水稻低磷胁迫基因表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是植物体内重要的营养元素。土壤中总磷含量丰富,但能被植物直接吸收利用的可溶性磷含量却很低,成为制约农作物产量的重要因素。
     低磷胁迫条件下,植物体可通过改变其形态结构及生理、生化代谢途径获取磷酸盐。目前植物适应低磷胁迫的分子机制尚不清楚。本研究利用水稻基因组寡核苷酸芯片研究了耐低磷水稻中早18和不耐低磷水稻Lagrue在正常营养条件和低磷胁迫后6小时、24小时、72小时3个时间点的全基因组表达谱。芯片杂交实验设计有3次生物学重复,每次生物学重复中又设有两次技术重复。研究结果共鉴定出两种水稻低磷胁迫根部、地上部差异表达基因共5687个。其中,水稻中早18出现差异表达基因2316个,水稻Lagrue出现差异表达基因3731个。差异表达基因依据功能注释依次分为磷酸盐转运、其它转运、磷酸酶、其它酶、主要代谢、次生代谢、蛋白质降解、蛋白质合成等类别。
     水稻中早18和水稻Lagrue针对低磷胁迫反应在表达谱上存在一些共同点:具体表现如下:
     1.根部磷酸盐转运蛋白基因、磷酸酶基因、核酸酶基因等上升表达。
     2.根部N吸收和利用相关基因下降表达
     3.根部脂代谢相关基因表达的改变
     4.根部蛋白质降解、细胞衰老相关基因上升表达
     5.根部氧化胁迫相关基因上升表达
     6.根部跨膜转运蛋白基因上升表达
     7.信号传导相关基因表达的改变
     8.转座因子表达的改变
     耐低磷水稻中早18和不耐低磷水稻Lagrue低磷胁迫时,在表达谱上还存在许多差异。在低磷胁迫早期,耐低磷水稻中早18根部通过加强糖酵解途径为其以后侧根和根毛生长提供尽可能多的物质和能量。随着磷素的进一步缺乏,水稻根部和地上部糖酵解都减弱。而不耐低磷水稻Lagrue低磷胁迫时,糖酵解就开始减弱,没有糖酵解加强这一过程。耐低磷水稻中早18在低磷胁迫开始时,三羧酸循环(TCA)加强,加强的三羧酸循环(TCA)产生更多的有机酸,分泌到土壤中,活化土壤中的难溶性磷,这样有利于更好的吸收磷。同时低磷胁迫72h磷酸烯醇式丙酮酸羧化酶(PEPC)上升表达,为三羧酸循环(TCA)产生有机酸提供足够的C源。而不耐低磷水稻Lagrue在低磷胁迫时三羧酸循环(TCA)始终减弱,不能产生有机酸去活化土壤中的难溶性磷。
     从这些差异表达基因中选择部分基因,可以作为遗传改良侯选基因,希望能对我国水稻磷营养高效的利用提供有用的资源。
Phosphate (Pi) is one of the essential nutrients required by plants. Phosphorus that can be absorbed by plants directly is very low although it is rich in soil. Sub-optimal P nutrition can lead to yield losses.
     Plants have developed numerous morphological, physiological, biochemical adaptations to acquire phosphate. However, the molecular bases of these responses to Pi deficiency are not thoroughly elucidated. Expression profile in response to low phosphate was investigated for rice Zhongzao 18 (low-phosphate tolerant) and rice Lagrue(not low-phosphate tolerant) at 6hr,24hr and 72 hr after low phosphate stress with the normal phosphate as the control with DNA chip of 60,000 oligos (70 mer) representing all putative genes of rice genome purchased from the Beijing Genomic institute. The planting and harvesting were conducted trebly with an interval of 5 days for three biological repeats. Each of the hybridizations was performed with 2 technical repeats using independent samples from three different plantings. A total of 5687 genes exhibited alteration in expression in response to low P stress in at least one of the three time points in rice Zhongzao 18 and in rice Lagrue. The number of differentially expressed genes was 2316,3731 in rice Zhongzao 18, rice Lagrue, respectively. The differentially expressed genes were classified into Pi transport、transport except Pi transport、phosphatase、enzyme except phosphatase、primary metabolism、secondary metabolism、protein degradation、protein synthesis et al. according to the genes function annotation.
