三种蝙蝠表观遗传多样性及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物多样性面临着生境破碎化、过度开发利用以及全球气候变化等各方面的挑战,有机体不得不在进化过程中不断调整自己的表型,以应对各种环境变化。近期研究表明,除遗传因素外,表观遗传修饰在调节环境诱导表型过程中起到关键的作用,且这种变异的表观遗传信息可传递给后代,因而这种可遗传的表观遗传变异是自然种群中可遗传变异的重要源头,也是物种进化的重要动力之一。要评估表观遗传过程在生物表型形成以及调节有机体应对全球环境变化的作用,研究人员必须将生态学与表观遗传学有机结合起来,对自然生物种群开展表观遗传多样性调查及其影响因素的研究。
     当前的表观遗传研究多数基于DNA甲基化展开的,其为目前研究最为透彻的表观遗传修饰,在许多生物过程中起到重要作用。植物自然种群已经进行许多相关研究,但动物自然种群仍缺乏大量的数据,真正意义上的动物种群表观遗传多样性研究仅限于虹鳟(Oncorhynchus mykiss)、红腹雅罗鱼(Chrosomus eos-neogaeus)和家麻雀(Passerdomesticus)3例,而关于野生哺乳动物种群表观遗传多样性研究则尚未开展。由于哺乳动物在生理特征上显著不同于其它动物,可能具有独特的应对环境变化的表观遗传机制,因而研究哺乳动物自然种群表观遗传多样性十分必要。蝙蝠具有种群数量大、分布广泛、生态功能显著以及对环境变化敏感等特征,可作为开展野生哺乳动物种群表观遗传遗传多样性研究的理想物种。
     考虑到不同组织、不同发育阶段、不同冬眠行为状态下的DNA甲基化模式和水平并不相同,以及雌性的归家冲动行为,本论文提取了菲菊头蝠、大蹄蝠和亚种长翼蝠三种蝙蝠共131个雌性、成体、非冬眠样本的肌肉组织的基因组DNA,采用甲基化敏感扩增多态性技术(MSAP),每个物种各获得800余条片段。依据分类规则,将MSAP位点分成甲基化(MSP)和遗传位点(MIP),在此基础上,进行各个物种的甲基化水平和甲基化多态性的分析,判断种群间是否具有显著的DNA甲基化差异,以及探讨表观遗传多样性与遗传多样性、种群间地理距离以及气候、人为干扰程度、山洞大小、洞口隐蔽度和植被组成等环境变量之间存在的相关性。主要内容如下:
     1.三种蝙蝠均具有较低的甲基化水平,其中菲菊头蝠为20.1-24.2%,大蹄蝠为20.4-26.5%,亚洲长翼蝠为20.6-22.0%。蝙蝠个体间存在高程度甲基化变异和低程度遗传变异,且三种蝙蝠的表观遗传多态性水平均显著高于相应的遗传多态性水平(香浓多样性指数),表明至少有一部分的表观遗传变异独立于遗传变异。植物种群的相关研究结果支持了这个结论,暗示蝙蝠种群这种高度种内表观遗传多样性可能广泛存在于野生哺乳动物种群,从而为物种应对自然环境变化提供更多选择。2.菲菊头蝠、大蹄蝠、亚洲长翼蝠种群分别有5.0%,30.7%和24.6%的甲基化位点,其频率在各物种种群间具有显著差异,表明蝙蝠种群间的表观遗传变异具有一定程度的分化。基于多位点开展的组间特征值分析表明,三种蝙蝠种群均存在显著的表观遗传结构,即表观遗传差异显著分成种群间和种群内,且主要变异存在于种群内,说明个体间存在大量DNA甲基化差异,这是表观遗传变异具备潜在进化作用的一个先决条件。
     3.协惯量分析和Mantel检验(控制地理距离和环境变量)分别从个体水平和种群水平证实,三种蝙蝠种群间表观遗传多样性与相应的遗传多样性显著相关,表明蝙蝠种群的表观遗传多样性可能依赖于遗传多样性。然而,种群间较低的基因流和表观基因流表明,中性漂变也影响着蝙蝠种群表观遗传多样性水平。
     4.顺序前进法分析结果表明,纬度显著影响菲菊头蝠表观遗传多样性(pseudo-F=2.162,P=0.044),并解释22.2%的种群间差异;年均湿度(pseudo-F=2.130,P=0.028)和洞口隐蔽度(pseudo-F=2.025,P=0.059)显著或弱显著贡献于大蹄蝠种群间的表观遗传多样性,能够解释42.8%的种群间差异;山洞附近植被类型(pseudo-F=3.128,P=0.014)、山洞大小(pseudo-F=2.000,P=0.023)、人为干扰程度(pseudo-F=1.932,P=0.094)等3个环境变量显著或弱显著影响亚洲长翼蝠表观遗传多样性,能解释68.3%的种群间变异。分析结果表明,环境变量影响蝙蝠种群表观遗传多样性,表观遗传变异是蝙蝠应对环境变化的另一途径,蝙蝠可以通过调整DNA甲基化水平来适应新环境。
     蝙蝠种群具有高水平的表观遗传变异,主要受其遗传多样性、中性漂变以及环境诱导等方面共同影响。蝙蝠可以通过表观遗传变异提高对环境变化的耐受性,有利于蝙蝠物种的进化。然而,当前人类活动带来的快速全球气候变化、生境破碎化的影响超过蝙蝠的适应能力,导致蝙蝠种群数量锐减,因而人类仍应尽量减少对蝙蝠种群的干扰。
Biodiversity faces challenges from habitat fragmentation, over exploitation, and globalclimate change. Organisms have to adjust their phenotype in responding to variousenvironmental stresses. Recent studies showed that epigenetic modifications have animportant role in mediating environmentally induced phenotypic variation, and thoseepigenetic variances could be inherited by future generations. Therefore, epigenetic processesare considered as another source of the natural heritable variation, and another dimension inevolution. Crucial steps before estimating the potential role of epigenetic variation inproducing new phenotypes and responding to global environmental change for organisms,are exploring the genomic epigenetic diversity in natural populations and finding itsinfluencing factors.
     DNA methylation is one of the best studied epigenetic mechanisms, and has a criticalrole in many key biological processes. Till now, related researches have been done in wildplant populations; however, limited data are explored in wild animals, and only3studiesabout population epigenetic diversity were reported on steelhead (Oncorhynchus mykiss),redbelly dac (Chrosomus eos-neogaeus), and house sparrows (Passer domesticus). Thereis no study about population epigenetic has been done on wild mammal populationsyet, while mammals have special evolution mechanisms to adapt to varied environments,and they may have different epigenetic processes in responding to environmental variationscomparing with other animals. Thus, it’s necessary to explore the population epigeneticdiversity of wild mammals. Bats have large populations, wide distributions, significantecological functions, and are sensitive to environmental variance; therefore, they may presentan opportunity to explore epigenetic variance in natural mammalian populations.
