水稻钾离子通道OsAKT1生理功能及其调控机制的电生理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钾是植物所必需的三大营养元素之一,在植物生长发育过程中起着非常重要的作用。植物通过根细胞质膜上的钾离子通道和钾离子转运体从环境中吸收钾离子。已有报道显示,Shake钾离子通道蛋白家族成员可能在植物钾离子吸收、转运过程中发挥重要作用。AKT1是模式植物拟南芥中重要的Shaker钾离子通道蛋白,它主要参与拟南芥根部钾离子吸收过程。然而在作物中,目前对于Shake钾通道蛋白参与钾吸收、转运的功能研究还比较少。水稻是最重要的粮食作物之一,OsAKT1是水稻中的一个Shaker钾通道蛋白,与拟南芥AKT1具有较高的同源性。推测,OsAKT1可能在水稻根部钾离子吸收过程中起重要作用。本论文工作主要通过电生理学的实验方法深入研究分析OsAKT1在水稻根部钾吸收过程中的生理功能及其分子调控机制。
     OsAKTl主要在水稻根中表皮和维管组织中表达较强。亚细胞定位分析显示,OsAKT1特异地定位于细胞质膜上。将OsAKT1转入拟南芥aktl突变体后,OsAKT1可以恢复aktl突变体根细胞原生质体中缺失的内向钾离子电流。表型检测发现,水稻(ysakt1突变体表现出明显的低钾敏感表型。膜片钳和非损伤离子流速测定结果显示,与Dongjin亲本材料相比,osakt1突变体根细胞的内向钾离子电流显著减小,并且突变体根部钾离子吸收速率也显著降低。在osakt1/OsAKT1恢复突变水稻材料中,植株的低钾敏感表型得以恢复,根细胞的内向钾离子电流也得以恢复。对膜片钳实验结果分析发现,水稻OsAKT1和拟南芥AKT1都具有内向钾通道活性,但两者在通道激活特性上具有显著差异。上述结果说明,OsAKT1具有内向钾离子通道活性,它在水稻根部钾吸收过程中发挥着重要作用。
     拟南芥中的研究结果显示,AKT1的活性受钙感受器CBL1/9和蛋白激酶CIPK23的调控。推测,OsAKT1的活性可能也受水稻OsCBLs和OsCIPKs蛋白的调控。互作结果显示,OsAKT1可以和多个OsCIPKs蛋白(OsCIPK3、9、19、23)互作,并且这一互作依赖于OsCBL1的存在。本论文进一步利用爪蟾卵母细胞和HEK293细胞作为异源表达系统,深入研究了这些OsCBLs和OsCIPKs蛋白对OsAKT1活性的调控作用。研究发现,在爪蟾卵母细胞中单独表达OsAKT1并未检测到OsAKT1的通道活性,共表达10OsCBLs与OsCIPK3/9/19/23的cRNA组合后,仍不能激活OsAKT1的活性。而在HEK293细胞中,单独表达的OsAKT1就具有内向钾离子通道活性,共表达OsCBL1-OsCIPK19/23后,可以显著增强OsAKT1的活性。一方面,OsCBL1-OsCIPK23复合体对OsAKT1的活性增强作用明显强于OsCBL1-OsCIPK19复合体;另一方面,OsCBL1-OsCIPK23也能在非洲蟾卵母细胞中激活AKT1的通道活性。说明,CBL1-CIPK23对调控AKT1这一分子机制在拟南芥和水稻中是保守的,OsCBL1-OsCIPK23可能在水稻体内调控OsAKT1介导的钾吸收。
     本论文研究结果表明,Shaker钾离子通道OsAKT1具有内向钾离子通道活性,它在水稻根部钾离子吸收过程中发挥着重要作用。并且,OsAKT1的钾离子吸收活性受上游OsCBLl-OsCIPK23的调控。该研究结果说明,AKT1和OsAKT1具有类似的生理功能和钾吸收调控通路,但它们在通道特性以及分子调控机制上仍存在部分差异。
Potassium (K+) is one of the essential nutrient elements for plant growth and development. It is absorbed into the root cell through low and high affinity systems conferred by different K transporters and channels. Previous studied in our and other labs demonstrate that in model plant Arabidopsis, K+TRANSPORTER1(AKT1), belonging to Shaker K family, has both high and low affinity to K+, therefore has dominant contribution to K uptake of the root cells under both K deprivation and sufficient conditions. It is directly regulated by Arabidopsis CBL-INTERACTING PROTEIN KINASE23(CIPK23), activation of which in turn depends on interaction with Arabidopsis CALCINEURIN B-LIKE PROTEIN1(CBL1) and CBL9. This dissertation extends this key discovery found in model plant to rice, one of key staple crops in China in terms of contribution to food production.
     Shaker K+channels play important roles in K+uptake of plants Especially AKT1is one of the most important Shaker K+channels, and plays important role in K+uptake in the roots of Arabidopsis. Rice is one of the most important food resources. It has evolved machine to adapt low-K+environment. OsAKT1is homologous with AKT1and probobly important for K+uptake in rice root. The focus of this dissertation work is to study the function and molecular regulatory mechanism of OsAKT1in K+uptake process of rice roots by electrophysiological technology.
     In this dissertation work, the Shaker K+channel OsAKT1was characterized for its function in K+uptake in rice roots. Beta-glucuronidase based promoter activity analysis revealed that OsAK1primarily expresses in epidermal, cortex and xylem of the roots. The OsAKT1protein was localized in the plasma membrane. It displayed voltage-dependent inward-rectifying K-specific current while being exogenously expressed in mammalian cell HEK293but not Xenopus oocytes, as detected with patch clamp technique. The root cells of Arabidopsis AKT1knockout mutant (aktl) has no inward K current under patch clamp whole-cell configuration condition. Expressing OsAKTl in aktl rescued its inward K current. These data demonstrates that OsAKT1functions as an inward K channel like AKT1in the roots.
     To evaluate OsAKT1significance in K nutrient of rice, a rice mutant harboring a single T-DNA in OsAKT1was identified. The mutant osaktl had significant decreases of K uptake capacity and K-dependent growth as compared to those of wild type. Moreover, the inward K+current cross the plasma membrane of the root cell protoplasts was significant suppressed in the mutant. These data demonstrated that OsAKT1plays a crucial role in K nutrient of rice roots.