     There were some common areas in the expression profile between in rice Zhongzao 18 and in rice Lagrue in response to low-phosphorus stress. Specific performance was as follows:
     1. The genes of phosphate transporter, acid phosphatases, nuclease were up-regulated in rice roots.
     2. Genes involved in N metabolism were down-regulated in rice roots.
     3. Several genes involved in lipid metabolism changed their expression in rice roots
     4. Some genes involved in cell senescence and protein degradation were up-regulated;
     5. Oxidative stress-related genes were up-regulated in rice roots
     6. Some transmembrane transporter genes were up-regulated.
     7. Some signal transduction-related genes changed their expression in rice
     8. Some transposable element genes changed their expression in rice
     There was significant difference in the expression profile between in rice Zhongzao 18 and in rice Lagrue in response to low-phosphorus stress. Increased glycolysis helped to provide as much material and energy to lateral root and root hair for growth in rice Zhongzao 18 roots during early stages of Pi deficiency treatments. As a further lack of phosphorus, the glycolysis decreased in rice Zhongzao 18 shoot and roots. The process of strengthen glycolysis did not exist in rice Lagrue roots during early or late stages of Pi deficiency treatments. The TCA cycle was strengthen after low-phosphorus stress treatments started in rice Zhongzao 18 roots. Thus the more organic acids was produced and released into the soil to activate the insoluble phosphorus. And The increased expression of phosphoenolpyruvate carboxylase genes helps to supply sufficient carbon source to promote the TCA cycle in rice Zhongzao 18 roots.the TCA cycle decreased during early or late stages of Pi deficiency treatments in rice Lagrue roots. So Organic acids can not be produced and released into the soil to activate the insoluble phosphorus in rice Lagrue roots.
     The identification of differentially expressed genes can provide useful information to further study the molecular mechanism of plant adaptation to low phosphorus. And these differentially expressed genes can be used as candidate genes to improve Pi use by crop species.
引文
1. 王庆仁,李继云,李振声.植物高效利用土壤难溶态磷研究动态及展望.植物营养与肥料科学报,1998,4(2):107-116
    2.李玉京.高等植物对磷饥饿自我拯救的分子生物学机制.生物技术通报,1999,3:1-8
    3. 李庆逵.现代磷肥的研究进展.土壤学进展,1 986,2:1-7
    4.李继云,李振声.有效利用土壤营养元素的作物育种新技术研究.中国科学(B辑),1995,25(1):41-48
    5.熊毅.中国土壤(第二版).北京:科学出版社,1987
    6. Abel S, Nurnberger T, Ahnert V, Krauss G J, Glund K. Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells. Plant Physiol,2000,122:543-552
    7. Abelson D H. A potential phosphate crisis. Science,1989,283:2015
    8. Ascencio J. Acid phosphase as a diagnostic tool. Commun Soil Sci Plant Anal,1994, 25:1553-1564.
    9. Aung K, Lin S, Wu C, Huang Y, Su C, Chiou T-J. pho2, a Phosphate Overaccumulator, Is Caused by a Nonsense Mutation in a MicroRNA399 Target Gene. Plant Physiol,2006,141:1000-1011.
    10. Bains W, Smith G C. A novel method for nucleic acid sequence determination. J Theor Biol,1988,135:303-7
    11. Bains W. Mixed hybridization and conventional strategies for DNA sequencing. Genet Anal Tech Appl,1993,10:84-94
    12. Baldwin J C, Karthikeyan A S, Raghothama K G. LEPS2, a Phosphorus Starvation-Induced Novel Acid Phosphatase from Tomato. Plant Physiol,2001, 125:728-737.