     Considering that there exist difference of DNA methyaltion among different tissues,developments, and behaviors, we extracted genomic DNA from muscle tissues of131female,adult and non-hibernate individuals in3bat species: Rhinolophus pusillus, Hipposiderosarmiger, and Miniopterus fuliginosus. Using methylation-sensitive amplified polymorphism(MSAP) technique, we obtained more than800bands in each species to explore thesequestions in bat populations: what’s the level and polymorphism of genome-wide DNAmethylation, whether DNA methylation diversity is significant structured into distinctbetween-and within-population components and whether it is significant correlated withgenetic diversity, geographic distance, and environmental factors, e.g. coordinates, climatefactors, human disturbance, roosting size, concealed degree and plant types. The maincontexts were as follows:
     1. The methylation levels in3bats were,20.1-24.2%in R. pusillus,20.4-26.5%in H.armiger, and20.6-22.0%in M. fuliginosus. There existed extensive methylation variationbut low level in genetic variation in those bat populations, and epigenetic diversity exceeded conventional genetic diversity when the two magnitudes are compared using the Shannonindex, implying that at least partly epigenetic variance is dependent from genetic variance.Similar results were found in wild plant populations, implied that extensive intraspecificepigenetic variation found in our study is probably widespread in wild populations, andsupports an alternative system for organism in responding to natural variation.
     2. There were about5.0%,30.7%and24.6%methylated loci were significantdifferentiation among populations in R. pusillus, H. armiger, and M. fuliginosus, respectively,indicating estensive epigenetic differentiation among populations in each species.Between-group eigen analyses (BGEA) showed significant epigenetic structure existing ineach bats based on multilocus epigenetic population differentiation, i.e. methylation-basedepigenetic variation was structured into distinct between-and within-population components,implying extensive individual epigenotypic variation, which is a critical prerequisite forepigenetic variation to have some microevolutionary potential.
     3. Both co-inertia analysis and Mantel tests (controlling geographic distance andenvironmental variables) showed that epigenetic variance was significant correlated withgenetic profile in those3bats, implying epigenetic variance is dependent to genetic variation.However, low genetic flow and epigenetic flow among populations implied that neutral driftcould also result in epigenetic variations.
     4. Sequential forward selection analysis showed that latitude (pseudo-F=2.162, P=0.044) had signifiant effects on epigenetic diversity among R. pusillus populations andaccounted for22.2%variance; mean annual humidity (pseudo-F=2.130, P=0.028) andconcealed degree of caves (pseudo-F=2.025,P=0.059) had marginally significant effectson epigenetic difference between H. armiger populations and accounted for42.8%variance;plant types(pseudo-F=3.128,P=0.014), roosting size (pseudo-F=2.000,P=0.023), andhuman disturbance (pseudo-F=1.932,P=0.094) had significant or marginally significanteffects on population epigenetic difference, accounting altogether for68.3%variance. Aboveresults indicated that environmental factors had significant effects on epigenetic diversity infemale bats populations. Therefore, epigenetic mechanism is an alternative system for bats toresponse to environmental variance, or bats could adapt to new environment via DNAmethylation variance.
     The bat populations have high level epigenetic diversities, which were affected bycorresponding genetic diversity, neutral drift, and environmental changes. It’s beneficial forbat species in improving their tolerance by epigenetic mechanisms in evolution, however, thepopulation size of bats are reduced by negative effects from global climate change, andhabitat destruction, which are induced by human activities. Thus, we still need to reducenegative disturbances to bats.
引文
[1] Lürling M and Scheffer M. Info-disruption: pollution and the transfer of chemical information betweenorganisms [J]. Trends in Ecology&Evolution,2007,22(7):374-379.
    [2] Lavergne S, Mouquet N, Thuiller W, et al. Biodiversity and climate change: integrating evolutionary andecological responses of species and communities [J]. Annual Review of Ecology, Evolution, and Systematics,2010,41:321-350.
    [3] McMahon S M, Harrison S P, Armbruster W S, et al. Improving assessment and modelling of climate changeimpacts on global terrestrial biodiversity [J]. Trends in Ecology&Evolution,2011,26(5):249-259.
    [4] Jablonski D. Extinction: past and present [J]. Nature,2004,427(6975):589-589.
    [5] Visser M E. Keeping up with a warming world; assessing the rate of adaptation to climate change [J].Proceedings of the Royal Society B: Biological Sciences,2008,275(1635):649-659.
    [6] Provine W B and Mayr E. The Evolutionary Synthesis: Perspectives on the Unification of Biology [M].1980: Massachusetts: Cambridge University Press.
    [7] Agrawal A A. Phenotypic plasticity in the interactions and evolution of species [J]. Science,2001,294(5541):321-326.
    [8] Bonduriansky R, Crean A J and Day T. The implications of nongenetic inheritance for evolution in changingenvironments [J]. Evolutionary Applications,2012,5(2):192-201.
    [9] Dolinoy D C, Huang D and Jirtle R L. Maternal nutrient supplementation counteracts bisphenol A-inducedDNA hypomethylation in early development [J]. Proceedings of the National Academy of Sciences,2007,104(32):13056-13061.
    [10] Kucharski R, Maleszka J, Foret S, et al. Nutritional control of reproductive status in honeybees via DNAmethylation [J]. Science,2008,319(5871):1827-1830
    [11] Gao L, Geng Y, Li B, et al. Genome-wide DNA methylation alterations of Alternanthera philoxeroides innatural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmentalfluctuation and phenotypic variation [J]. Plant, Cell and Environment,2010,33:1820-1827.
    [12] Day T and Bonduriansky R. A unified approach to the evolutionary consequences of genetic andnongenetic inheritance [J]. The American Naturalist,2011,178(2): E18-E36.
    [13] Richards E J. Inherited epigenetic variation—revisiting soft inheritance [J]. Nature Reviews Genetics,2006,7(5):395-401.
    [14] Jablonka E and Lamb M J. Epigenetic inheritance in evolution [J]. Journal of Evolutionary Biology,1998,11(2):159-183.
    [15] Grant-Downton R T and Dickinson H G. Epigenetics and its implications for plant biology2. The‘epigenetic epiphany’: epigenetics, evolution and beyond [J]. Annals of Botany,2006,97(1):11-27.
    [16] Massicotte R, Whitelaw E and Angers B. DNA methylation: A source of random variation in naturalpopulations [J]. Epigenetics,2011,6(4):421-427.
    [17] Schmitz R J, Schultz M D, Lewsey M G, et al. Transgenerational epigenetic instability is a source of novelmethylation variants [J]. Science,2011,334(6054):369-373.
    [18] Jablonka E, Lamb M J and Zeligowski A. Evolution in four dimensions [M].2005, London, England: TheMIT Press.
