y, Blais, S.P., Neubert, T.A., and Ron, D. (2010). The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol. Cell 37,529-540.
    He, C., Baba, M., Cao, Y, and Klionsky, D.J. (2008). Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol. Bio. Cell 19,5506-5516.
    He, C., and Klionsky, D.J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet.43,67-93.
    He, C., Song, H., Yorimitsu, T., Monastyrska, I., Yen, W.L., Legakis, J.E., and Klionsky, D.J. (2006). Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J. Cell Biol.175,925-935.
    Hird, S.N., Paulsen, J.E., and Strome, S. (1996). Segregation of germ granules in living Caenorhabditis elegans embryos:cell-type-specific mechanisms for cytoplasmic localisation. Development 122, 1303-1312.
    Hoyer-Hansen, M., Bastholm, L., Szyniarowski, P., Campanella, M., Szabadkai, G., Farkas, T., Bianchi, K., Fehrenbacher, N., Elling, F., Rizzuto, R., et al. (2007). Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol. Cell 25,193-205.
    Hoyer-Hansen, M., and Jaattela M. (2007). Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ.14,1576-1582.
    Huang, Q., Wu, Y.T., Tan, H.L., Ong, C.N., and Shen, H.M. (2009). A novel function of poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death. Differ.16,264-277.
    Inoki, K., Zhu, T., and Guan, K.L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115,577-590.
    Itakura, E., Kishi-Itakura, C., and Mizushima, N. (2012). The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151,1256-1269
    Itoh, T., Fujita, N., Kanno, E., Yamamoto, A., Yoshimori, T., and Fukuda, M. (2008). Golgiresident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol. Biol. Cell 19,2916-2925.
    Itoh, T., Kanno, E., Uemura, T., Waguri, S., and Fukuda, M. (2011). OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J. Cell Biol.192, 839-853.
    Jahn, R., and Scheller, R.H. (2006). SNAREs:engines for membrane fusion. Nat. Rev. Mol. Cell Biol.7, 631-643.
    Jahreiss, L., Menzies, F.M., and Rubinsztein, D.C. (2008). The itinerary of autophagosomes:from peripheral formation to kiss-and-run fusion with lysosomes. Traffic 9,574-587.
    Jordens, I., Fernandez-Borja, M., Marsman, M., Dusseljee, S., Janssen, L., Calafat, J., Janssen, H., Wubbolts, R., and Neefjes, J. (2001). The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr. Biol.11,1680-1685
    Juhasz, G., Puskas L.G., Komonyi, O., Erdi, B.,Neufeld, T.P., and Sass, M. (2007). Gene expression profiling identifies FKBP39 as an inhibitor of autophagy in larval Drosophila fat body. Cell Death Differ.14,1181-1190.
    Kabeya, Y., Kawamata, T., Suzuki, K., and Ohsumi, Y. (2007). Cisl/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun.356, 405-410.
    Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J.19,5720-5728.
    Kabeya, Y., Noda, N.N., Fujioka, Y., Suzuki, K., Inagaki, F., and Ohsumi, Y. (2009). Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun.389,612-615.
    Kadandale, P., and Kiger, A.A. (2010). Role of selective autophagy in cellular remodeling:"self-eating" into shape. Autophagy 6,1194-1195.
    Kanazawa, T., Taneike, I., Akaishi, R., Yoshizawa, F., Furuya, N., Fujimura, S., and Kadowaki, M. (2004). Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J. Biol. Chem.279,8452-8459.
    Karanasios, E., Stapleton, E., Walker, S.A., Manifava, M., and Ktistakis, N.T. (2013). Live cell imaging of early autophagy events:omegasomes and beyond. J. Vis. Exp.77, e50484.
    Kawamata, T., Kamada, Y., Suzuki, K., Kuboshima, N., Akimatsu, H., Ota, S., Ohsumi, M., and Ohsumi, Y. (2005). Characterization of a novel autophagy-specific gene, ATG29. Biochem. Biophys. Res. Commun.338,1884-1889.
    Khalfan, W.A., and Klionsky, D.J. (2002). Molecular machinery required for autophagy and the cytoplasm to vacuole targeting (Cvt) pathway in S. cerevisiae. Curr. Opin. Cell Biol.14,468-475.
    Kim, J., Huang, W.P., and Klionsky, D.J. (2001). Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Autlp, Aut2p, and the autophagy conjugation complex. J. Cell Biol.152,51-64.