     In light of AKT1activity dependence on its interacting with CIPK/CBL complex, this dissertation work investigated which OsCIPK and OsCBL interact with OsAKTl with yeast two hybrid and BiFC assay. It was intriguing that OsAKTl interacts with OsCIPK3,9,19and23, all of which interact with OsCBL1. Exogenously expressing OsAKT1along with OsCIPKs and OsCBLl found that both OsCIPK23/OsCBLl and OsCIPK19/OsCBLl combination could significantly and comparably enhance OsAKT1-mediated inward K+current in HEK239Cells, which was much weaker for the OsCIPK19's combination. These data implied that OsAKT1's channel activity was under regulated by different OsCIPKs and OsCBL complex, which should be further investigated in vivo with genetic tools.
     In conclusion, this dissertation paves foundation on our understanding of OsAKT1-mediated K nutrient uptake mechanism in rice. Difference of AKT1operating machinery in Arabidopsis and rice was discussed.
引文
金继运.(1994).我国北方土壤缺钾和钾肥应用的发展趋势.北方土壤钾素和钾肥效益(北京:科学出版社)
    李庆逵.(1989).我国土壤科学发展与展望.土壤学报26,207-216.
    鲁如坤.(1989).我国土壤氮磷钾的基本状况.土壤学报26,280-286.
    亓果宁.(2011).植物钾通道OsAKT1钾吸收生理功能分析及AtAKT1受AtCBL10调节电生理实验证据(博士学文论文:中国农业大学)
    印莉萍,上官宇,许越.(2006).非损伤性扫描离子选择电极技术及其在高等植物研究中的应用.自然科学进展16,262-266.
    徐汉卿.(1996).植物学(北京:中国农业出版社)
    Ache, P., Becker, D., Deeken, R., Dreyer, I., Weber, H., Fromm, J., and Hedrich, R. (2001). VFK1, a Vicia faba K+ channel involved in phloem unloading. Plant J.27,571-580.
    Ache, P., Becker, D., Ivashikina, N., Dietrich, P., Roelfsema, M.R., and Hedrich, R. (2000). GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel. FEBS Lett.486,93-98.
    Albrecht, V., Ritz, O., Linder, S., Harter, K., and Kudla, J. (2001). The NAF domain defines a novel protein-protein interaction module conserved in Ca2+ -regulated kinases. EMBO J.20,1051-1063
    Allen, G.J., Chu, S.P., Harrington, C.L., Schumacher, K., Hoffinann, T., Tang, Y.Y., Grill, E., and Schroeder, J.I. (2001). A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411,1053-57.
    Amtmann, A., Hammond, J.P., Armengaud, P., and White, P.J. (2005). Nutrient sensing and signalling in plants:potassium and phosphorus. Adv. Bot. Res.43,209-257
    An, R., Chen, Q.J., Chai, M.F., Lu, P.L., Su, Z., Qin, Z.X., Chen, J., and Wang, X.C. (2007). AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant J.49,718-728.
    Anderson, J.A., Huprikar, S.S., Kochian, L.V., Lucas, W.J., and Gaber, R.F. (1992). Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cereviciae. Proc. Natl. Acad. Sci. USA 89,3736-3740.
    Apse,M.P., Sottosanto, J.B., and Blumwald, E. (2003). Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J.36,229-39
    Ardie, S.W., Xie, L.5 Takahashi, R., Liu, S., and Takano, T. (2009). Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. J. Exp. Bot.60,3491-3502.
    Armengaud, P., Breitling, R., and Amtmann, A. (2004). The Potassium-Dependent Transcriptome of Arabidopsis Reveals a Prominent Role of Jasmonic Acid in Nutrient Signaling. Plant Physiol.136, 2556-2576.
    Assmann, S.M. (1993). Signal transduction in guard cells. Annu. Rev. Cell Biol.9,345-375.
    Bajwa, M. (1981). Soil beidellite and its relation to problems of potassium fertility and poor response to potassium fertilizers. Plant Soil 62,299-303.
    Baker, D.A., and Weatherley, P.E. (1969). Water and solute transport by exuding root systems of Ricinus communis. J. Exp. Bot.20,485-496
    Banuelos, M.A., Garciadeblas, B., Cubero, B., and Rodriguez-Navarro, A. (2002). Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol.130, 784-795.
    Bassil, E., Ohto, M., Esumi, T., Tajima, H., Zhu, Z., Cagnac, O., Belmonte, M., Peleg, Z., Yamaguchi, T., and Blumwald, E. (2011). The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell 23,224-239.
    Becker, D., Geiger, D., Dunkel, M., Roller, A., Bertl, A., Latz, A., Carpaneto, A., Dietrich, P., Roelfsema, M.R., and Voelker, C. (2004). AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH-and Ca2+ -dependent manner. Proc. Natl. Acad. Sci. USA 101,15621-26.
    Bednarz, C.W., and Oosterhuis, D.M. (1999). Physiological changes associated with potassium deficiency in cotton. J. Plant Nutr.22,303-313.
    Blake, L., Mercik, S., Koerschens, M., Goulding, K.W.T., Stempen, S., Weigel, A., Poulton, P.R., and Powlson, D.S. (1999). Potassium content in soil, uptake in plants and the potassium balance in three European long-term field experiments. Plant Soil 216,1-14.
    Blatt, M.R. (1988). Potassium-dependent, bipolar gating of K+ channels in guard cells. J. Membr. Biol. 102,235-246
    Blevins, D.G., Barnett, N.M., and Frost, W.B. (1978). Role of potassium and malate in nitrate uptake and translocation by wheat seedlings. Plant Physiol.62,784-788.
    Bregante, M., Yang, Y, Formentin, E., Carpaneto, A., Schroeder, J.I., Gambale, F., Schiavo, F.L., and Costa, A. (2008). KDC1, a carrot Shaker-like potassium channel, reveals its role as a silent regulatory subunit when expressed in plant cells. Plant Mol. Biol.66,61-72.