    [19] Bossdorf O, Richards C L and Pigliucci M. Epigenetics for ecologists [J]. Ecology Letters,2008,11(2):106-115.
    [20] Jablonka E and Lamb M J. Epigenetic inheritance and evolution: The Lamarckian dimension [M].1995,New York: Oxford University Press, USA.
    [21]薛京伦.表观遗传学:原理,技术与实践[M].2006:上海科学技术出版社.
    [22] Pigliucci M. Do we need an extended evolutionary synthesis?[J]. Evolution,2007,61(12):2743-2749.
    [23] Schrey A W, Richards C L, Meller V, et al. The role of epigenetics in evolution: the extended synthesis [J].Genetics Research International,2012.
    [24] Fraga M F, Ballestar E, Paz M F, et al. Epigenetic differences arise during the lifetime of monozygotictwins [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(30):10604-10609.
    [25] Petronis A, Gottesman I I, Kan P, et al. Monozygotic twins exhibit numerous epigenetic differences: cluesto twin discordance?[J]. Schizophrenia Bulletin,2003,29(1):169-178.
    [26] Waterland R A and Jirtle R L. Transposable elements: targets for early nutritional effects on epigenetic generegulation [J]. Molecular and Cellular Biology,2003,23(15):5293-5300.
    [27] Waddington C H. The epigenotype [J]. Endeavour,1942,1:18-20.
    [28] Waddington C H. The strategy of the genes; a discussion of some aspects of theoretical biology.[M].1957,London: Allen&Unwin.
    [29] Vogt G, Huber M, Thiemann M, et al. Production of different phenotypes from the same genotype in thesame environment by developmental variation [J]. Journal of Experimental Biology,2008,211(4):510-523.
    [30] Angers B, Castonguay E and Massicotte R. Environmentally induced phenotypes and DNA methylation:how to deal with unpredictable conditions until the next generation and after [J]. Molecular Ecology,2010,19(7):1283-1295.
    [31] Bird A. Perceptions of epigenetics [J]. Nature,2007,447(7143):396-398.
    [32] Miller C A and Sweatt J D. Covalent modification of DNA regulates memory formation [J]. Neuron,2007,53(6):857-869.
    [33] Sweatt J D. Experience-dependent epigenetic modifications in the central nervous system [J]. BiologicalPsychiatry,2009,65(3):191-197.
    [34] Fraga M F and Esteller M. Epigenetics and aging: the targets and the marks [J]. Trends in Genetics,2007,23(8):413-418.
    [35] Jiang Y, Bressler J and Beaudet A L. Epigenetics and human disease [J]. Annual Review of Genomics andHuman Genetics,2004,5:479-510.
    [36] Goll M G and Bestor T H. Eukaryotic cytosine methyltransferases [J]. Annual Review of Biochemistry,2005,74:481-514.
    [37] Feng S, Cokus S J, Zhang X, et al. Conservation and divergence of methylation patterning in plants andanimals [J]. Proceedings of the National Academy of Sciences,2010,107(19):8689-8694.
    [38] Bezd k M, Koukalová B, Kuhrová V, et al. Differential sensitivity of CG and CCG DNA sequences toethionine-induced hypomethylation of the Nicotiana tabacum genome [J]. Febs Letters,1992,300(3):268-270.
    [39] Jeddeloh J A and Richards E J. mCCG methylation in angiosperms [J]. The Plant Journal,2003,9(5):579-586.
    [40] Field L, Lyko F, Mandrioli M, et al. DNA methylation in insects [J]. Insect Molecular Biology,2004,13(2):109-115.
    [41]唐韶青,张沅料,徐青,等.不同动物部分组织基因组甲基化程度的差异分析[J].农业生物技术学报,2006,14(4):507-510.
    [42] Bird A P and Wolffe A P. Methylation-induced repression--belts, braces, and chromatin [J]. Cell,1999,99(5):451-454.
    [43] Lister R and Ecker J R. Finding the fifth base: genome-wide sequencing of cytosine methylation [J].Genome Research,2009,19(6):959-966.
    [44] Barros S P and Offenbacher S. Epigenetics: connecting environment and genotype to phenotype anddisease [J]. Journal of Dental Research,2009,88(5):400-408.
    [45] Goyal R, Reinhardt R and Jeltsch A. Accuracy of DNA methylation pattern preservation by the Dnmt1methyltransferase [J]. Nucleic Acids Research,2006,34(4):1182-1188.
    [46] Reik W, Dean W and Walter J. Epigenetic reprogramming in mammalian development [J]. Science,2001,293(5532):1089-1093.
    [47] Geiman T M and Robertson K D. Chromatin remodeling, histone modifications, and DNAmethylation—how does it all fit together?[J]. Journal of Cellular Biochemistry,2002,87(2):117-125.
    [48] Christensen B C, Houseman E A, Marsit C J, et al. Aging and environmental exposures alter tissue-specificDNA methylation dependent upon CpG island context [J]. PLoS Genetics,2009,5(8): e1000602.
    [49] Maegawa S, Hinkal G, Kim H S, et al. Widespread and tissue specific age-related DNA methylationchanges in mice [J]. Genome Research,2010,20(3):332-340.
    [50] Zhang M, Xu C, Wettstein D, et al. Tissue-specific differences in cytosine methylation and their associationwithdifferential gene expression in sorghum [J]. Plant Physiology,2011,156(4):1955-1966.
    [51] Xiong L Z, Xu C G, Saghai Maroof M A, et al. Patterns of cytosine methylation in an elite rice hybrid andits parental lines, detected by a methylation-sensitive amplification polymorphism technique [J]. MolecularGenetics and Genomics,1999,261(3):439-446.
    [52] Portis E, Acquadro A, Comino C, et al. Analysis of DNA methylation during germination of pepper(Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP)[J]. PlantScience,2004,166(1):169-178.
    [53] Xu Q, Zhang Y, Sun D, et al. Analysis on DNA methylation of various tissues in chicken [J]. AnimalBiotechnology,2007,18(4):231-241.
    [54]徐青,张沅,孙东晓,等.应用MSAP方法检测鸡不同组织基因组的甲基化状态[J].遗传,2011,33(6):620-626.
    [55] Yang C, Zhang M, Niu W, et al. Analysis of DNA methylation in various swine tissues [J]. PloS One,2011,6(1): e16229.
    [56]杨春.猪不同组织和不同品种肌肉组织基因组DNA甲基化分析[D]:[博士学位论文].吉林大学,2011.
    [57]刘健. DLY猪不同部位脂肪和肌肉组织基因组甲基化程度的差异[D]:[硕士学位论文].四川农业大学,2009.
    [58]曹哲明和杨健.背角无齿蚌不同组织的基因组DNA甲基化分析[J].生态环境学报,2009,18(6):2011-2016.
