两种扁颅蝠的外皮寄生虫与寄主关系及理毛行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
革螨类是蝙蝠感染的主要外皮寄生虫之一,在自然条件下革螨在蝙蝠体表寄生呈现出种间、种内个体性别间的差异性分布。个体的性别及繁殖、体况状态常影响寄生虫感染的数量。蝙蝠寄生虫与其原宿主常表现出较高的适应性和寄主专一性,在栖宿条件相同下且常交换栖宿竹筒的两种扁颅蝠的体表,革螨类寄生虫只在其原宿主寄生。再次感染和交叉感染实验都证明,拟雷氏巨刺螨(Macronyssus pararadovskyi sp. nov.扁颅蝠寄生虫)显著选择有利于其生存繁衍的个体,即种内感染时趋向于选择雄性个体,交叉感染时显著趋向选择原宿主(扁颅蝠)个体。在探讨寄生虫负担与寄主体况时,发现雌性扁颅蝠的寄生虫负担与宿主体况指数(体重除以前臂长)呈正相关性。
     理毛行为是动物防御寄生虫感染有效的行为策略之一,对两种扁颅蝠的研究发现理毛行为对应的两种理毛方式(抓挠及舔拭)的频次具有种间和种内性别差异,平均时长具有种内性别差异。寄生虫负担对理毛行为的时长和频度没有显著影响,这些结果暗示两种扁颅蝠的理毛行为受到外部刺激及遗传调节的作用。
Mites were the mostly ectoparasites of bats species, present interspecies and sexually difference in wild-field. While, sex, reproduce and body condition generally affect the prevalence and level of parasites on hosts. Ectoparasites of bats always present high specificity and adaptability between them, mites of two Flat-headed bat were only found on them native hosts even the two bat species frequently exchange the roosting of bamboo culm in the same bamboo bush. The experiments of anew infection and across infection suggest that Macronyssus pararadovskyi sp. nov. (mite of Tylonycteris pachypus) significantly choose these individuals which were beneficial to survival and reproduction. As in anew infection experiments, the males infected more mites, in across experiments, Lesser Bamboo Bat (T. pachypus) infected more mites than Greater Bamboo Yellow Bat (T. robustula). The analyses of the relationship between parasite load and body condition of bats revealed the number mites positive correlated with the body condition index (indexed as the ratio of weight to forearm length) in female T. pachypus individuals.
     Grooming was one of the effective behaviors strategy to defend ectoparasites infection. Studied on the grooming behaviors of Lesser Bamboo Bat and Greater Bamboo Yellow Bat suggested that significantly difference without species but within (by sexual) relative to duration and significantly difference relative to frequency for the two behaviors (licking and scratching). Load of ectoparasite of the two bamboo bats do not significantly correlation to frequency and duration of grooming. This suggest that grooming of the two bamboo bats effected by the central control (programmed grooming) model proposes and the peripheral stimulation (stimulus driven) model.
引文
[1] Simmons N B. ORDER CHIROPTERA.[M]. In: Wilson D E,Reeder D M, eds. Mammal species of the World: A Taxonomic and Geographic Reference, Third Edition. Baltimore: The Jhons Hopkins University Press, 2005. 312-529.
    [2]张树义,王晓燕,汪松,等.蝙蝠的食果性和食蜜性[J].生物学通报, 1997, 32 (9): 11-13.
    [3]张树义,王晓燕,汪松,等.蝙蝠的食虫性[J].生物学通报, 1997, 32 (7): 14-15.
    [4]张树义,王晓燕,汪松,等.蝙蝠的食肉性、食鱼性和食血性[J].生物学通报, 1997, 32 (8): 12-14.
    [5] Smith A T,解焱主编.中国兽类野外手册[M].长沙:湖南教育出版社, 2009.
    [6]张礼标,朱光剑,于冬梅,等.海南、贵州和四川三省翼手类新纪录——褐扁颅蝠[J].兽类学报, 2008, 28 (3): 316-320.
    [7]汪松主编.中国濒危动物红皮书·兽类[M].北京:科学出版, 1998, 23.