    Buschmann, P.H., Vaidyanathan, R., Gassmann, W., and Schroeder, J.I. (2000). Enhancement of Na+ Uptake Currents, Time-Dependent Inward-Rectifying K+ Channel Currents, and K+ Channel Transcripts by K+ Starvation in Wheat Root Cells. Plant Physiol.122,1387-1398.
    Cellier, F., Conejero, G., Ricaud, L., Luu, D.T., Lepetit, M., Gosti, F., and Casse, F. (2004). Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J.39,834-846.
    Cherel, I., Michard, E., Platet, N., Mouline, K., Alcon, C., Sentenac, H., and Thibaud, J.B. (2002). Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell.14,1133-1146.
    Cook, M.G, and Hutcheson, T.B. (1960). Soil potassium reactions as related to clay minemlogy of selected Kentucky soils. Soil Sci. Soc. Am. Proc.24,252-256.
    Cuellar, T, Azeem, F., Andrianteranagna, M., Pascaud, F., Verdeil, J.L., Sentenac, H., Zimmermann, S., and Gaillard, I. (2013) Potassium transport in developing fleshy fruits:the grapevine inward K+ channel VvK1.2 is activated by CIPK-CBL complexes and induced in ripening berry flesh cells. Plant J.73,1006-1018.
    Cuellar, T., Pascaud, F., Verdeil, J.L., Torregros, L., Adam-Blondon, A.F., Thibaud, J.B., Sentenac, H., and Gaillard, I. (2010). A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant J.61,58-69.
    Czempinski, K., Zimmermann, S., Ehrhard, T., and Mueller-Roeber, B. (1997). New structure and function in plant K+ channels:KCO1, an outward rectifier with a steep Ca2+ dependency. EMBO J.16,2565-2575.
    Daram, P., Urbach, S., Gaymard, F., Sentenac, H., and Cherel, I. (1997). Tetramerization of the AKT1 plant potassium channel involves its C-terminal cytoplasmic domain. EMBO J.16,3455-3463.
    Davis, C.E. (1972). Behaviour of potassium in some west Indian soil clays. Clay Miner.9,287-295.
    Deeken, R., Geiger, D., Fromm, J., Koroleva, O., Ache, P., Langenfeld-Heyser, R., Sauer, N., May, S.T., and Hedrich, R. (2002). Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216,334-344.
    Dobermann, A., Cruz, P.C.Sta., and Cassman, K.G (1996). Fertilizer inputs, nutrient balance, and soil nutrient-supplying power in intensive, irrigated rice systems. I. Potassium uptake and K balance. Nutr. Cycl. Agroecosys.46,1-10.
    Downey, P., Szabo, I., Ivashikina, N., Negro, A., Guzzo, F., Ache, P., Hedrich, R., Terzi, M., and Schiavo, F.L. (2000). KDC1, a Novel Carrot Root Hair K+ Channel. Cloning, Characterization, and Expression in mammalian cells. J. Biol. Chem.275,39420-39426.
    Doyle, D.A., Cabral, J.M., Pfuetzner, R.A., Kuo, A., Gulbis, J.M., Cohen, S.L., Chait, B.T., and MacKinnon, R. (1998). The Structure of the potassium channel:molecular basis of K+ conduction and selectivity. Science 280,69-77.
    Dreyer, I., Antunes, S., Hoshi, T., Muller-Rober, B., Palme, K., Pongs, O., Reintanz, B., and Hedrich, R. (1997). Plant K+ channel a-subunits assemble indiscriminately. Biophys. J.72,2143-2150.
    Dreyer, I., Michard, E., Lacombe, B., and Thibaud, J.B. (2001). A plant Shaker-like K+ channel switches between two distinct gating modes resulting in either inward-rectifying or 'leak'current. FEBS Lett.505,233-239.
    Duby, G., Hosy, E., Fizames, C., Alcon, C., Costa, A., Sentenac, H., and Thibaud, J.B. (2008). AtKCl, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels. Plant J.55, 115-123.
    Dunkel, M., and Latz, A. (2008). Targeting of Vacuolar Membrane Localized Members of the TPK Channel Family. Mol. Plant 1,938-949.
    Ehrhardt, T., Zimmermann, S., and Muller-Rober B. (1997). Association of plant K+ in channels is mediated by conserved C-termini and does not affect subunit assembly. FEBS Lett.409,166-170.
    Elumalai, R.P., Nagpal, P., and Reed, J.W. (2002). Amutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell 14,119-131.
    Epstein, E., Rains, D.W., and Elzam, O.E. (1963). Resolution of dual mechanisms of potassium absorption by barley roots. Proc. Natl. Acad. Sci. USA 49,684-692.
    Evans, H.J., and Sorger, G.J. (1966). Role of mineral elements with emphasis on the univalent cations. Annu Rev Plant Physiol.17,47-46.
    Fageria, N.K. (1976). Influence of potassium concentration on crowth and potassium uptake by rice plant. Plant Soil 44,567-573.
    Fairbairn, D.J., Liu, W., Schachtman, D.P., Gomez-Gallego, S., Day, S.R., and Teasdale, R.D. (2000). Characterisation of two HKT-like potassium transporters from Eucalyptus camaldulensis. Plant Mol. Biol.43,515-525.
    Formentin, E., Varotto, S., Costa, A., Downey, P., Bregante, M., Naso, A., Picco, C., Gambale, F., and Lo Schiavo, F. (2004). DKT1, a novel K+ channel from carrot, forms functional heteromeric channels with KDC1. FEBS Lett.573,61-67.
    Fu, H.H., and Luan, S. (1998). AtKUP1:a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10, 63-73.
    Fuchs, I., Stolzle, S., Ivashikina, N., and Hedrich, R. (2005). Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 221,212-221.
    Fuchs, W.H., and Grossmann, F. (1972). Ernahrung und resistenz von kulturpflanzen gegenuber krankheitserregern und schadlingen. Nutrition and resistance of crop plants against pathogens and pests 1,1008-1107.
    Gambale, F., and Uozumi, N. (2006). Properties of Shaker-type potassium channels in higher plants. J. Membr. Biol.210,1-19
    Gassmann, W., Rubio, F., and Schroeder, J.I. (1996). Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J.10,869-882.