    [59] Maleszka R. Epigenetic integration of environmental and genomic signals in honey bees: the criticalinterplay of nutritional, brain and reproductive networks [J]. Epigenetics,2008,3(4):188-192.
    [60] Weaver I C G, Cervoni N, Champagne F A, et al. Epigenetic programming by maternal behavior [J]. NatureNeuroscience,2004,7(8):847-854.
    [61] Guerrero-Preston R, Goldman L R, Brebi-Mieville P, et al. Global DNA hypomethylation is associated within utero exposure to cotinine and perfluorinated alkyl compounds [J]. Epigenetics,2010,5(6):539-546.
    [62] Breton C V, Byun H M, Wenten M, et al. Prenatal tobacco smoke exposure affects global and gene-specificDNA methylation [J]. American Journal of Respiratory and Critical Care Medicine,2009,180(5):462-467.
    [63]张波,李道传和陈雯.环境化学致癌物的表观遗传调控研究进展[J].中华预防医学杂志,2011,45(5):452-455.
    [64] Crews D, Gore A C, Hsu T S, et al. Transgenerational epigenetic imprints on mate preference [J].Proceedings of the National Academy of Sciences,2007,104(14):5942-5946.
    [65] Baccarelli A, Wright R O, Bollati V, et al. Rapid DNA methylation changes after exposure to trafficparticles [J]. American Journal of Respiratory and Critical Care Medicine,2009,179:572-578.
    [66]杨金兰,柳李旺,龚义勤,等.镉胁迫下萝卜基因组DNA甲基化敏感扩增多态性分析[J].植物生理与分子生物学学报,2007,33(3):219-226.
    [67] Labra M, Ghiani A, Citterio S, et al. Analysis of cytosine methylation pattern in response to water deficit inpea root tips [J]. Plant Biology,2002,4(6):694-699.
    [68] Wang W, Pan Y, Zhao X, et al. Drought-induced site-specific DNA methylation and its association withdrought tolerance in rice (Oryza sativa L.)[J]. Journal of Experimental Botany,2011,62(6):1951-1960.
    [69] Steward N, Ito M, Yamaguchi Y, et al. Periodic DNA methylation in maize nucleosomes and demethylationby environmental stress [J]. Journal of Biological Chemistry,2002,277(40):37741-37746.
    [70] Karan R, DeLeon T, Biradar H, et al. Salt stress induced variation in DNA methylation pattern and itsinfluence on gene expression in contrasting rice genotypes [J]. PloS One,2012,7(6): e40203.
    [71] Heijmans B T, Tobi E W, Stein A D, et al. Persistent epigenetic differences associated with prenatalexposure to famine in humans [J]. Proceedings of the National Academy of Sciences,2008,105(44):17046-17049.
    [72] Skinner M K and Guerrero-Bosagna C. Environmental signals and transgenerational epigenetics [J].Epigenomics,2009,1(1):111-117.
    [73] Migicovsky Z and Kovalchuk I. Epigenetic memory in mammals [J]. Frontiers in Epigenomics,2011,2.
    [74] Packer A. Epigenetics: Across the generations [J]. Nature Reviews Genetics,2008,9(4):248-249.
    [75] Jablonka E and Raz G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implicationsfor the study of heredity and evolution [J]. The Quarterly Review of Biology,2009,84(2):131-176.
    [76] Herman J J and Sultan S E. Adaptive transgenerational plasticity in plants: case studies, mechanisms, andimplications for natural populations [J]. Frontiers in Plant Science,2011,2.
    [77] Simon W L C, Henderson I R and Jacobsen S E. Gardening the genome: DNA methylation in Arabidopsisthaliana [J]. Nature Reviews Genetics,2005,6:351-360.
    [78] Matzke M A, Primig M, Trnovsky J, et al. Reversible methylation and inactivation of marker genes insequentially transformed tobacco plants [J]. The EMBO Journal,1989,8(3):643-649.
    [79] Shorter K R, Crossland J P, Webb D, et al. Peromyscus as a Mammalian Epigenetic Model [J]. GeneticsResearch International,2012.
    [80] Beck J A, Lloyd S, Hafezparast M, et al. Genealogies of mouse inbred strains [J]. Nature Genetics,2000,24(1):23-26.
    [81] Ideraabdullah F Y, de la Casa-Esperón E, Bell T A, et al. Genetic and haplotype diversity amongwild-derived mouse inbred strains [J]. Genome Research,2004,14(10):1880-1887.
    [82] Schrey A W and Richards C L. Within‐genotype epigenetic variation enables broad niche width in aflower living yeast [J]. Molecular Ecology,2012,21(11):2559-2561.
    [83] Herrera C M, Pozo M I and Bazaga P. Jack of all nectars, master of most: DNA methylation and theepigenetic basis of niche width in a flower‐living yeast [J]. Molecular Ecology,2011,21:2602-2616.
    [84]李毅丹.中国松嫩草原短芒野大麦(Hordeum brevisubulatum (Trin.) Link)人工种群的分子遗传与表观遗传多样性及其种群遗传结构的研究[D]:[博士学位论文].东北师范大学,2007.
    [85] Flintoft L. Epigenetics: Taking a position on regulatory diversity [J]. Nature Reviews Genetics,2009,10(4):220-221.
    [86] Frommer M, McDonald L E, Millar D S, et al. A genomic sequencing protocol that yields a positive displayof5-methylcytosine residues in individual DNA strands [J]. Proceedings of the National Academy of Sciences,1992,89(5):1827-1831.
    [87]顾婷婷,张忠明和郑鹏生. DNA甲基化研究方法的回顾与评价[J].中国妇幼健康研究,2006,17(6):555-560.
    [88] Maekawa M, Sugano K, Kashiwabara H, et al. DNA methylation analysis using bisulfite treatment andPCR-single-strand conformation polymorphism in colorectal cancer showing microsatellite instability [J].Biochemical and Biophysical Research Communications,1999,262(3):671-676.
    [89] Abrams E S and Stanton V P.[4] Use of denaturing gradient gel electrophoresis to study conformationaltransitions in nucleic acids [J]. Methods in Enzymology,1992,212:71-104.
    [90] Rozhon W, Baubec T, Mayerhofer J, et al. Rapid quantification of global DNA methylation by isocraticcation exchange high-performance liquid chromatography [J]. Analytical Biochemistry,2008,375(2):354-360.
    [91]张良滔,张立坚,张俊杰,等.亲水作用色谱法测定组织中全基因组DNA甲基化水平[J].色谱,2011,29(04):342-345.
    [92] Li M, Hu S, Shen Z, et al. High-performance capillary electrophoretic method for the quantification ofglobal DNA methylation: application to methotrexate-resistant cells [J]. Analytical Biochemistry,2009,387(1):71-75.
    [93] Reyna-Lopez G, Simpson J and Ruiz-Herrera J. Differences in DNA methylation patterns are detectableduring the dimorphic transition of fungi by amplification of restriction polymorphisms [J]. Molecular Geneticsand Genomics,1997,253(6):703-710.