    Kirisako, T., Baba, M., Ishihara, N., Miyazawa, K., Ohsumi, M., Yoshimori, T., Noda, T., and Ohsumi, Y. (1999). Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol.147, 435-446.
    Kiyono, K., Suzuki, H.I., Matsuyama, H., Morishita, Y., Komuro, A., Kano, M.R., Sugimoto, K., and Miyazono, K. (2009). Autophagy is activated by TGF-β and potentiates TGF-β-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res.69,8844-8852.
    Klionsky, D.J. (2005). The molecular machinery of autophagy:unanswered questions. J. Cell Sci.118, 7-18.
    Klionsky, D.J. (2010). The autophagy connection. Dev. Cell 18,11-12.
    Klionsky, D.J., and Codogno, P. (2013). The mechanism and physiological function of macroautophagy. J. Innate. Immun.5,427-433.
    Klionsky, D.J., and Ohsumi, Y. (1999). Vacuolar import of proteins and organelles from the cytoplasm. Annu. Rev. Cell Dev. Biol.15,1-32.
    Kochl, R., Hu, X.W., Chan, E.Y. and Tooze, S.A. (2006). Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 7,129-145.
    Korolchuk, V.I., Saiki, S., Lichtenberg, M., Siddiqi, F.H., Roberts, E.A., Imarisio, S., Jahreiss, L., Sarkar, S., Futter, M., Menzies, F.M. et al. (2011). Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol.13,453-460.
    Kouroku, Y, Fujita, E., Tanida, I., Ueno, T., Isoai, A., Kumagai, H., Ogawa, S., Kaufman, R.J., Kominami, E., and Momoi, T. (2007). ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ.14,230-239.
    Lee, I.H., Cao, L., Mostoslavsky, R., Lombard, D.B., Liu, J., Burns, N.E., Tsokos, M., Alt, F.M., Finkel, T. (2008). A role for the NAD-dependent deacetylase Sirtl in the regulation of autophagy. Proc. Natl. Acad. Sci. USA.105,3374-3379.
    Lee, I.H., and Finkel, T. (2009). Regulation of autophagy by the p300 acetyltransferase. J. Biol. Chem. 284,6322-6328.
    Lee, J.Y., Koga, H., Kawaguchi, Y, Tang, W., Wong, E., Gao, Y.S., Pandey, U.B., Kaushik, S., Tresse, E., Lu, J., et al. (2010). HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J.29,969-980.
    Legakis, J.E., Yen, W.L., and Klionsky, D.J. (2007). A cycling protein complex required for selective autophagy. Autophagy 3,422-432.
    Li, J., Ni, M., Lee, B., Barton, E., Hinton, D.R., and Lee, A.S. (2008). The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ.15,1460-1471.
    Liang, C., Feng, P., Ku, B., Dotan, I., Canaani, D., Oh, B.H., and Jung, J.U. (2006). Autophagic and tumour suppressor activity of a novel Beclinl-binding protein UVRAG. Nat. Cell Biol.8,688-699.
    Liang, C., Lee, J.S., Inn, K.S., Gack, M.U., Li, Q., Roberts, E.A., Vergne, I., Deretic, V., Feng, P., Akazawa, C., et al. (2008). Beclinl-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat. Cell Biol.10,776-787.
    Liang, X.H., Kleeman, L.K., Jiang, H.H., Gordon, G., Goldman, J.E., Berry, G., Herman, B., and Levine, B. (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol.72,8586-8596.
    Long, X., Ortiz-Vega, S., Lin, Y., Avruch, J. (2005). Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J. Biol. Chem.280,23433-23436.
    Lu, Q., Yang, P., Huang, X., Hu, W., Guo, B., Wu, F., Lin, L., Kovacs, A.L., Yu, L., and Zhang, H. (2011). The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev. Cell 21,343-357.
    Luo, S., and Rubinsztein, D.C. (2013). BCL2L11/BIM:a novel molecular link between autophagy and apoptosis. Autophagy 9,104-105.
    Ma, Y., Hendershot, H.L. (2001). The unfolding tale of the unfolded protein response. Cell 107, 827-830.
    Maday, S., Wallace, K.E., and Holzbaur, E.L. (2012). Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol.196,407-417.