    Gaymard, F., Cerutti, M., Horeau, C., Lemaillet, G., Urbach, S., Ravallec, M., Devauchelle, G., Sentenac, H., and Thibaud, J.B. (1996). The baculovirus/insect cell system as an alternative to Xenopus oocytes. First characterization of the AKT1 K+ channel from Arabidopsis thaliana. J Biol. Chem.271,22863-22870.
    Gaymard, F., Cerutti, M., Horeau, C., Lemaillet, G, Urbach, S., Ravallec, M., Devauchelle, G, Sentenac, H., and Thibaud, J.B. (1997). The baculovirus/insect cell system as an alternative to Xenopus oocytes. First characterization of the AKT1 K+ channel from Arabidopsis thaliana. J. Biol. Chem. 271,22863-22870.
    Gaymard, F., Pilot, G., Lacombe, B., Bouchez, D., Bruneau, D., Boucherez, J., MichauxFerriere, N., Thibaud, J.B., and Sentenac, H. (1998). Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell 94,647-655.
    Geiger, D., Becker, D., Vosloh, D., Gambale, F., Palme, K., Rehers,K., Anschuetz, U., Dreyer, I., Kudla, J., and Hedrich, R. (2009). Heteromeric AtKC1-AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions. J. Biol. Chem.284,21288-21295.
    Gierth, M., and Maser, P. (2007). Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett.581,2348-2356.
    Gierth, M., Maser, P., and Schroeder, J.I. (2005). The potassium transporter AtHAKS functions in K+ deprivationinduced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol.137,1105-1114.
    Gobert, A., Isayenkov, S., Voelker, C., Czempinski, K., and Maathuis, FJ. (2007). The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc. Natl. Acad. Sci. USA 104,10726-10731.
    Golldack, D., Quigley, F., Michalowski, C.B., Kamasani, U.R., and Bohnert, H.J. (2003). Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol. Biol.51,71-81.
    Graham, R.D., and Ulrich, A. (1972). Potassium deficiency-inducedchanges in stomatal behavior, leaf water potentials, and root system permeability in Beta vulgaris L. Plant Physiol.49,105-109.
    Grefen, C., and Chen, Z. (2009). A novel motif essential for SNARE interaction with the K+ channel KC1 and Channel gating in Arabidopsis. Plant Cell 22,3076-3092.
    Gupta, M., Qiu, X., Wang L., Xie W., Zhang C., Xiong L., Lian X., and Zhang Q. (2008). KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol. Genet. Genomics 280,437-452.
    Gurdon, J.B., Lane, C.D., Woodland, H.R., and Marbaix, G (1971). Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233,177-182.
    Halfter, U., Ishitani, M., and Zhu, J.K. (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Nat1. Acad. Sci. USA 97, 3735-3740.
    Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F.J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch.391,85-100.
    Haro, R., Banuelos, M.A., Senn, M.E., Barrero-Gil, J., and Rodriguez-Navarro, A. (2005). HKT1 mediates sodium uniports in roots. Pitfalls in the expression of HKT1 in yeast. Plant Physiol.139, 1495-1506.
    Hartje, S., Zimmermann, S., Klonus, D., and Muller-Rober, B. (2000). Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta 210, 723-731.
    Helal, H., and Mengel, K. (1979). Nitrogen metabolism of young barley plants as affected by NaCl-salinity and potassium. Plant Soil 51,457-462.
    Held, K., Pascaud, F., Eckert, C., Gajdanowicz, P., Hashimoto, K., Corratage-Faille, C., Lacombe, B., Offenbom, J.N., Dreyer, I., Thibaud, J.B., et al. (2011). Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res.21,1116-1130.
    Hirsch, R.E., Lewis, B.D., Spalding, E.P., and Sussman, M.R. (1998). A role or the AKT1 potassium channel in plant nutrition. Science 280,918-921.
    Honsbein, A., Sokolovski, S., Grefen, C., Campanoni, P., Pratelli, R.,Paneque, M., Johansson, I., and Blatt, M.R. (2009). A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis. Plant Cell 21,2859-2877.
    Horie T., Brodsky, D.E., Costa A., Kaneko T., Schiavo F.L., Katsuhara M., and Schroeder, J.I. (2011). K+ transport by the OsHKT2;4 transporter from rice with atypical Na+transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. Plant Physiol.156,1493-1507.
    Horie, T., Sugawara, M., Okada, T., Taira, K., Kaothien-Nakayama, P., Katsuhara, M., Shinmyo, A., and Nakayama, H. (2011). Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. J. Biosci. Bioeng. 111,346-356.
    Hoshi, T. (1995). Regulation of voltage dependence of the KAT1 channel by intracellular factors. J. Gen. Physio1. 105,309-328.
    Hosy, E., Vavasseur, A., and Mouline, K. (2003). The Arabidopsis outward K+channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc. Natl. Acad. Sci. USA 100,5549-5554.
    Hoth, S., Dreyer, I., and Hedrich, R. (1997). Mutational analysis of functional domains within plant K+ uptake channels. J. Exp. Bot.48,415-420.
    Hoth, S., Geiger, D., Becker, D., and Hedrich, R. (2001). The pore of plant K+ channel is involved in voltage and pH sensing:domain-swapping betweenn different K+ channel a-subunits. Plant Cell 13,943-952.
    Hrabak, E.M., Chan, C.W., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., et al. (2003). The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol.132,666-680.
    Ivashikina, N., Becker, D., Ache, P., Meyerhoff, O., Felle, H.H., and Hedrich, R. (2001). K+ channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett.508,463-469.
    Jabnoune, M., Espeout, S., Mieulet, D., Fizames, C., Verdeil, J.L., Conejero, G, Rodriguez-Navarro, A., Sentenac, H., Guiderdoni, E., Abdelly, C., et al. (2009). Diversity in Expression Patterns and Functional Properties in the Rice HKT Transporter Family. Plant Physiol.150,1955-1971.
    Jan, L.Y., and Jan, Y.N. (1997). Voltage-gated and inwardly rectifying potassium channels. J. Physiol. 505,267-282.