    [8]汪松,解焱主编.中国物种红色名录第一卷红色名录[M].北京:高等教育出版社, 2004, 8.
    [9]张礼标,卢立仁,周善义,等.两种扁颅蝠回声定位叫声的比较[J].动物学研究, 2002, 23 (4): 296-300.
    [10]张礼标,梁冰,周善义,等.广西扁颅蝠与褐扁颅蝠的食物选择[J].动物学研究, 2004, 25 (2): 105-110.
    [11] Boonsong L, Jerrey A M. Mammals of Thailand[M]. Bangkok: Association for the Conservation of Wildlife Bangkak, 1977.
    [12] Gary W, Ades J. The species composition ,distribution andpopulation size of Hongkong bats [J]. Hongkong : Memoirs of Hongkong Natural History Society 1999, 22: 191-192.
    [13]张礼标,梁冰,周善义,等.扁颅蝠与褐扁颅蝠的集群结构[J].动物学报, 2004, 50 (3): 326 - 333.
    [14] Zahn A, Rupp D. Ectoparasite load in European vespertilionid bats [J]. Journal of Zoology, London, 2004, 262: 383-391.
    [15] Christe P, Arlettaz R, Vogel P. Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis) [J]. Ecology Letters, 2000, 3: 207-212.
    [16] ter Hofstede H M, Fenton M B, Whitaker J O. Host and host-site specificity of bat flies (Diptera : Streblidae and Nycteribiidae) on Neotropical bats (Chiroptera) [J]. Canadian Journal of Zoology-Revue Canadienne De Zoologie, 2004, 82 (4): 616-626.
    [17]田珍灶,金道超,张树义,等.中国巨刺螨属一新种和雷氏巨刺螨的重新描述(中气门目,巨刺螨科) [J].动物分类学报, 2009, 34: 415-422.
    [18] Zhang L B, Parsons S, Daszak P, et al. Variation in the abundance of ectoparasitic mites of flat-headedbats [J]. Journal of Mammalogy, 2010, 91 (1): 136-143.
    [19] Lu?an R K. Relationships between the parasitic mite Spinturnix andegavinus (Acari: Spinturnicidae) and its bat host, Myotis daubentonii (Chiroptera: Vespertilionidae): seasonal, sex- and age-related variation in infestation and possible impact of the parasite on the host condition and roosting behaviour [J]. Folia Parasitogica, 2006, 53: 147-152.
    [20] Bize P, Roulin A, Bersier L F, et al. Parasitism and developmental plasticity in Alpine Swift nestlings [J]. Journal of Animal Ecology, 2003, 72: 633-639.
    [21] Combes C. Parasites, biodiversity, and ecosystem stability [J]. Biodiversity and Conservation, 1996, 5: 953-962.
    [22] Lewis R E. The collection and preservation of ectoparasites for bats—an appeal [J]. Bat Research News, 1983, 24: 24-25.
    [23] Tripet F, Jacot A, Richner H. Larval competition affects the life histories and dispersal behavior of an avian ectoparasite [J]. Ecology, 2002, 83: 935-945.
    [24] Tripet F, Richner H. The coevolutionary potential of a‘generalist’parasite, the hen flea Ceratophyllus gallinae [J]. Parasitology, 1997, 115: 419-427.
    [25] Soler J J, M?ller A P, Soler M. A comparative study of host selection in the European cuckoo Cuculus canorus [J]. Oecologia, 1999, 118: 265-276.
    [26] Johnson K P, Williams B L, Drown D M, et al. The population genetics of host specificity: genetic differentiation in dove lice (Insecta: Phthiraptera) [J]. Molecular Ecology, 2002, 11: 25-38.
    [27] Poulin R. Evolutionary Ecology of Parasites[M]. London, UK: Chapman and Hall, 2007.
    [28] Timms R, Read A F. What makes a specialist special? [J]. Trends Ecology Evolution, 1999, 14: 333-334.
    [29] ter Hofstede H M, Fenton M B. Relationships between roost preferences, ectoparasite density, and grooming behaviour of neotropical bats [J]. Journal of Zoology, London, 2005, 266: 333-340.