    Maiuri, M.C., Le Toumelin, G., Criollo, A., Rain, J.C., Gautier, F., Juin, P., Tasdemir, E., Pierron, G., Troulinaki, K., Tavernarakis, N., et al. (2007). Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J.26,2527-2539.
    Melendez, A., Talloczy, A., Seaman, M., Eskelinen, E.L., Hall, D.H., Levine, B. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387-1391.
    Melendez, A. and Levine, B. Autophagy in C. elegans (August 24,2009), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.147.1
    Mijaljica, D., Prescott, M., and Devenish, R.J. (2011). Microautophagy in mammalian cells:revisiting a 40-year-old conundrum. Autophagy 7,673-682.
    Mizushima, N. (2007). Autophagy:process and function. Genes Dev.21,2861-2873.
    Mizushima, N., Kuma, A., Kobayashi, Y., Yamamoto, A., Matsubae, M., Takao, T., Natsume, T., Ohsumi, Y., and Yoshimori, T. (2003). Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J. Cell Sci.116,1679-1688.
    Mizushima, N., Noda, T., and Ohsumi, Y. (1999). Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J.18,3888-3896.
    Mizushima, N., Ohsumi, Y., and Yoshimori, T. (2002). Autophagosome formation in mammalian cells. Cell Struct. Funct.27,421-429.
    Monastyrska, I., Rieter, E., Klionsky, D.J., and Reggiori, F. (2009). Multiple roles of the cytoskeleton in autophagy. Biol. Rev. Camb. Philos. Soc.84,431-448.
    Mortimore, G.E., Pose, A.R. (1987). Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu. Rev. Nutr.7,539-564.
    Murrow, L., and Debnath, J. (2013). Autophagy as a Stress-Response and Quality-Control Mechanism: Implications for Cell Injury and Human Disease. Annu. Rev. Pathol.8,105-137.
    Nair, U., Yen, W.L., Mari, M., Cao, Y, Xie, Z., Baba, M., Reggiori, F., and Klionsky, D.J. (2012). A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 8,780-793.
    Nakatogawa, H., Suzuki, K., Kamada, Y, and Ohsumi, Y (2009). Dynamics and diversity in autophagy mechanisms:lessons from yeast. Nat. Rev. Mol. Cell Bio.10,458-467.
    Nice, D.C., Sato, T.K., Stromhaug, P.E., Emr, S.D., and Klionsky, D.J. (2002). Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J. Biol. Chem. 277,30198-30207.
    Nobukuni, T., Joaquin, M., Roccio, M., Dann, S.G., Kim, S.Y., Gulati, P., Byfield, M., Backer, J., Natt, F., Bos, J., et al. (2005). Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl. Acad. Sci. USA.102,14238-14243.
    Noda, T., Ohsumi, Y. (1998). Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem.273,3963-3966.
    O'Rourke, E.J. and Ruvkun, G. (2013). MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol.15,668-676.
    Obara, K., Sekito, T., Niimi, K., and Ohsumi, Y (2008). The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J. Biol. Chem.283,23972-23980.
    Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Taniguchi, M., Tanii, I., Yoshinaga, K., et al (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell Biol.26,9220-9231.
    Ogawa, M., Yoshikawa, Y, Kobayashi, T., Mimuro, H., Fukumatsu, M., Kiga, K., Piao, Z., and Ashida, H., Yoshida, M., Kakuta, S., et al. (2011). A Tecprl-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 9,376-389.
    Pankiv, S., Alemu, E.A., Brech, A., Bruun, J.A., Lamark, T, Overvatn, A., Bjorkoy, G., and Johansen, T. (2010). FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol.188,253-269.
    Pattingre, S., Bauvy, C., Carpentier, S., Levade, T., Levine, B., Codogno, P. (2009). Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy. J. Biol. Chem.284, 2719-2728.
    Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X.H., Mizushima, N., Packer, M., Schneider, M.D., and Levine, B. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927-939.
    Poornima, P., Weng, C.F., and Padma, V.V. (2013). Neferine from Nelumbo nucifera induces autophagy through the inhibition of PI3K/Akt/mTOR pathway and ROS hyper generation in A549 cells. Food Chem.141,3598-3605.
    Poteryaev, D., Datta, S., Ackema, K., Zerial, M., and Spang, A. (2010). Identification of the switch in early-to-late endosome transition. Cell 141,497-508.