    Jeanguenin, L., Alcon, C., Duby, G., Boeglin, M., Cherel, I., Gailard, I., Zimmemann, S., and Very, A.A. (2011). AtKCl is a general modulator of Arabidopsis inward Shaker channel activity. Plant J.67, 570-582.
    Kader, M.A., Seidel, T., Golldack, D., and Lindberg, S. (2006). Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. J. Exp. Bot.57,4257-4268.
    Kanai, S., Ohkura, K., Adu-Gyamfi, J., Mohapatra, P., Nguyen, N., Saneoka, H., and Fujita, K. (2007). Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. J. Exp. Bot.58,2917-2928.
    Kato, Y., Sakaguchi, M., Mori, Y., Saito, K., Nakamura, T., Bakker, E.P., Sato, Y., Goshima, S., and Uozumi. N. (2001). Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proc. Natl. Acad. Sci. USA 98,6488-6493.
    Kim, E.J., Kwak, J.M., Uozumi, N., and Schroeder, J.I. (1998). AtKUPl:an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10,51-62.
    Kim, M.J., Ciani, S., and Schachtman, D.P. (2010). A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol. Plant 3,420-427.
    Kirkby, E.A., and Armstrong, M.J. (1980). Nitrate uptake by roots as regulated by nitrate assimilation in the shoot of castor oil plants. Plant Physiol.65,286-290.
    Koch, K., and Mengel, K. (1974). The influence of the level of potassium supply to young tobacco plants (Nicotiana tabacum L.) on short-term uptake and utilisation of nitrate nitrogen (15N). J. Sci. Food Agric.25,465-471.
    Kochian, L.V., and Lucas, W.J. (1982). Potassium transport in corn roots:Ⅰ. Resolution of kinetics into a saturable and linear component. Plant Physiol.70,1723-1731
    Kolukisaoglu, U., Weinl, S., Blazevic, D., Batistic, O., and Kudla, J. (2004). Calcium sensors and their interacting protein kinases:genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol.134,43-58.
    Kudla, J., Xu, Q., Harter, K., Gruissem, W., and Luan, S. (1999). Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc. Natl. Acad. Sci. USA 96, 4718-23.
    Kuhtreiber, W.M., and Jaffe, L.F. (1990). Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J. Cell Biol.110,1565-1573.
    Kunkel, J.G., Lin, L.Y., Xu, Y., Prado, A.M.M., Feijo, J.A., Hwang, P.P., and Heper, P.K. (2001).The strategic use of good buffers to measure proton gradients about growing pollen tubes. Cell Biol. Plant Fungal Tip Growth 81-94.
    Lacombe, B., Pilot, G., Michard, E., Gaymard, F., Sentenac, H., and Thibaud, J.B. (2000). A Shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12,837-51.
    Lagarde, D., Basset, M., Lepetit, M., Conejero, G., Gaymard, F., Astruc, S., and Grignon, C. (1996). Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J.9,195-203.
    Laurie, S., Feeney, K.A., Maathuis, F.J., Heard, P.J., Brown, S.J., and Leigh, R.A. (2002). A role for HKT1 in sodium uptake by wheat roots. Plant J.32,139-149.
    Lebaudy, A., Very, A.A., and Sentenac, H. (2007). K+ channel activity in plants:genes, regulations and functions. FEBS Lett.581,2357-2366.
    Lee, S.C., Lan, W.Z., Kim, B.G, Li, L., Cheong, Y.H., Pandey, G.K., Lu, G, Buchanan, B.B., and Luan, S. (2007). A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc. Natl. Acad. Sci. USA 104,15959-15964.
    Li, J., Ru, Y., Lee, J., and Assmann, S.M. (1998). Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol.116,785-795.
    Li, L., Kim, B.G., Cheong, Y.H., Pandey, G.K., and Luan, S. (2006). A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc. Natl. Acad. Sci. USA 103, 12625-12630.
    Liu J., and Zhu, J.K. (1998). A calcium sensor homolog required for plant salt tolerance. Science 280, 1943.1945.
    Lu, Y.X., Chanroj, S., Zulkifli, L., Johnson, M.A., Uozumi, N., Cheung, A., and Sze, H. (2011). Pollen tubes lacking a pair of K+transporters fail to target ovules in Arabidopsis. Plant Cell 23,81-93.
    Luan, S., Kudla, J., Rodriguez-Concepcion, M., Yalovsky, S., and Gruissem, W. (2002). Calmodulins and calcineurin B-like proteins:calcium sensors for specific signal response coupling in plants. Plant Cell 14, S389-400.
    Maathuis, F.J., and Sanders, D. (1993). Energization of potassium uptake in Arabidopsis thaliana. Planta 191,302-307.
    MacLean, A.J., and Brydon, J.E. (1971). Fixation and release of potassium in relation to the mineralogy of the clay fraction of some selected soil horizon samples. Can. J. Soil Sci.57,449-459.
    Maresova, L., and Sychrova, H. (2006). Arabidopsis thaliana CHX17 gene complements the khal deletion phenotypes in Saccharomyces cerevisiae. Yeast 23,1167-1171.
    Marschner, H. (1995). Mineral Nutrition of Higher Plants,2nd edn. (London:Academic Press).
    Marten, I., Hoth, S., Deeken, R., Ache, P., Ketchum, K.A., Hoshi, T., and Hedrich, R. (1999). AKT3, a phloem-localized K+ channel, is blocked by protons. Proc. Natl. Acad. Sci. USA 96,7581-7586.
    Martinez-Cordero, M.A., Martinez, V., and Rubio, F. (2005). High-affinity K+ uptake in pepper plants. J. Exp.Bot.56,1553-1562.
    Maser, P., Eckelman, B., Vaidyanathan, R., Horie, T., Fairbairn, D.J., Kubo, M., Yamagami, M., Yamaguchi, K., Nishimura, M., Uozumi, N., et al. (2002a). Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKTl. FEBS Lett.537,157-161.
    Maser, P., Thomine, S., Schroeder, J.I., Ward, J.M., Hirschi, K., Sze, H., Talke, I.N., Amtmann, A., Maathuis, F.J., Sanders, D., et al. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol.126,1646-1667.