    [30] Shatrov A B. The origin of parasitism in trombiculid mites (Acariformes: Trombiculidae) [J]. Parasitology, 1992, 26: 3-12.
    [31] Dick C W, Gannon M R, Little W E, et al. Ectoparasite Associations of Bats from Central Pennsylvania [J]. Journal of Medical Entomology, 2003, 40 (6): 813-819.
    [32] Dick C W. High host specificity of obligate ectoparasites [J]. Ecological Entomology 2007, 32: 446-450.
    [33] Bruyndonckx N, Dubey S, Ruedi M, et al. Molecular cophylogenetic relationships between European bats and their ectoparasitic mites (Acari, Spinturnicidae) [J]. Molecular Phylogenetics and Evolution, 2009, 51: 227-237.
    [34] Guiller A, Deunff J. Spinturnicid mites and bats cophylogeny: Comment on Bruyndonckx et al. (2009) "Molecular cophylogenetic relationships between European bats and their ectoparasitic mites (Acari, Spinturnicidae)" [J]. Molecular Phylogenetics and Evolution, 2010, 57: 479-480.
    [35] Bruyndonckx N, Dubey S, Christe P. Fortuitous infestation or wide host range? The case ofSpinturnicidae and their bat hosts: Reply to Guiller and Deunff (2010) [J]. Molecular Phylogenetics and Evolution, 2010: 1353-1354.
    [36] Seneviratne S S, Fernando H C, Udagama-Randeniya P V. Host specificity in bat ectoparasites: A natural experiment [J]. International Journal for Parasitology 2009, 39: 995-1002.
    [37] Dittmar K, Porter M L, Murray S, et al. Molecular phylogenetic analysis of nycteribiid and streblid bat fies (Diptera: Brachycera, Calyptratae): Implications for host associations and phylogeographic origins [J]. Molecular Phylogenetics and Evolution, 2006, 38: 155-170.
    [38] Bruyndonckx N, Biollaz F, Dubey S, et al. Mites as biological tags of their hosts [J]. Molecular Ecology, 2010, 19 (13): 2770-2778.
    [39] Reed D L, Hafner M S. Host specificity of chewing lice on pocket gophers: a potential mechanism for cospeciation [J]. Journal of Mammal, 1997, 78: 655-660.
    [40] Dick C W, Patterson B D. Against all odds: explaining high host specificity in dispersal-prone parasites [J]. International Journal for Parasitology, 2007, 37: 871-876.
    [41] Esbérard C E, Martins-Hatano F, Bittencourt E B, et al. A method for testing the host specificity of ectoparasites: give them the opportunity to choose [J]. Memórias do Instituto Oswaldo Cruz, 2005, 100 (7): 761-764.
    [42] Giorgi M S, Arlettaz R, Guillaume F, et al. Causal mechanisms underlying host specificity in bat ectoparasites [J]. Oecologia, 2004, 138: 648-654.
    [43] Thomas F, Guegan J F, Michalakis Y, et al. Parasites and host life-history traits: Implications for community ecology and species coexistence [J]. International Journal for Parasitology, 2000, 30: 669-674.
    [44] Bedhomme S, P. Agnew Y V, Sidobre C, et al. Prevalence-dependent costs of parasite virulence [J]. Public Library of Science Biology, 2005, 3: e262.
    [45] Combes C. Parasitism: the ecology and evolution of intimate interactions[M]. Chicago: University of Chicago Press, 2001.
    [46] Marshall A G. Ecology of insects ectoparasite on bats[M]. New York: Plenum Press, New York, 1982.
    [47] Hart B. Behavioural defence[M]. Oxford: Oxford University Press, 1997.
    [48] Giorgi M S, Arlettaz R, Christe P, et al. The energetic grooming costs imposed by a parasitic mite (Spinturnix myoti) upon its bat host (Myotis myotis) [J]. Proceedings: Biological Sciences, 2001, 268: 2071-2075.