    13. Bari R, Pant B D, Stitt M, Scheible W-R. PHO2, MicroRNA399, and PHR1 Define a Phosphate-Signaling Pathway in Plants. Plant Physiol,2006,141:988-999.
    14. Bariola P A, Howard C J, Taylor C P, Verburg M T, Jaglan V D, Green P J. The Arabidopsis ribonuclease gene RNS1 is thghtly controlled in response to phosphate limitation. Plant J,1994,6:673-685.
    15. Barlowe C, Schekman R. SEC 12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER. Nature,1993,365;347-349
    16. Barlowe C. Signals for COPII-dependent export from the ER:what is the ticket out? Trends Cell Biol,2003,13:295-300
    17. Bartel B, Bartel D P. MicroRNAS:at the root of plant development? Plant Physiol, 2003,132:709-717
    18. Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell,2004, 116:281-297
    19. Bates T R, Lynch J P. Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana(Brassicaceae). Am J Bot, 2000,87:958-963
    20. Bates T R, Lynch J P. Stimulation of foot hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ,1996,19:529-539.
    21. Bergman L W, McClinton D C, Madden S L, Peris L H. Molecular analysis of the DNA sequences involved in the transcriptional regulation of the phosphate-repressible acid phosphatase(PHO5) of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA,1986,83:6070-6074.
    22. Betella M A, Quesada M A, Konowicz A k. Characterization and in situ localization of a salt-induced tomato peroxidaze mRNA. Plant Mol Biol,1994,25:105-114.
    23. Bolan N S. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil,1991,134:189-207
    24. Bonser A M, Lynch J, Snspp S. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytol,1996,132:281-288
    25. Borch K, Bouma T J, Lynch J P, Brown K M. Ethylene:a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ,1999, 22:425-431
    26. Bunya M, Nishimura M, Harashima S, Oshima Y. The pho84 gene of saccharomyces cereuisiae encodes an inorganic phosphate transporter. Mol Cell Biol,1991,11: 3229-3238
    27. Burleigh S H, Harrison M J. The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol,1999,119:241-248
    28. Carrington J C, Ambros V. Role of microRNAs in plant and animal development. Science,2003,301:336-338
    29. Che P, Gingerich D J, Lall S, Howell S H. Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell,2002,14: 2771-2785
    30. Chen D, Delatorre C A, Bakker A, Abel S. Conditional identification of phosphate starvation-response mutants in Arabidopsis thaliana. Planta,2000,211:13-22.
    31. Cheong Y H, Chang H S, Gupta R, Wang X, Zhu T, Luan S. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol,2002,129:661-677
    32. Chico J M, Raices M, Tellez-Inon M T, Ulloa R M. a calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol,2002, 128:256-270.
    33. Chiou T, Aung K, Lin S, Wu C, Chiang S, Su C. Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell,2006,18:412-421
    34. Chittoor J M, Leach J E, White F F. Differential induction of peroxidase gene family during induction of rice by Xanthomonas. oryzae. pv. oryzae. Mol Plant-Microbe Interact,1997,10:861-871.
    35. Chu S, Derisi J, Eisen M, Mulholland J, Botstein D, Brown P O, Herskowitz I. The transcriptional program of sporulation in budding yeast. Science,1998,282:699-705
    36. Ciereszko I, Johansson H, Kleczkowski L A. Sucrose and light regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway in Arabidopsis. Biochem J,2001,354:67-72
    37. Cogliatti D H, Clarkson D T. Physiological changes in, and phosphate uptake by potato plants during development of, and recovery from phosphate deficiency. Physiol Plant,1983,58:287-294.
    38. Daniel P, Reid R J, Ayling S M. Phosphorus uptake by plants:from soil to cell. Plant Physiol,1998,116:447-453
    39. Delhaize E, Randall P J. Characterization of a phosphate accumulator mutant of Arabidopsis thaliana. Plant Physiol,1995,107:207-213
    40. Dinkelaker B, Romheld V, Marschner H. Citric acid excretion and precipitation of calciumcitrate in the rhizosphere of white lupine (Lupinus albus L.). Plant Cell Environ,1989,12:285-292.