    Mengel, K., and Kirkby, E.A. (2001). Principles of plant nutrition,5th edn. (Dordrecht:Kluwer Acad), pp.849.
    Mengel, K., and Haeder, H.E. (1977). Effect of potassium supply on the rate of phloem sap exudation and the composition of phloem sap of Ricinus communis. Plant Physiol.59,282-284.
    Mengel, K., and Simic, R. (1973). Effect of potassium supply on Acropetal transport of water, inorganic ions and amino-acids in young decapitated sunflower plants (Helianthus annuus). Physiol. Plant 28, 232-236.
    Mengel, K., Viro, M., and Hehl, G. (1976). Effect of potassium on uptake and incorporation of ammonium-nitrogen of rice plants. Plant Soil.44,547-558.
    Moshelion, M., Becker, D., Biela, A., Uehlein, N., Hedrich, R., Otto, B., Levi, H., Moran, N., and Kaldenhoff, R. (2002a). Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Plant Cell 14,727-739.
    Moshelion, M., Becker, D., Czempinski, K., Mueller-Roeber, B., Attali, B., Hedrich, R., and Moran, N. (2002b). Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. Plant Physiol.128,634-642.
    Mouline, K., Very, A.A., Gaymard, F., Boucherez, J., Pilot, G., Devic, M., Bouchez, D., Thibaud, J.B., and Sentenac, H. (2002). Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes Dev.16,339-350.
    Munson, R.D. (1985). Potassium in agriculture. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin.
    Nagae, M., Nozawa, A., Koizumi, N., Sano, H., Hashimoto, H., Sato, M., and Shimizu, T. (2003). The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana. J. Biol. Chem.278,42240-42246.
    Newman, I.A., Kochian, L.V., Grusak, M.A., and Lucas, W.J. (1987). Fluxes of H+ and K+ in corn roots: Characterization and stoichiometries using ion-selective microelectrodes. Plant Physiol.84, 1177-1184.
    Newman, I.A. (2001). Ion transport in roots:Measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ.24,1-14.
    Nieves-Cordones, M., Aleman, F., Martinez, V., and Rubio, F. (2010). The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions. Mol. Plant 3,326-333.
    Nitsos, R.E., and Evans, H.J, (1969). Effects of univalent cations on the activity of particulate starch synthetase. Plant Physiol.44,1260-1266.
    Obata, T., Kitamoto, H.K., Nakamura, A., Fukuda, A., and Tanaka, Y. (2007). Rice Shaker Potassium Channel OsKAT1 Confers Tolerance to Salinity Stress on Yeast and Rice Cells. Plant Physiol.144, 1978-1985.
    Ottschytsch, N., Raes, A., Van Hoorick, D., and Snyders, D.J. (2002). Obligatory heterotetramerization of three previously uncharacterized Kv channel a-subunits identified in the human genome. Proc. Natl. Acad. Sci. USA 99,7986-7991.
    Padmanaban, S., Chnroj, S., Kwak, J.M., Li, X., Ward, J.M., and Sze, H. (2007). Participation of endomembrane cation/H+ exchanger AtCHX20 in osmoregulation of guard cells. Plant Physiol. 44,82-93.
    Papazian, D.M., Schwarz, T.L., Tempel, B.L., Jan, Y.N., and Jan, L.Y. (1987). Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237,749-753.
    Peoples, T.R., and Koch, D.W. (1979). Role of potassium in carbon dioxide assimilation in Medicago sativa L. Plant Physiol.63,878-881.
    Philippar, K., Fuchs, I., Luthen, H., Hoth, S., Bauer, C.S., Haga, K., Thiel, G., Ljung, K., Sandberg, G., Bottger, M., et al. (1999). Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc. Nat1. Acad. Sci. USA 96,12186-12191.
    Picco, C., Bregante, M., Naso, A., Gavazzo, P., Costa, A., Formentin, E., Downey, P., and Gambale, F. (2004). Histidines are responsible for zinc potentiation of the current in KDC1 carrot channels. Biophys J.86,224-234.
    Pilot, G., Gaymard, F., Mouline, K., Cherel, I., and Sentenac, H. (2003). Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol. Biol.51,773-787.
    Pilot, G., Lacombe, B., Gaymard, F., Cherel, I., Boucherez, J., Thibaud, J.B. and Sentenac, H. (2001). Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J. Biol. Chem.276,3215-3221.
    Pratelli, R., Lacombe, B., Torregrosa, L., Gaymard, F., Romieu, C., Thibaud, J.B., and Sentenac, H. (2002). A grapevine gene encoding a guard cell K+ channel displays developmental regulation in the grapevine berry. Plant Physiol.128,564-577.
    Pyo, Y.J., Gierth, M., Schroeder, J.I., and Cho, M.H. (2010). High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol.153,863-875.
    Qi, Z., and Hampton, C.R. (2008). The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. J. Exp. Bot.59,595-607.
    Qiu, Q.S., Guo, Y., Dietrich, M.A., Schumaker, K.S., and Zhu, J.K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci. USA 99,8436-8441.
    Quintero, F.J., and Blatt, M.R. (1997). A new family of K+ transporters from Arabidopsis that are conserved across phyla. FEBS Lett.415,206-211.
    Reintanz, B., Szyroki, A., Ivashikina, N., Ache, P., Godde, M., Becker, D., Palme, K., and Hedrich, R. (2002). AtKCl, a silent Arabidopsis potassium channel a-subunit modulates root hair K+ influx. Proc. Natl. Acad. Sci. USA 99,4079-84.
    Rengel, Z., and Damon, P.M. (2008). Crops and genotypes differ in efficiency of potassium uptake and use. Physiol. Plant 133,624-636.
    Richards, GE., and McLean, E.O. (1963). Potassium fixation and release by clay minerals and soil clays on wetting and drying. Soil Sci.95,308-314.
    Rigas, S., Desbrosses, G., Haralampidis, K., Vicente-Agullo, F., Feldmann, K.A., Grabow, A., Dolan, L., and Hatzopoulos, P. (2001). TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13,139-151.
    Romheld, V., and Kirkby, E.A. (2010). Research on potassium in agriculture:needs and prospects Plant Soil 335,155-180.