    Pryor, P.R., Mullock, B.M., Bright, N.A., Lindsay, M.R., Gray, S.R., Richardson, S.C., Stewart, A., James, D.E., Piper, R.C., and Luzio, J.P. (2004). Combinatorial SNARE complexes with VAMP7 or VAMP8 defi ne different late endocytic fusion events. EMBO Rep.5,590-595.
    Quan, W., and Lee, M.S. (2013). Role of Autophagy in the Control of Body Metabolism. Endocrinol. Metab.28,6-11.
    Ravikumar, B., Acevedo-Arozena, A., Imarisio, S., Berger, Z., Vacher, C., O'Kane, C.J., Brown, S.D., Rubinsztein, D.C. (2005). Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat. Genet.37,771-776.
    Ravikumar, B., Imarisio, S., Sarkar, S., O'Kane, C.J., and Rubinsztein, D.C. (2008). Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J. Cell Sci.121,1649-1660.
    Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C., and Rubinsztein, D.C. (2010). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol.12,747-757.
    Ravikumar, B., Vacher, C., Berger, Z., Davies, J.E., Luo, S., Oroz, L.G., Scaravilli, F., Easton, D.F., Duden, R., O'Kane, C.J., et al. (2004). Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet.36, 585-595.
    Reggiori, F., Tucker, K.A., Stromhaug, P.E., and Klionsky, D.J. (2004). The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev. Cell 6, 79-90.
    Reiling, J.H., Hafen, E. (2004). The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev.18,2879-2892.
    Rink, J., Ghigo, E., Kalaidzidis, Y., and Zerial, M. (2005). Rab conversion as a mechanism of progression from early to late endosomes. Cell 122,735-749.
    Sancak, Y., Peterson, T.R., Shaul, Y.D., Lindquist, R.A., Thoreen, C.C., Bar-Peled, L.,Sabatini, D.M. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501.
    Sarkar, S., Perlstein, E.O., Imarisio, S., Pineau, S., Cordenier, A., Maglathlin, R.L., Webster, J.A., Lewis, T.A., O'Kane, C.J., Schreiber, S.L., et al. (2007). Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat. Chem. Biol.3,331-338.
    Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L., Elazar, Z. (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J.26,1749-1760.
    Schmelzle, T,., Beck, T., Martin, D.E., Hall. M.N. (2004). Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol. Cell Biol.24,338-351.
    Schweers, R.L., Zhang, J., Randall, M.S., Loyd, M.R., Li, W., Dorsey, F.C., Kundu, M., Opferman, J.T., Cleveland, J.L., Miller, J.L., et al. (2007). NIX is required for programmed mitochondrial clearance during reticulocyte maturation.. Proc. Natl. Acad. Sci. USA.104,19500-19505.
    Scott, R.C., Schuldiner, O., and Neufeld, T.P. (2004). Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev. Cell 7,167-178.
    Settembre, C., Di Malta, C., Polito, V.A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S.U., Huynh, T., Medina, D., Colella, P., et al. (2011). TFEB links autophagy to lysosomal biogenesis. Science 332,1429-1433.
    Shang, L., and Wang, X. (2011). AMPK and mTOR coordinate the regulation of Ulkl and mammalian autophagy initiation. Autophagy 7,924-926.
    Starai, V.J., Hickey, C.M., and Wickner, W. (2008). HOPS proofreads the trans-SNARE complex for yeast vacuole fusion. Mol. Biol. Cell 19,2500-2508.
    Strome, S. (2005). Specification of the germ line (July 28,2005), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.9.1
    Stromhaug, P.E., Reggiori, F., Guan, J., Wang, C.W., and Klionsky, D.J. (2004). Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol. Biol. Cell 15,3553-3566.
    Sun, Q., Westphal, W., Wong, K.N., Tan, I., and Zhong, Q. (2010). Rubicon controls endosome maturation as a Rab7 effector. Proc. Natl. Acad. Sci. USA.107,19338-19343.
    Suzuki, K., Kirisako, T., Kamada, Y, Mizushima, N., Noda, T., and Ohsumi, Y. (2001). The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J.20,5971-5981.
    Suzuki, K., Kubota, Y, Sekito, T., and Ohsumi, Y (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12,209-218.
    Suzuki, K., and Ohsumi, Y. (2007). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett.581,2156-2161.
    Tabata, K., Matsunaga, K., Sakane, A., Sasaki, T., Noda, T., and Yoshimori, T. (2010). Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain. Mol. Biol. Cell 21,4162-4172.