    41. Dodds P N, Clarke A E, Newbigin E. Molecular characterization of an S-like RNase of Nicotiana alata that is induced by phosphate starvation. Plant Mol Biol,1996, 31:227-238.
    42. Drew M C, He C-j, Morgan P W. Decreased Ethylene Biosynthesis, and Induction of Aerenchyma, by Nitrogen-or Phosphate-Starvation in Adventitious Roots of Zea mays L. Plant Physiol,1989,91:266-271.
    43. Drmanac R, Labat I, Brukner I, Crkvenjakov R. Sequencing of megabase plus DNA by hybridization:theory of the method. Genomics,1989,4:114-28
    44. Duff S M G, Sarath G, Plaxton W C. The role of acid phosphatase in plant phosphorus metabolism. Physiol Planta,1994,90:791-800.
    45. Dugas D V, Bartel B. MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol,2004,7:512-520
    46. Fohse D, Classen N, Jungk A. Phosphorus efficiency of plants. II. Significande of root radius,root hairs and cation-anion banlande for phosphorus influx in seven plant species. Plant Soil,1991,132:261-272.
    47. Franco-Zorrilla J M, Solano R, Rubio V, Leyva A, Paz-Ares J. Mutation at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis. Plant J,2002,32:353-360
    48. Franco-Zorrilla J M, Solano R, Rubio V, Leyva A, Paz-Ares J. Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis. Plant J,2002,32:353-360
    49. Frentzen M. Phosphatidylglycerol and sulfoquinovosyldiacylglycerol:anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol,2004,7:270-276.
    50. Fujii H, Chiou T, Lin S, Aung K, Zhu J. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol,2005,15:2038-2043
    51. Gill G. Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr Opin Genet Dev,2003, 13:108-113
    52. Goldstein A H, Danon A, Baertlein D A, Daniel R G. Phosphate inducible metabolism in Lycopersicon esculentum:excretion of acid phosphatase by tomato plants and suspension-cultured cells Ⅱ. Plant Physiol,1988,87:711-715
    53. Goldstein AH, Mayield S P, Danon A. Phosphate starvation inducible metabolism in lycopersicon esculenturn changes in protein secretion under nutrient stress. Plant Physiol,1989,91:175-182
    54. Gonzalez E, Solano R, Rubio V, Leyva A, Paz-Ares J. Phosphate transporter traffic facilitator1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell, 2005,17:3500-3512
    55. Green P J. The ribonucleases of higher plants. Annu. Rev. Plant Physiol Plant Mol Biol,1994,45:421-445.
    56. Grierson P F. Organic acids in the rhizosphere of banksia interififolia L.F. Plant Soil, 1992,44:259-265.
    57. Griffith J K, Baker M E, Rouch D A, Skurray R A, et al. Membrane transport proteins:implications of sequence comparisons. Curr Opin Cell Biol,1992,4: 684-95
    58. Gunter N, Agnes M, Enrico M, Volker R. Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta,1999, 208:373-382
    59. Hammond J P, Bennett M J, Bowen H C, Broadley M R, Eastwood D C, May S T, Rahn C, Swarup R, Woolaway K E, White P J. Changes in Gene Expression in Arabidopsis Shoots during Phosphate Starvation and the Potential for Developing Smart Plants. Plant Physiol,2003,132:578-596.
    60. Hammond J P, Broadley M R, White P J. Genetic responses to phosphorus deficiency. Ann Bot,2004,94:323-332
    61. Haran S, Logendra S, Saskar M, Bratanova M, Raskin I. Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physiol,2000,124:615-626
    62. Haran S, Logendra S, Seskar M, Bratanova M, Raskin I. Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physiol,2000,124:615-626.