    Rubio, F., Gassmann, W., and Schroeder, J.I. (1995). Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270,1660-1663.
    Rubio, F., Santa-Maria, G.E., and Rodriguez-Navarro, A. (2000). Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol. Plantarum 109, 34-43.
    Rufty, T.W., Jackson, W.A., and Raper, C.D. (1981). Nitrate reduction in roots as affected by the presence of potassium and by flux of nitrate through the roots. Plant Physiol.68,605-609.
    Salinas, M., Duprat, F., Heurteaux, C., Hugnot, J.P., and Lazdunski, M. (1997). New modulatory alpha subunits for mammalian Shab K+ channels. J. Biol. Chem.272,24371-24379.
    Santa-Maria, G.E., Rubio, F., Dubcovsky, J., and Rodriguez-Navarro, A. (1997). The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9,2281-2289.
    Schiefelbein, J.W., Shipley, A., and Rowse, P. (1992) Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana. Planta 187,455-459.
    Schleyer, M., and Bakker, E.P. (1993). Nucleotide sequence and 3'-end deletion studies indicate that the K+-uptake protein kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C terminus. J. Bacteriol.175,6925-6931.
    Schroeder, J.I., Ward, J.M., and Gassmann, W. (1994). Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants:biophysical implications for K+ uptake. Annu. Rev. Biophys. Biomol. Struct.23,441-471.
    Senn, M.E., Rubio, E, Banuelos, M.A., and Rodriguez-Navarro, A. (2001). Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. J. Biol. Chem.276, 44563-44569.
    Sentenac, H., Bonneaud, N., Minet, M., Lacroute, F., Salmon, J.M., Gaymard, F., and Grignon, C. (1992). Cloning and expression in yeast of a plant potassium ion transport system. Science 256, 663-65.
    Sentenac, H., Bonneaud, N., Minet, M., Lacroute, F., Salmon, J.M., Gaymard,F., and Grignon, C. (1992). Cloning and expression in yeast of a plant potassium ion transport system. Sience 256, 663-665.
    Shabala, S., Newman, I.A., and Morris, J. (1997). Oscillations in H+ and Ca2+ ion fluxes around the elongation region of corn roots and effects of external pH. Plant Physiol.113,111-118.
    Shao, Q., Zhao, C., Han, N., and Wang, B.S. (2008). Cloning and expression pattern of SsHKT1 encoding a putative cation transporter from halophyte Suaeda salsa. DNA Seq.19,106-114.
    Shi, J., Kim, K.N., Ritz, O., Albrecht, V, Gupta, R., Harter, K., Luan, S., and Kudla, J. (1999). Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Plant Cell 11, 2393-405
    Shi, H., Ishitani, M., Kim, C., and Zhu, J.K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. USA 97,6896-6901.
    Shin, R., and Schachtman, D.P. (2004). Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc. Natl. Acad. Sci. USA 101,8827-8832.
    Smil, V. (1999). Crop residues:agriculture's largest harvest. Biosience 49,299-308.
    Smith, C.R., Knowles, V.L., and Plaxton, W.C. (2000). Purification and characterization of cytosolic pyruvate kinase from Brassica napus (rapeseed) suspension cultures. Eur. J. Biochem.267, 4477-4485.
    Song, C.P., Guo, Y., Qiu, Q., Lambert, G., Galbraith, D.W., Jagendorf, A., and Zhu, J.K. (2004). A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 101,10211-10216.
    Sottocornola, B., Visconti, S., Orsi, S., Gazzarrini, S., Giacometti, S., Olivari, C., Camoni, L., Aducci, P., Marra, M., Abenavoli, A., et al. (2006). The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins. J. Biol. Chem.281,35735-35741.
    Spalding, E.P., Hirsch, R.E., Lewis, D.R., Qi, Z., Sussman, M.R., and Lewis, B.D. (1999). Potassium uptake supporting plant growth in the absence of AKT1 channel activity. J. Gen. Physiol.113, 909-918.
    Su, H., Golldack, D., Katsuhara, M., Zhao, C., and Bohnert, H.J. (2001). Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol.125,604-614.
    Su, Y.H., North, H., Grignon, C., Thibaud, J.B., Sentenac, H., and Very, A.A. (2005). Regulation by external K+ in a maize inward shaker channel targets transport activity in the high concentration range. Plant Cell.17,1532-1548.
    Suelter, C.H. (1970). Enzymes activatec by monovalent cations. Science 168,789-795.
    Suelter, C.H. (1974). Monovalent cations in enzyme-catalyzed reactions. Siegel H, eds. Metal ions in biological systems. (New York:Marcel Dekker).
    Sunarpi, Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., Horie, R., Chan, W.Y., Leung, H.Y., Hattori, K., et al. (2005). Enhanced salt tolerance mediated by AtHKTl transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J.44,928-938.
    Sutter, J.U., Campanoni, P., Tyrrell, M., and Blatt, M.R. (2006). Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane. Plant Cell 18, 935-954.
    Takahashi, R., Liu, S., and Takano, T. (2007). Cloning and functional comparison of a high-affinity K+ transporter gene PhaHKTl of salttolerant and salt-sensitive reed plants. J. Exp. Bot.58, 4387-4395.
    Talbott, L.D., and Zeiger, E. (1996). Central roles for potassium and sucrose in guard-cell osmoregulation. Plant Physiol. 111,1051-1057.
    Tang, H., and Vasconcelos, A.C. (1996). Physical Association of KAB1 with Plant K+ Channel alpha subunits. Plant Cell 8,1545-1553.
    Tester, M., and Blatt, M.R. (1989). Direct measurement of K+ channels in thylakoid membranes by incorporation of vesicles into planar lipid bilayers. Plant Physiol.91,249-252.
    Uozumi, N., Kim, E.J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., Bakker, E.P., Nakamura, T., and Schroeder, J.I. (2000). The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis Oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol.122, 1249-1260.
    Venema, K., Quintero, F.J., Pardo, J.M., and Donaire, J.P. (2002). The Arabidopsis Na+/H+ exchanger AtNHXl catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. J. Biol. Chem. 277,2413-18.