    Takats, S., Nagy, P., Varga, A., Pircs, K., Karpati, M., Varga, K., Kovacs, A.L., Hegedus, K., and Juhasz, G. (2013). Autophagosomal Syntaxinl7-dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol.201,531-539.
    Takeshige, K., Baba, M., Tsuboi, S., Noda, T., and Ohsumi, Y (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol.119,301-311.
    Talloczy, Z., Jiang, W., Virgin, H.W., Leib, D.A., Scheuner, D., Kaufman, R.J., Eskelinen, E.L., and Levine, B. (2002). Regulation of starvation- and virus-induced autophagy by the eIF2α kinase signaling pathway. Proc. Natl. Acad. Sci. USA.99,190-195.
    Tian, Y., Li, Z., Hu, W., Ren, H., Tian, E., Zhao, Y., Lu, Q., Huang, X., Yang, P.., Li, X., et al. (2010). C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141, 1042-1055.
    Tracy, K., Dibling, B.C., Spike, B.T., Knabb, J.R., Schumacker, P., Macleod, K.F. (2007). BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol. Cell Biol.27,6229-6242.
    Vasseur, S., Afzal, S., Tardivel-Lacombe, J., Park, D.S., Iovanna, J.L., Mak, T.W. (2009). DJ-1/PARK7 is an important mediator of hypoxia-induced cellular responses. Proc. Natl. Acad. Sci. USA.106, 1111-1116.
    Wei, Y, Pattingre, S., Sinha, S., Bassik, M., Levine, B. (2008). JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30,678-688.
    Wu, X., Shi, Z., Cui, M., Han, M., and Ruvkun, G. (2012). Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes. PLoS Genet.8, e1002542.
    Xie, Z., Nair, U., and Klionsky, D.J. (2008). Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19,3290-3298.
    Xu, P., Das, M., Reilly, J., and Davis, R.J. (2011). JNK regulates FoxO-dependent autophagy in neurons. Genes Dev.25,310-322.
    Yang, Z., and Klionsky, D.J. (2010). Eaten alive:a history of macroautophagy. Nat. Cell Biol.12, 814-822.
    Yen, W.L., Legakis, J.E., Nair, U., and Klionsky, D.J. (2007). Atg27 is required for autophagy-dependent cycling of Atg9. Mol. Biol. Cell 18,581-593.
    Yen, W.L., Shintani, T., Nair, U., Cao, Y, Richardson, BC., Li, Z., Hughson, F.M., Baba, M., Klionsky, D.J. (2010). The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J. Cell Biol.188,101-114.
    Yi, C., Ma, M., Ran, L., Zheng, J., Tong, J., Zhu, J., Ma, C., Sun, Y., Zhang, S., Feng, W., et al. (2012). Function and molecular mechanism of acetylation in autophagy regulation. Science 336,474-477.
    Yorimitsu, T., He, C., Wang, K., Klionsky, D.J. (2009). Tap42-associated protein phosphatase type 2A negatively regulates induction of autophagy. Autophagy 5,616-624.
    Yorimitsu, T., Nair, U., Yang, Z., and Klionsky, D.J. (2006). Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem.281,30299-30304.
    Young, A.R., Chan, E.Y., Hu, X.W., Kochl, R., Crawshaw, S.G., High, S., Hailey, D.W., Lippincott-Schwartz, J., and Tooze, S.A. (2006). Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci.119,3888-3900.
    Yu, Z.Q., Ni, T., Hong, B., Wang, H.Y., Jiang, F.J., Zou, S., Chen, Y., Zheng, X.L., Klionsky, D.J., Liang, Y., and Xie, Z. (2012). Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy 8, 883-892.
    Zhang, H., Bosch-Marce, M., Shimoda, L.A., Tan, Y.S., Baek, J.H, Wesley, J.B., Gonzalez, F.J., Semenza, G.L. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem.283,10892-10903.
    Zhang, Y.X., Yan, L.B., Zhou, Z., Yang, P.G., Tian, E., Zhang, K., Zhao, Y, Li, Z.P., Song, B., Han, J.H., Miao, L., and Zhang, H. (2009). SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136,308-321.
    Zhao, J., Brault, J.J., Schild, A., Cao, P., Sandri, M., Schiaffino, S., Lecker, S.H., Goldberg, A.L. (2007). FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab.6,472-483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700