    63. Harrison M J, Van B M. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature,1995,378:626-629
    64. He C, Morgan P W, Drew M C. Enhanced sensitivity to ethylene in nitrogen or phosphate-starved roots of Zea mays L. during aerenchyma formation. Plant Physiol, 1992,98:137-142
    65. He Y, Liao H, Yan X. Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures. Plant Soil, 2003,248:247-256
    66. He Z, Dong H, Dong J, Li D, Ronald P C. The rice Rim2 transcript accumulates in response to Magnaporthe grisea and its predicted protein produce shares similarity with TNP2-like proteins encoded by CACTA transposons. Mol Gen Genet,2000, 264:2-10.
    67. Himanen K, Vuylsteke M, Vanneste S, Vercruysse S, Boucheron E, Alard P, Chriqui D, Montagu M V, Inze D, Beeckman T. Transcript profiling of early lateral root initiation.Proc Natl Acad Sci. USA,2004,101:5146-5155.
    68. Hoffland E, Boogaard R V D, Nelemans J, Findenegg G Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. New Phytol, 1992,122:675-680
    69. Hoffland E, Findenegg G R, Nelmans J A. Solubilization of rock phosphate by rape. I. Evaluation of the role of the nutrient uptake pattern. Plant Soil,1989,113: 155-160
    70. Hou X, Wu P, Jiao F. Regulation of the expression of OsIPS1 and OsIPS2 in rice via systemic and loval Pi signaling and hormones. Plant Cell Environ,2005, 28:353-364
    71. Huang C Y, Susan J B, Peter L, Smith F K, Robin D G Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and-deficient barley roots. Plant Physiol,2000,124:415-422
    72. James C B, Athikkattuvalasu S K, Raghothama G LEPS2, a phosphrus Starvation-Induced novel acid phosphatase from tomato. Plant Physiol,2001,125: 728-737
    73. Jane, F J, Carroll P V, Deborah L A. Phosphorus deficiency in Lupinus albus. I. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol,1996,112:31-41
    74. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy S R, Mccouch S R, Wessler S R. An active DNA transposon family in rice. Nature,2003,421:163-167.
    75. Kafatos F C, Jones C W, Efstratiadis A. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res,1979,6:1541-1552
    76. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert H. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell,2001,13:889-905.
    77. Keerthisinghe G, Hocking P J, Ryan P R, Delhaize E. Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.). Plant Cell Environ,1998,21:467-478.
    78. Kock M, Theierl K, Stenzel L, Glund K. Extracellular administration of phosphate-sequestering metabolites induces ribonucleases in cultured tomato cells. Planta,1998,204:404-407
    79. Leggewie G, Willmitzer L, Riesmeier J W. Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant:identification of phosphate transporters from higher plants. Plant Cell,1997,9:381-392.
    80. Lemieux B, Aharoni A, Schena M. Overview of DNA chip technology. Mol Breeding, 1998,4:277-289
    81. Lenburg M E, O'Shea E K. Signaling phosphate starvation. Trends Biochem Sci, 1996,21:383-387.
    82. Lian X, Wang S, Zhang J, feng Q, Zhang L, Fan D, Li X, Yuan D, Han B, Zhang Q. Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol Biol,2006,60:617-631.
    83. Linkohe B, Williamson L C, Fitter A H, Leyser H M. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J,2002,29:751-760
    84. Lipton D S, Blanchar R W, Blevins D G. Citrate, malate and succinate concentration in exudation from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol,1987,85:315-317
    85. Lipton D S, Blancher R W, Blevins D G. Citrate, malate and succinate concentrations in exuduates from P-sufficient and P-starved Medicago sativa L. seedlings. Plant Physiol,1987,85:315-317.
    86. Lisa C W, Sebastien P R, Alastair H F, Leyser H M. Phosphate availability regulates root system architecture in arabidopsis. Plant Physiol,2001,126:875-882.