    Very, A.A., and Sentenac, H. (2003). Molecular mechanisms and regulation of K+ transport in higher plants. Annu. Rev. Plant Biol.54,575-603
    Vicente-Agullo, F., Rigas, S., Desbrosses, G., Dolan, L., Hatzopoulos, P., and Grabov, A. (2004). Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J.40,523-535.
    Vincent, P., Chua, M., Nogue, F., Fairbrother, A., Mekeel, H., Xu, Y., Allen, N., Bibikova, T.N., Gilroy, S., and Bankaitis, V.A. (2005). A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J. Cell Biol.168,801-812.
    Vincill, E.D., Bieck, A.M., and Spalding E.P. (2012). Ca (2+) conduction by an amino acid-gated ion channel related to glutamate receptors. Plant Physiol.159,40-46.
    Voelker, C., Schmidt, D., Mueller-Roeber, B., and Czempinski, K. (2006). Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. Plant J.48,296-306.
    Wagner, C.A., Friedrich, B., Setiawan, I., Lang, F., and Broer, S. (2000). The use of Xenopus laevis oocytes for the functional characterization of heterologously expressed membrane proteins. Cell Physiol. Biochem.10,1-12.
    Walker, D.J., Leigh, RA., and Miller, A.J. (1996). Potassium homeostasis in vacuolate plant cells. Proc. Natl. Acad. Sci. USA 93,10510-10514.
    Wanasuria, S., Datta, S.K.De., and Menge, K. (1981). Rice yield in relation to electroultrafiltration extractable soil potassium. Plant Soil 59,23-31.
    Wang, X.Q., Ullah, H., Jones, A.M., and Assmann, S.M. (2001). G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292,2070-2072
    Wang, Y., and Wu, W.H. (2013). Potassium Transport and Signaling in Higher Plants. Annu. Rev. Plant Biol. 64,451-476.
    Wang, Y., He, L., Li, H.D., Xu, J., and Wu, W.H.. (2010). Potassium channel a-subunit AtKC1 negatively regulates AKT1-mediated K+ uptake in Arabidopsis roots under low-K+ stress. Cell Res. 20,826-837.
    Wang, Y.H., Garvin, D.F., and Kochian, L.V. (2002). Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol.130,1361-1370.
    Ward, J.M., Maser, P., and Schroeder, J.I. (2009). Plant ion channels:gene families, physiology, and functional genomics analyses. Annu. Rev. Physiol.71,59-82
    Weber, W.M. (1999). Ion currents of Xenopus laevis oocytes:state of the art. Biochimi. Biophys. Acta. 1421,213-233.
    Welte, E., and Niederbudde, E.A. (1965). Fixation and availability of potassium in loess-derived and alluvial solis. J. Soil Sci.16,116-120.
    Wild, A., Skarlou, V., Clement, C.R., and Snaydon, R.W. (1974). Comparison of potassium uptake by plant species grown in sand and in flowing solution culture. J. Appl. Ecol.11,801-812.
    Wyn Jones, R.J. (1999). Cytoplasmic potassium homeostasis:review of the evidence and its implication. In Frontiers in Potassium Nutrition:New Perspectives on the Effects of Potassium on Physiology of Plants, (Atlanta:Potash Phosphate Inst), pp.13-22.
    Wyn, Jones, R.G, and Pollard, A. (1983). Protein, enzymes and inorganic ions.In A Lauchli, R. L. & Bieleski eds Inorganic Plant Nutrition, (Berlin:Springer-Verlag).
    Xicluna, J., Lacombe, B., Dreyer, I., Alcon, C, Jeanguenin, L., Sentenac, H., Thibaud, J.B., and Cherel, I. (2007). Increased functional diversity of plant K+ channels by preferential heteromerization of the Shaker-like subunits AKT2 and KAT2. J. Biol. Chem.282,486-494.
    Xu, J., Li, H.D., Chen, L.Q., Wang, Y., Liu, L.L., He, L., and Wu, W.H. (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125,1347-1360.
    Yamada, S., Osaki, M., Shinano, T., Yamada, M., Ito, M., and Permana, A.T. (2002). Effect of potassium nutrition on current photosynthesized carbon distribution to carbon and nitrogen compounds among rice, soybean and sunflower. J. Plant Nutr.25,1957-1973.
    Yamashita, T., and Fujiwara, A. (1967). Metabolism of acetate-1-14C in excised leaves from potassium deficient rice seedlings. Plant Cell Physiol.8,557-565.
    Yao, X., Horie, T., Xue, S., Leung, H.Y., Katsuhara, M., Brodsky, D.E., Wu, Y, and Schroeder, J.I. (2010). Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. Plant Physiol.152,341-355.
    Yu, L., Becker, D., Levi, H., Moshelion, M., Hedrich, R., Lotan, I., Moran, A., Pick, U., Naveh, L., Libal, Y, et al. (2006). Phosphorylation of SPICK2, an AKT2 channel homologue from Samanea motor cells. J. Exp. Bot.57,3583-3594.
    Zei, P.C., and Aldrich, R.W. (1998). Voltage-dependent gating of single wild-type and S4 mutant KAT1 inward rectifier potassium channels. J. Gen. Physiol.112,679-713.
    Zhang, W., Jeon, B.W., and Assmann, S.M. (2011). Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells. J. Exp. Bot. doi:10.1093/jxb/erq424.
    Zhang, X., Ma, J., and Berkowitz, G.A. (1999). Evaluation of functional interaction between K+ channel alpha-and beta-subunits and putative inactivation gating by co-expression in Xenopus laevis oocytes. Plant Physiol.121,995-1002.
    Zhao, J., Cheng, N.H., Motes, C.M., Blancaflor, E.B., Moore, M., Gonzales, N., Padmanaban, S., Sze, H., Ward, J.M., and Hirschi, K.D. (2008). AtCHX13 is a plasma membrane K+ transporter. Plant Physiol.148,796-807.
    Zimmermann, S., Talke, I., Ehrhardt, T., Nast, G., and Muller-Rober, B. (1998). Characterization of SKT1, an inwardly rectifying potassium channel from potato, by heterologous expression in insect cells. Plant Physiol.116,879-890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700