    [94] Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting [J]. Nucleic AcidsResearch,1995,23(21):4407-4414.
    [95] Blouin M S, Thuillier V, Cooper B, et al. No evidence for large differences in genomic methylationbetween wild and hatchery steelhead (Oncorhynchus mykiss)[J]. Canadian Journal of Fisheries and AquaticSciences,2010,67(2):217-224.
    [96] Herrera C M and Bazaga P. Untangling individual variation in natural populations: ecological, genetic andepigenetic correlates of long term inequality in herbivory [J]. Molecular Ecology,2011,20:1675-1688.
    [97] Schrey A W, Coon C A C, Grispo M T, et al. Epigenetic variation may compensate for decreased geneticvariation with introductions: a case study using house sparrows (Passer domesticus) on two continents [J].Genetics Research International,2012.
    [98] Lira-Medeiros C F, Parisod C, Fernandes R A, et al. Epigenetic variation in mangrove plants occurring incontrasting natural environment [J]. PloS One,2010,5(4): e10326.
    [99] Banaei M A M, Fuchs J, Czauderna T, et al. Intraspecific hybrids of Arabidopsis thaliana revealed no grossalterations in endopolyploidy, DNA methylation, histone modifications and transcript levels [J]. Theoretical andApplied Genetics,2010,120(2):215-226.
    [100] Zeng Z X, Zhang T, Li G R, et al. Phenotypic and epigenetic changes occurred during theautopolyploidization of Aegilops tauschii [J]. Cereal Research Communications,2012:1-10.
    [101] Li A, Hu B Q, Xue Z Y, et al. DNA methylation in genomes of several annual herbaceous and woodyperennial plants of varying ploidy as detected by MSAP [J]. Plant Molecular Biology Reporter,2011,29(4):784-793.
    [102]李际红,邢世岩,王聪聪,等.银杏基因组DNA甲基化修饰位点的MSAP分析[J].园艺学报,2011,38(8):1429-1436.
    [103] Richards C L, Schrey A W and Pigliucci M. Invasion of diverse habitats by few Japanese knotweedgenotypes is correlated with epigenetic differentiation [J]. Ecology Letters,2012,15:1016-1025.
    [104] Salmon A, Ainouche M L and Wendel J F. Genetic and epigenetic consequences of recent hybridizationand polyploidy in Spartina (Poaceae)[J]. Molecular Ecology,2005,14(4):1163-1175.
    [105] Rapp R A and Wendel J F. Epigenetics and plant evolution [J]. New Phytologist,2005,168(1):81-91.
    [106] Liu B and Wendel J F. Epigenetic phenomena and the evolution of plant allopolyploids [J]. MolecularPhylogenetics and Evolution,2003,29(3):365-379.
    [107] Ellstrand N C and Schierenbeck K A. Hybridization as a stimulus for the evolution of invasiveness inplants?[J]. Proceedings of the National Academy of Sciences,2000,97(13):7043-7050.
    [108] Flatscher R, Frajman B, Sch nswetter P, et al. Environmental heterogeneity and phenotypic divergence:can heritable epigenetic variation aid speciation?[J]. Genetics Research International,2012.
    [109] Boffelli D and Martin D I K. Epigenetic inheritance: a contributor to species differentiation?[J]. DNA andCell Biology,2012,31(s1).
    [110] Herrera C M and Bazaga P. Epigenetic differentiation and relationship to adaptive genetic divergence indiscrete populations of the violet Viola cazorlensis [J]. New Phytologist,2010,187(3):867-876.
    [111]郭万里.中国松嫩平原短芒野大麦(Hordeum brevisubulatum (Trin.) Link.)天然种群分子遗传与表观遗传多样性及其遗传结构的研究[D]:[博士学位论文].东北师范大学,2006.
    [112] Marfil C F, Camadro E L and Masuelli R W. Phenotypic instability and epigenetic variability in a diploidpotato of hybrid origin, Solanum ruiz-lealii [J]. BMC plant biology,2009,9.
    [113] Vaughn M W, Tanurd i M, Lippman Z, et al. Epigenetic natural variation in Arabidopsis thaliana [J].PLoS Biology,2007,5(7): e174.
    [114] Riddle N C and Richards E J. The control of natural variation in cytosine methylation in Arabidopsis [J].Genetics,2002,162(1):355-363.
    [115] Li Y, Shan X, Liu X, et al. Utility of the methylation-sensitive amplified polymorphism (MSAP) markerfor detection of DNA methylation polymorphism and epigenetic population structure in a wild barley species(Hordeum brevisubulatum)[J]. Ecological Research,2008,23(5):927-930.
    [116] Kalisz S and Purugganan M D. Epialleles via DNA methylation: consequences for plant evolution [J].Trends in Ecology&Evolution,2004,19(6):309-314.
    [117] Heijmans B T, Kremer D, Tobi E W, et al. Heritable rather than age-related environmental and stochasticfactors dominate variation in DNA methylation of the human IGF2/H19locus [J]. Human Molecular Genetics,2007,16(5):547-554.
    [118] Murrell A, Heeson S, Cooper W N, et al. An association between variants in the IGF2gene andBeckwith–Wiedemann syndrome: interaction between genotype and epigenotype [J]. Human MolecularGenetics,2004,13(2):247-255.
    [119] Richards E J. Population epigenetics [J]. Current Opinion in Genetics&Development,2008,18(2):221-226.
    [120] Martin G M. Epigenetic drift in aging identical twins [J]. Proceedings of the National Academy ofSciences of the United States of America,2005,102(30):10413-10414.
    [121] Jabbari K, Cacciò S, Pa s de Barros J P, et al. Evolutionary changes in CpG and methylation levels in thegenome of vertebrates [J]. Gene,1997,205(1):109-118.
    [122] Varriale A and Bernardi G. DNA methylation and body temperature in fishes [J]. Gene,2006,385:111-121.
    [123] Varriale A and Bernardi G. DNA methylation in reptiles [J]. Gene,2006,385:122-127.
    [124] N tt D, Rubin C J, Wright D, et al. Heritable genome-wide variation of gene expression and promotermethylation between wild and domesticated chickens [J]. BMC Genomics,2012,13(1):59.
    [125] Vandegehuchte M B and Janssen C R. Epigenetics and its implications for ecotoxicology [J].Ecotoxicology,2011,20(3):607-624.
    [126] Santoyo M M, Flores C R, Torres A L, et al. Global DNA methylation in earthworms: A candidatebiomarker of epigenetic risks related to the presence of metals/metalloids in terrestrial environments [J].Environmental Pollution,2011,159(10):2387-2392.
    [127] Pilsner J R, Lazarus A L, Nam D H A, et al. Mercury‐associated DNA hypomethylation in polar bearbrains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife [J].Molecular Ecology,2010,19(2):307-314.