    87. Liu C, Muchhal U S, Mukatira U, Kononowicz A K., Raghothama K G.Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol,1998,116:91-99
    88. Lofflere A, Abel S, Jost W. Phosphate-regulated induction of intracellular ribonucleases in cultured tomato(Lycopersicon esculentum)cells. Plant Physiol, 1992,98:1472-1478
    89. Lomovskaya 0, Watkins W. Efflux pumps:their role in antibacterial drug discovery. Curr Med Chem,2001,8(14):1699
    90. Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol,2002,129:244-256
    91. Lynch J P, Brown K M. Ethylene and plant responses to nutritional stress. Physiol Plant,1997,100:613-619
    92. Lynch J P. Root architecture and plant productivity. Plant Physiol,1999,107:7-13
    93. Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng X. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell,2001,13:2589-2607
    94. Ma Z, Baskin T L, Brown K M, Lynch J P. Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol,2003, 131:1381-1390
    95. Ma Z, Bielenber D G, Brown K M, Lynch J P. Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ,2001, 24:459-467
    96. Makkos U, Southern E M. A study of oligonucleotide reassociation using large arrays of oligonucleotides synthesised on a glass support. Nucleic Acids Res,1993, 21:4663-4669
    97. Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton K A, Dangl J L, Dietrich R A. The transcriptome of Arabidosis thaliana during systemic acquired resistance. Nat Genet,2000,26:403-410.
    98. Martin A C, Delpozo J C, Rubio V, Solana R, Leyva A. Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J,2000, 24:559-567
    99. Martin M L, Busconi L. A rice membrane-bound calcium-dependent protein kinase is activated in response to low temperature. Plant Physiol,2001,125:1442-1449.
    100.Melchior F. SUMO nonclassical ubiquitin. Annu Rev Cell Dev Biol,2000, 16:591-626
    101.Miller R, Zilinskas B A:Molecular cloning and characterization of a gene edcoding pea cytosolic ascorbate peroxidase. JBiol Chem,1992,267:21802-21807.
    102.Miller S S, Liu J, Allan D L, Menzhuber C J, Fedorova M, Vance C P. Molecular control of acid phosphatase secretion into the rhizophere of proteiod roots from phosphorus-stressed white lupin, Plant Physiol,2001,127:594-606
    103.Mir G, Domenech J, Huguet G, Guo W, Goldsbrough P, Atrian S, Molinas M. A plant type 2 metallothionein(MT) from cork tissue responds to oxidative stress. JExp Bot,2004,55:2483-2493.
    104.Misson J, Raghothama k G, Jain A, Jouhet J, Block M A, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA,2005,102:11934-11939.
    105.Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan A S, Raghothama K G, Baek D, Koo Y D, Jin J B, Bressan R A, et al.. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA,2005, 102:7760-7765.
    106.Muchhal U S, Pardo J M, Raghothama K G. Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci USA,1996,93:10519-10523.
    107.Muchhal U S, Raghothama K G. Transcriptional regulation of plant phosphate transporters. Proc Natl Acad Sci USA,1999,96:5868-5872.
    108.Muller S, Hoege C, Pyrowolakis G, Jentsch S. SUMO, ubiquitin mysterious cousin. Nat Rev Mol Cell Biol,2001,2:202-210
    109.Nakamura Y, Awai K, Masuda T, Yoshioka Y, Takamiya K-i, Ohta H. A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem,2005,280:7469-7476.
    110.Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Inoue H, Tanisaka T. Mobilization of a transposon in rice genome. Nature,2003,421:170-172.
    111.Plaxton W C. The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol,1996,47:185-214.
    112.Prasad R, Dewerqifosse P, Goffeau A, Balzi E. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet,1995,27:320-329.
    113.Raghothama K G. Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol, 1999,50:665-693.