    [49] Khokhlova I S, Krasnov B R, Kam M, et al. Energy cost of ectoparasitism: the flea Xenopsylla ramesis on the desert gerbil Gerbillus dasyurus [J]. Journal of Zoology, London, 2002, 258: 349-354.
    [50] Brown C R, Brown M B. Group size and ectoparasitism affect daily survival probability in a colonial bird [J]. Behavioral Ecology and Sociobiology, 2004, 56: 498-511.
    [51] M?ller A P, Saino N. Immune response and survival [J]. Oikos, 2004, 104: 299-304.
    [52] Brown C R, Brown M B. Ectoparasitism as a cost of coloniality in cliff swallows (Hirundo pyrrhonota) [J]. Ecology, 1986, 67: 1206-1218.
    [53] Neuhaus P. Parasite removal and its impact on litter size and body condition in Columbian ground squirrels (Spermophilus columbianus) [J]. Biol. Lett., 2003, 270: 213-215.
    [54] Whiteman N K, Parker P G. Body condition and parasite load predict territory ownership in the Galapagos hawk [J]. Condor, 2004, 106: 915-921.
    [55] Bergstr?ma S, Haemigb P D, Olsen B. Increased mortality of black-browed albatross chicks at a colony heavilyinfested with the tick Ixodes uriae [J]. International Journal of Parasitology, 1999, 29: 1359-1361.
    [56] Tompkins D M, Jones T, Clayton D H. Effect of vertically transmitted ectoparasites on the reproductive success of swifts (Apus apus) [J]. Function Ecology, 1996, 10: 733-740.
    [57] Perez-Orella C, Schulte-Hostedde A I. Effects of sex and body size on ectoparasite loads in the northern flying squirrel (Glaucomys sabrinus) [J]. Canadian Journal of Zoology, 2005, 83: 1381–1385.
    [58] Laurenco S I, Palmeirim J M. Can mite parasitism affect the condition of bat hosts? Implications for the social structure of colonial bats [J]. Journal of Zoology, London, 2007, 273: 161-168.
    [59] Reckardt K, Kerth G. Does the mode of transmission between hosts affect the host choice strategies of parasites? Implications from a field study on bat fly and wing mite infestation of Bechstein's bats [J]. Oikos 2009, 118: 183-190.
    [60] Norris K, Evans M R. Ecological immunology: life history trade-offs and immune defense in birds [J]. Behavioral Ecology, 2000, 11: 19-26.
    [61] Alonso-Alvarez C, Tella J. Effects of experimental food restriction and body-mass changes on the avian T-cell-mediated immune response [J]. Canadian Journal of Zoology, 2001, 79: 101-105.
    [62] Martin L B, Han P, Lewittes J, et al. Phytohemagglutinin-induced skin swelling in birds: histological support for a classic immunoecological technique [J]. Functional Ecology, 2006, 20: 290-299.
    [63] Bize P, Jeanneret C, Klopfenstein A, et al. What makes a host profitable? Parasites balance host nutritiveresources against immunity [J]. 2008:
    [64] Christe P, Giorgi M S, Vogel P, et al. Differential species-specific ectoparasitic mite intensities in two intimately coexisting sibling bat species: resource-mediated host attractiveness or parasite specialization? [J]. Journal of Animal Ecology, 2003, 72 (5): 866-872.
    [65] Tseng M. Interactions between the parasite's previous and current environment mediate the outcome of parasite infection [J]. American Naturalist, 2006, 168: 565-571.
    [66] Tschirren B, Bischoff L, Saladin V, et al. Reproductive interaction in a bird-ectoparasite system: the effect of host condition and host immunity on flea fitness [J]. Functional Ecology, 2007, 21: 372-378.
    [67] Hanley K A, Biardi J E, Greene C M, et al. The behavioral ecology of host-parasite interactions: an interdisciplinary challenge [J]. Parasitology Today, 1996, 12: 371-373.
    [68] Bedhomme S, Agnew P, Sidobre C, et al. Virulence reaction norms across a food gradient [J]. Proceedings of the Royal Society B: Biological Sciences, 2004, 271: 739-744.