    [128] Findley J S. Bats: a community perspective [M].1993: Cambridge Univ Pr.
    [129] Wilson D E and Reeder D A M. Mammal species of the world: a taxonomic and geographic reference [M].Vol.1.2005: Johns Hopkins Univ Pr.
    [130] Barclay R M R, Kurta A and Lacki M J. Ecology and behavior of bats roosting in tree cavities and underbark [M]. Bats in forests: conservation and management (MJ Lacki, JP Hayes, and A. Kurta, eds.). JohnsHopkins University Press, Baltimore, Maryland.2007.
    [131] Kunz T H, Lumsden L F, Kunz T, et al. Ecology of cavity and foliage roosting bats [J]. Bat Ecology,2003,1:3-89.
    [132] Ransome R D and McOwat T P. Birth timing and population changes in greater horseshoe bat colonies(Rhinolophus ferrumequinum) are synchronized by climatic temperature [J]. Zoological Journal of the LinneanSociety,2008,112(3):337-351.
    [133] Bourne S and Hamilton-Smith E. Miniopterus schreibersii bassanii and climate change [J]. AustralasianBat Society Newsletter,2007,28:67-69.
    [134] Gannon W L. Bats in Forests: Conservation and Management by MJ Lacki, JP Hayes, and A. Kurta (eds.)
    [M]. Journal of Mammalogy. Vol.90.2009.
    [135] Jones G, Jacobs D S, Kunz T H, et al. Carpe noctem: the importance of bats as bioindicators [J].Endangered Species Research,2009,8:93-115.
    [136] Mann S L, Steidl R J and Dalton V M. Effects of cave tours on breeding Myotis velifer [J]. The Journal ofWildlife Management,2002:618-624.
    [137] Thomas D W. Hibernating bats are sensitive to nontactile human disturbance [J]. Journal of Mammalogy,1995:940-946.
    [138] Boldogh S, Dobrosi D and Samu P. The effects of the illumination of buildings on house-dwelling batsand its conservation consequences [J]. Acta Chiropterologica,2007,9(2):527-534.
    [139] Schaub A, Ostwald J and Siemers B M. Foraging bats avoid noise [J]. Journal of Experimental Biology,2008,211(19):3174-3180.
    [140] Kunz T H. Roosting ecology. In ‘Ecology of Bats’.(Ed. TH Kunz.)[M].1982: Plenum Press: New York. p.1–55.
    [141] Avise J C. Molecular markers, natural history, and evolution [M].2nd edn ed.2004, Sunderland MA:Sinauer.
    [142] Morin Jr P and Storey K B. Mammalian hibernation: differential gene expression and novel application ofepigenetic controls [J]. International Journal of Developmental Biology,2009,53(2):433-442.
    [143] Francis C M and Barrett P. A guide to the mammals of Southeast Asia [M].2008: Princeton UniversityPress.
    [144] Norberg U M and Rayner J M V. Ecological morphology and flight in bats (Mammalia; Chiroptera): wingadaptations, flight performance, foraging strategy and echolocation [J]. Philosophical Transactions of the RoyalSociety of London, Series B,1987,316(1179):335-427.
    [145] Chen S F A N, Rossiter S J, Faulkes C G, et al. Population genetic structure and demographic history ofthe endemic Formosan lesser horseshoe bat (Rhinolophus monoceros)[J]. Molecular Ecology,2006,15(6):1643-1656.
    [146] Simmons N B, Wilson D and Reeder D. Order chiroptera [M]. In: Mammal species of the world: ataxonomic and geographic reference.2005, Baltimore: Johns Hopkins University Press.
    [147]潘清华,王应祥和岩崑.中国哺乳动物彩色图鉴[M].2007:中国林业出版社.
    [148] IUCN,2012IUCN Red List of Threatened Species, IUCN, Editor.2012: Gland, Switzerland andCambridge.
    [149] Li G, Jones G, Rossiter S J, et al. Phylogenetics of small horseshoe bats from East Asia based onmitochondrial DNA sequence variation [J]. Journal of Mammalogy,2006,87(6):1234-1240.
    [150] Hill J E and Yoshiyuki M. A new species of Rhinolophus (Chiroptera, Rhinolophidae) from IriomoteIsland, Ryukyu Islands, with notes on the Asiatic members of the Rhinolophus pusillus group [J]. Bulletin of theNational Science Museum, Series A. Zoology,1980,6:179-189.
    [151] Wei L, Ru B, Zhou Y, et al. Postnatal development of morphological features and vocalization ofRhinolophus pusillus [J]. Zoological Research,2009,30(1):91-98.
    [152] Luo F, Li A-A, Ma J, et al. Spectrotemporal characteristics of echolocation pulses and frequency tuningby inferior collicular neuron of Rhinolophus pusillus [J]. Dong Wu Xue Bao,2006,52(3):528-535.
    [153] Jiang T, Metzner W, You Y, et al. Variation in the resting frequency of Rhinolophus pusillus in MainlandChina: Effect of climate and implications for conservation [J]. The Journal of the Acoustical Society of America,2010,128(4):2204-2211.
    [154]韦力,周善义,张礼标,等.三种共栖蝙蝠的回声定位信号特征及其夏季食性的比较[J].动物学研究,2006,27(3):235-241.
    [155]张珍祯.第四纪冰川气候对中国鼠耳蝠属蝙蝠系统进化和菲菊头蝠遗传结构的影响[D]:[博士学位论文].东北师范大学,2011.
    [156] Hua P, Guo T, Liu W, et al. Isolation and characterization of13microsatellite loci in Rhinolophus pusillus(least horseshoe bat) with cross-amplification in five related species [J]. Conservation Genetics,2009,10(3):597-600.
    [157]陈忠,韩文文,张述才,等.菲菊头蝠冬眠期的精子储存[J].兽类学报,2007,27(3):229-233.
    [158] Sun K, Feng J, Jin L, et al. Structure, DNA sequence variation and phylogenetic implications of themitochondrial control region in horseshoe bats [J]. Mammalian Biology,2009,74(2):130-144.
    [159] Zhang R Z, Jin S K, Quan G Q, et al. Distribution of mammalian species in China [M].1997, Beijing,China: China Forestry Publishing House. p.27-29.
    [160]王应祥.中国哺乳动物种和亚种分类名录与分布大全[M].2003:中国林业出版社.
    [161] Koopman K F, Kofron C P and Chapman A. The bats of Liberia: systematics, ecology and distribution [J].American Museum Novitates,1995: n3148.
    [162] Molur S, Marimuthu G, Srinivasulu C, et al., Status of South Asian Chiroptera.2002, Department ofanimal behavior and physiology, School of biological sciences, Madurai Kamaraj University: Madurai, TamilNadu. p.21-25.