    114.Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhcin N, Bucher M. A phosphate transporter expressed in arbuscule-containing cells in potato. Nature, 2001,414,462-470
    115.Redinbaugh M G, Campbell W H. Nitrate regulation of the oxidative pentose phosphate pathway in maize (Zea mays L.) root plastids:Induction of 6-phosphogluconate dehydrogenase activity, protein and transcript levels. Plant Sci, 1998,134:129-140
    116.Richmond T, Glasner J D, Mau R. Genome-wide expression profling in Escherichia coli K-12. Nucleic Acids Res,1999,27:3821-3835
    117.Romeis T, Piedras P, Jonathan D G J. Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. Plant Cell,2001, 12:803-816.
    118.Roosens N H, Bernard C, Leplae R, Verbruggen N. Evidence for copper homeostasis function metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Lett,2004,5:9-16.
    119.Rubio V, Linhares F, Solano R, Martin A C, Iglesias J, Leyva A, Paz-Ares J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes & Dev,2001,15:2122-2133.
    120.Sakano K. Proton/phosphate stoichiometry in uptake of inorganic phosphate by cultured cells of Catharanthus roseus (L.) G Don. Plant Physiol,1990,93:479-83
    121.Salama A, Warein P F. Effects of mineral nutrition on edogenous cytokinins in plants of sunflower. J Exp Bot,1979,30:971-981
    122.Schachtman D P, Reid R J, Ayling S M. Phosphorus Uptake by Plant:From Soil to Cell. Plant Physiol,1998,116:447-453.
    123.Schena M, Shalon D, Davis R W, Brown P O. Quantitative monitoring of gene expression patterns with a complimentary DNA microarray. Science,1995, 270:467-470
    124.Schena M, Shalon D, Heller R, Chai A, Brown P O, Davis R W. Parallel human genome analysis:microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci USA,1996,93:10614-10619
    125.Schiefelbein J W. The genetic control of root hair development. Plant Physiol,2000, 124:1525-1531
    126. Schmidt W, Schikora A. Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development. Plant Physiol,2001, 125:2078-2084
    127.Schunmann P H, Richardson A E, Vickers C E, Delhaize E. Promoter analysis of the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiol, 136:4205-4214
    128.Seki M, Narusaka M, Abe H, Kasuko M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinosaki K. Monitoring the expression pattern of 1,300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell,2001,13:61-72.
    129.Shane M W, Vos M D, Roock S D, Cawthray G R, Lambers H. Effects of external phosphorus supply on internal phosphorus concentration and the initiation, growth and exudation of cluster roots in Hakea prostrata. Plant Soil,2003,248:209-212
    130.Shin H, Shin H S, Chen R, Harrison M J. Loss of At4 function impacts phosphate distribution between the roots and shoots during phosphate starvation. Plant J,2006, 45:712-726
    131.Shoshan H, Sithes L, Mirjana S, Margarita B, Ilya R. Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physiol,2000,124:615-626
    132.Smalle J, Vierstra R D. The ubiquitin 26s proteasome proteolytic pathway. Annu Rev Plant Biol,2004,55:555-590.
    133.Smith F W, Ealing P, Dong B, Delhaize E. The cloning of two Arabidopsis genes belonging to a phosphate transporter family. Plant J,1997,9:381-392
    134.Smith F W. The phosphate uptake mechanism. Plant Soil,245:105-114,2002
    135.Smith S E, Read D J. Mycorrhizal Symbiosis. Academic Press, San Diego, CA,1996
    136.Smyth G K. Linear models and empirical bayesmethods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3,2004, No. 1:Article 3
    137.Southern E M, Case-Green S C, Elder J K, Johnson M, Mir KU, Wang L, Williams J C. Arrays of complementary oligonucleotides for analysing the hybridization behaviour of nucleic acids. Nucleic Acids Res,1994,22:1368-1373
    138.Stephen M G D, Moorhead G B G, Lefebvre D D. Phosphate starvation inducible 'Bypasses'of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol,1989,90:1272-1278.