    [163] Luo J, Lu G and Feng J. Diurnal capture reduces the colony size of Hipposideros armiger (Chiroptera:Hipposideridae)[J]. Mammalia,2012.
    [164]袁小爱,田东和谷晓明.基于核基因RAG1部分序列探讨菊头蝠科和蹄蝠科的系统发育关系[J].四川动物,2012,31(2):191-196.
    [165]郭宗明,严小慧,张成菊,等.中国蹄蝠科的分类现状与展望[J].四川动物,2007,26(1):210-212.
    [166]卢冠军.大蹄蝠不同种群回声定位声波地理差异研究[D]:[硕士学位论文].东北师范大学,2009.
    [167]谷晓明.大蹄蝠的核型分析[J].动物学杂志,2002,37(3):19-21.
    [168]毛秀光,王金焕,苏伟婷,等.蹄蝠科的核型进化:比较染色体涂色, G带和C带分析[J].动物学研究,2010,31(5):453-460.
    [169]许立杰.3种菊头蝠科蝙蝠分子系统地理学研究[D]:[博士学位论文].东北师范大学,2010.
    [170]韦力,甘雨满,李周全,等.六种共栖蝙蝠的回声定位信号及翼型特征的比较[J].兽类学报,2011,31(2):155-163.
    [171]郭婷婷.大蹄蝠的微卫星标记筛选及其种群遗传学研究[D]:[硕士学位论文].华东师范大学,2009.
    [172] Zhu H C, Chu D K W, Liu W, et al. Detection of diverse astroviruses from bats in China [J]. Journal ofGeneral Virology,2009,90(4):883-887.
    [173] Lumlertdacha B, Boongird K, Wanghongsa S, et al. Survey for bat lyssaviruses, Thailand [J]. EmergingInfectious Diseases,2005,11(2):232-236.
    [174] Lin A, Csorba G, Li L, et al. Phylogeography and population genetic structure of Hipposideros armiger(Chiroptera: Hipposideridae) in Oriental Region. in The XXI International Congress of Zoology (ICN)September2012[C]. Haifa, Israel.
    [175] Gu X M, He S Y and Ao L. Molecular phylogenetics among three families of bats (Chiroptera:Rhinolophidae, Hipposideridae, and Vespertilionidae) based on partial sequences of the mitochondrial12S and16S rRNA genes [J]. Zoological Studies,2008,47(3):368-378.
    [176] Takenaga T, Hiryu S, Simmons J A, et al. Frequency shifts of echolocation pulses in a clutteredenvironment: Comparison between Pipistrellus abramus and Miniopterus fuliginosus [J]. The Journal of theAcoustical Society of America,2011,129:2369.
    [177]胡开良,韦力,朱滕滕,等.普通长翼蝠食性结构及其回声定位与体型特征[J].动物学研究,2011,32(2):163-167.
    [178] Funakoshi K and Takeda Y. Food habits of sympatric insectivorous bats in southern Kyushu, Japan [J].Mammal Study,1998,23(1):49-62.
    [179] Hu K L, Wei L, Zhu T T, et al. Dietary composition, echolocation pulses and morphologicalmeasurements of the long-fingered bat Miniopterus fuliginosus (Chiroptera: Vespertilioninae)[J]. ZoologicalResearch,2011,32(2):163-167.
    [180] Ao L, Gu X, Feng Q, et al. Karyotype relationships of six bat species (Chiroptera, Vespertilionidae) fromChina revealed by chromosome painting and G-banding comparison [J]. Cytogenetic and Genome Research,2006,115(2):145-153.
    [181] Han B Y, Hua P Y, Gu X M, et al. Isolation and characterization of microsatellite loci in the long‐fingered bat Miniopterus fuliginosus [J]. Molecular Ecology Resources,2008,8(4):799-801.
    [182] Shirato K, Maeda K, Tsuda S, et al. Detection of bat coronaviruses from Miniopterus fuliginosus in Japan[J]. Virus Genes,2012,44(1):40-44.
    [183] Hoofer S R and Van Den Bussche R A. Molecular phylogenetics of the chiropteran familyVespertilionidae [J]. Acta Chiropterologica,2003,5:1-63.
    [184] Tian L, Liang B, Maeda K, et al. Molecular studies on the classification of Miniopterus schreibersii(Chiroptera: Vespertilionidae) inferred from mitochondrial cytochrome b sequences [J]. Folia Zoologica,2004,53(3):303-311.
    [185] Appleton B R, McKenzie J A and Christidis L. Molecular systematics and biogeography of the bent-wingbat complex Miniopterus schreibersii (Kuhl,1817)(Chiroptera: Vespertilionidae)[J]. Molecular Phylogeneticsand Evolution,2004,31(2):431-439.
    [186] Miller-Butterworth C M, Jacobs D S and Harley E H. Strong population substructure is correlated withmorphology and ecology in a migratory bat [J]. Nature,2003,424(6945):187-191.
    [187] Team R C, R: A language and environment for statistical computing.2012, R Foundation for StatisticalComputing: Vienna, Austria.
    [188] Kemp M U, Emiel van Loon E, Shamoun‐Baranes J, et al. RNCEP: global weather and climate data atyour fingertips [J]. Methods in Ecology and Evolution,2012(3):65-70.
    [189] Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR40-Year Reanalysis Project [J]. Bulletin ofthe American Meteorological Society,1996,77:437-470.
    [190] Kanamitsu M, Ebisuzaki W, Woollen J, et al. NCEP-DOE AMIP-II Reanalysis (r-2)[J]. Bulletin of theAmerican Meteorological Society,2002,83(11):1631-1644.
    [191] Mann M B and Smith H O. Specificity of Hpa II and Hae II DNA methylases [J]. Nucleic Acids Research,1977,4(12):4211-4222.
    [192] Waalwijk C and Flavell R A. Msp I, an isoschizomer of Hpa II which cleaves both unmethylated andmethylated hpaII sites [J]. Nucleic Acids Research,1978,5(9):3231-3236.
    [193] McClelland M, Nelson M and Raschke E. Effect of site-specific modification on restriction endonucleasesand DNA modification methyltransferases [J]. Nucleic Acids Research,1994,22(17):3640-3659.
    [194] Xu M, Li X Q and Korban S. AFLP-based detection of DNA methylation [J]. Plant Molecular BiologyReporter,2000,18(4):361-368.
    [195] Bensch S and kesson M. Ten years of AFLP in ecology and evolution: why so few animals?[J].Molecular Ecology,2005,14(10):2899-2914.
    [196] Caballero A, Quesada H and Rolan-Alvarez E. Impact of amplified fragment length polymorphism sizehomoplasy on the estimation of population genetic diversity and the detection of selective loci [J]. Genetics,2008,179(1):539-554.
    [197] Salmon A, Clotault J, Jenczewski E, et al. Brassica oleracea displays a high level of DNA methylationpolymorphism [J]. Plant Science,2008,174(1):61-70.
    [198] Cervera M T, Ruiz-Garcia L and Martinez-Zapater J. Analysis of DNA methylation in Arabidopsisthaliana based on methylation-sensitive AFLP markers [J]. Molecular Genetics and Genomics,2002,268(4):543-552.
    [199] Lewontin R C. Testing the theory of natural selection [J]. Nature,1972,236(5343):181-182.
    [200] Bussell J D. The distribution of random amplified polymorphic DNA(RAPD) diversity amongstpopulations of Isotoma petraea (Lobeliaceae)[J]. Molecular Ecology,1999,8(5):775-789.
    [201] Nei M. Molecular Evolutionary Genetics [M].1987, New York: Columbia University Press. p.176-187.
    [202] Wright S. The interpretation of population structure by F-statistics with special regard to systems ofmating [J]. Evolution,1965,19(3):395-420.
    [203] Slatkin M and Barton N H. A comparison of three indirect methods for estimating average levels of geneflow [J]. Evolution,1989,43(7):1349-1368.
    [204] Storey J D and Tibshirani R. Statistical significance for genomewide studies [J]. Proceedings of theNational Academy of Sciences,2003,100(16):9440-9445.
    [205] Thioulouse J, Chessel D, Dolédec S, et al. ADE-4: a multivariate analysis and graphical display software[J]. Statistics and Computing,1997,7(1):75-83.
    [206] Parisod C and Christin P A. Genome wide association to fine scale ecological heterogeneity within acontinuous population of Biscutella laevigata (Brassicaceae)[J]. New Phytologist,2008,178(2):436-447.
    [207] Bonin A, Ehrich D and Manel S. Statistical analysis of amplified fragment length polymorphism data: atoolbox for molecular ecologists and evolutionists [J]. Molecular Ecology,2007,16(18):3737-3758.
    [208] Parisod C, Trippi C and Galland N. Genetic variability and founder effect in the pitcher plant Sarraceniapurpurea (Sarraceniaceae) in populations introduced into Switzerland: from inbreeding to invasion [J]. Annalsof Botany,2005,95(2):277-286.
    [209] Dolédec S and Chessel D. Co-inertia analysis: an alternative method for studying species–environmentrelationships [J]. Freshwater Biology,1994,31(3):277-294.
    [210] Rao C R. The use and interpretation of principal component analysis in applied research [J]. Sankhyā: TheIndian Journal of Statistics, Series A,1964:329-358.
    [211] Ter Braak C J F. Canonical correspondence analysis: a new eigenvector technique for multivariate directgradient analysis [J]. Ecology,1986,67(5):1167-1179.
    [212] Dray S, Chessel D and Thioulouse J. Co-inertia analysis and the linking of ecological data tables [J].Ecology,2003,84(11):3078-3089.
    [213] Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals [J].Genetics,1978,89(3):583-590.
    [214] Rosenberg M S and Anderson C D. PASSaGE: pattern analysis, spatial statistics and geographic exegesis.Version2[J]. Methods in Ecology and Evolution,2011,2(3):229-232.
    [215] Mantel N. The detection of disease clustering and a generalized regression approach [J]. Cancer Research,1967,27(2):209-220.
    [216] Volis S, Anikster Y, Olsvig‐Whittaker L, et al. The influence of dpace in henetic‐environmentalrelationships when environmental heterogeneity and seed dispersal occur at similar scale [J]. The AmericanNaturalist,2004,163(2):312-327.
    [217] Borcard D, Legendre P and Drapeau P. Partialling out the spatial component of ecological variation [J].Ecology,1992,73(3):1045-1055.
    [218] Anderson M J. DISTLM forward: a FORTRAN computer program to calculate a distance-basedmultivariate analysis for a linear model using forward selection [J]. Auckland, New Zealand: Department ofStatistics, University of Auckland,2003.
    [219] Xu Q, Sun D and Zhang Y. F-MSAP: A practical system to detect methylation in chicken genome [J].Chinese Science Bulletin,2005,50(18):2039-2044.
    [220] Kim J, Samaranayake M and Pradhan S. Epigenetic mechanisms in mammals [J]. Cellular and MolecularLife Sciences,2009,66(4):596-612.
    [221] Lorincz M C and Groudine M. CmC (a/t) GG methylation: a new epigenetic mark in mammalian DNA?[J]. Proceedings of the National Academy of Sciences,2001,98(18):10034-10036.
    [222] Richards C L, Bossdorf O and Verhoeven K J F. Understanding natural epigenetic variation [J]. NewPhytologist,2010,187(3):562-564.
    [223]张劲硕,李钢,刘洋,等.菲菊头蝠在中国北方的新纪录[J].动物学杂志,2008,42(6):102-102.
    [224]王进忠,张劲硕,周江,等.5种食虫蝙蝠的生态形态特征与猎物选择的相关性[J].北京农学院学报,2005,20(1):6-9.
    [225] Remmert H. Body size of terrestrial arthropods and biomass of their populations in relation to the abioticparameters of their milieu [J]. Oecologia,1981,50(1):12-13.
    [226]黎道洪和罗蓉.黔中地区岩溶洞穴翼手类的初步调查及部分生态观察[J].贵州师范大学学报:自然科学版,2002,20(2):41-45.
    [227] Marfil C F, Camadro E L and Masuelli R W. Phenotypic instability and epigenetic variability in a diploidpotato of hybrid origin, Solanum ruiz-lealii [J]. BMC Plant Biology,2009,9(1):21.
    [228] Liu J, Hutchison K, Perrone-Bizzozero N, et al. Identification of genetic and epigenetic marks involved inpopulation structure [J]. PloS One,2010,5(10): e13209.
    [229] Chwedorzewska K J and Bednarek P T. Genetic and epigenetic variation in a cosmopolitan grass Poaannua from Antarctic and Polish populations [J]. Polish Polar Research,2012,33(1):63-80.
    [230] Bjornsson H T, Sigurdsson M I, Fallin M D, et al. Intra-individual change in DNA methylation over timewith familial clustering [J]. Journal of the American Medical Association,2008,299(24):2877-2883.
    [231] Hellman A and Chess A. Extensive sequence-influenced DNA methylation polymorphism in the humangenome [J]. Epigenetics Chromatin,2010,3:11.
    [232] Chuang T J, Chen F C and Chen Y Z. Position-dependent correlations between DNA methylation and theevolutionary rates of mammalian coding exons [J]. Proceedings of the National Academy of Sciences,2012.
    [233] Robertson A L and Wolf D E. The role of epigenetics in plant adaptation [J]. Trends in EvolutionaryBiology,2012,4(1): e4.
    [234] Paenke I, Sendhoff B, Rowe J, et al. On the adaptive disadvantage of Lamarckianism in rapidly changingenvironments [J]. Advances in Artificial Life,2007:355-364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700