    139.Sunkar R, Zhu J. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell,2004,16:2001-2019
    140.Tanaka T S, Jaradat S A, Lim M K, Kargul G J, Wang X, Grahovac M J, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood W H, Becker K G, Ko M S H. Genome-wide expression profiling of midgestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci USA,2000, 97:9127-9132
    141.Thalar P, Pages L. Modeling the influence of assimilate availability on root growth and architecture. Plant Soil,1997,201:307-320
    142.Theodorou M E, Cornel F A, Duff S M, Plaxton W C. Phosphate starvation-inducible synthesis of the alpha-subunit of the pyrophosphate-dependent phosphofructokinase in black mustard suspension cells. J Biol Chem,1992, 267:21901-21905
    143.Theodorou M E, Plaxton W C. Purification and characterization of pyrophosphate-dependent phosphofructokinase from phosphate-starved Brassica nigra suspension cells. Plant Physiol,1996,112:343-351
    144.Ticconi C A, Delatorre C A, Lahner B, Salt D E, Abel S. Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. Plant J,2004,37:801-814.
    145.Ueki K. Control of phosphatase release from cultured tobacco cells. Plant Cell Physiol,1978,19:385-392.
    146.Ulrich C, Novacky A. Extra-and intracellular pH and membrane potential changes induced by K+, Cl-, H2PO4-, and NO3- uptake and fusicoccin in root hairs of Limnobium stoloniferum. Plant Physiol,1990,94:1561-1567
    147.Uta P, Scott K, Christophe R, steven P. Briggs Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA,2002,99:13324-13329
    148.Versaw W K. A phosphate-repressible, high-affinity phosphate permease is encoded by the pho-5 gene of Neurospora crassa. Gene,1995,153:135-139
    149.Wang R, Guegler K, Labrie S T, Crawford N M. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabilic and potential regulatory genes induced by nitrate. Plant Cell,2000,12:1491-1509.
    150.Wang Y, Garvin D F, Kochian L V. Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root rhizosphere-mediated signals. Plant Physiol,2002, 130:1361-1370
    151.Wasaki J, Omura M, Ando M, Shinano T, Osaki M, Tadano T. Secreting portion of acid phophatase in roots of lupin(lupinus albus L.) and a key signal for the secretion from the roots. Soil Sci Plant Nutr,1999,45:937-945
    152.Wasaki J, Yonetanir, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, et al. Transcriptomic analysis of metabilic changes by phosphorus stress in rice plant roots. Plant Cell Environ,2003,26:1515-1523.
    153.Weindruch R, Kayo T, Lee C K, Prolla T A. Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice. J Nutr,2001,131: 918S-923S
    154.White K P, Rifkin S A, Hurban P, Hongness D S. Microarray analysis of Drosophila development during metamorphosis. Science,1999,286:2179-2184
    155.Willimason L C, Ribrioux S P, Fitter A H, Leyser H M O. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol,2001,126:876-882
    156.Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng X. Phosphate Starvation Triggers Distinct Alterations of Genome Expression in Arabidopsis Roots and Leaves. Plant Physiol,2003,132:1260-1271.
    157.Wykoff D D, Grossman A R, Weeks D P, Usuda H, Shimogawara K. Psrl, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc Natl Acad Sci USA,1999,96:15336-15341
    158.Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P. OsPTFl, a novel transcription fator involved in tolerance to phosphate starvation in rice. Plant Physiol,2005, 138:2087-2096
    159.Yoshida S, Forno D A, Cook J H, Gomez k A. Laboratory Manual for Physiological Studies of Rice. Manila:International Rice Research Institute,1976:61-67.
    160.Zakhleniuk O V, Raines C A, Lloyd J C. pho3:a phosphorus-deficient mutant of Arabidopsis thaliana(L.) Heynh. Planta,2001,212:529-534.
    161.Zhu T, Budworth P, Han B, Brown D, Chang H S, Zou G Z, Wang X. Toward elucidating the global gene expression patterns of developing Arabidopsis:paralla analysis of 8300 genes by a high-density oligonucleotide probe array. Plant Physiol. Biochem.,2001,39:221-242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700