    [69] Lambrechts L, Chavatte J M, Snounou G, et al. Environmental influence on the genetic basis of mosquito resistance to malaria parasites [J]. Proceedings of the Royal Society B: Biological Sciences,2006, 273: 1501-1506.
    [70] Hart B L. Behavioral adaptations to parasites: an ethological approach [J]. Journal of Parasitology, 1992, 78: 256-265.
    [71] Reckardt K, Kerth G. Roost selection and roost switching of female Bechstein's bats (Myotis bechsteinii) as a strategy of parasite avoidance [J]. Oecologia, 2007, 154: 581-588.
    [72] Mooring M S, Samuel W M. Tick-removal grooming by elk (Cervus elaphus): testing the principles of the programmed-grooming hypothesis [J]. Can. J. Zool. , 1998, 76: 740-750.
    [73] Mooring M S, Benjamin J E, Harte C R, et al. Testing the interspecific body size principle in ungulates: the smaller they come, the harder they groom [J]. Animal Behavior, 2000, 60: 35-45.
    [74] Clayton D H, Lee P L M, Tompkins D M, et al. Reciprocal natural selection on host-parasite phenotypes [J]. Am. Nat. , 1999, 154: 262-270.
    [75] Eckstein R A, Hart B L. Grooming and control of fleas in cats [J]. Applied Animal Behaviour Science, 2000, 68: 141-150.
    [76] Ritter R C, Epstein A N. Saliva lost by grooming: a major item in the rat's water economy [J]. Behav. Biol., 1974, 11: 581-585.
    [77] Mooring M S, Hart B L. Costs of allogrooming in impala: distraction from vigilance [J]. Anim. Behav., 1995, 49: 1414-1416.
    [78] Mooring M S, Samuel W M. Premature loss of winter hair in free-ranging moose (Alces alces) infested with winter ticks (Dermacentor albipictus) is correlated with grooming rate [J]. Can. J. Zool., 1999, 77: 148-156.
    [79] Colbern D L, Gispen W H. Neural mechanisms and biological significance of grooming behavior [J]. Annals of the New York Academy of Sciences, 1988, 525: 1-438.
    [80] Fentress J C. Expressive contexts, fine structure, and central mediation of rodent grooming [J]. Annals of the New York Academy of Sciences, 1988, 525: 18-26.
    [81] Spruijt B M, Van Hooff J A, Gispen W H. Ethology and neurobiology of grooming behavior [J]. Physiological Reviews, 1992, 72: 825-852.
    [82] Riek R F. Studies on the reactions of animals to infestation with ticks [J]. Australian Journal of Agricultural Research, 1962, 13: 532-550.
    [83] Wikel S K. Immunomodulation of host responses to ectoparasite infestation-An overview [J]. Veterinary parasitology, 1984, 14: 321-339.
    [84] Immunity to ticks [J]. Advances in parasitology, 1980, 18: 293-313.
    [85] Hart B L, Hart L A, Mooring M S, et al. Biological basis of grooming behaviour in antelope: the body size, vigilance and habitat principles [J]. Animal Behavior, 1992, 44: 615-631.
    [86] Greer J M, Capecchi M R. Hoxb8 is required for normal grooming behavior in mice [J]. Neuron, 2002, 33: 23-34.
    [87] Mooring M S, Hart B L, Fitzpatrick T A, et al. Grooming in desert bighorn sheep (Ovis canadensis mexicana) and the ghost of parasites past [J]. Behavioral Ecology, 2006, 17 (3): 364-371.
    [88] Hawlena H, Bashary D, Abramsky Z, et al. Programmed versus stimulus-driven antiparasitic grooming in a desert rodent [J]. Behavioral Ecology, 2008, 19: 929-935.
    [89] Christe P, Glaizot O, Evanno G, et al. Host sex and ectoparasites choice: preference for, and higher survival on female hosts [J]. Journal of Animal Ecology, 2007, 76: 703-710.
    [90] Green A J. Mass/length residuals: measures of body condition or generators of spurious results? [J]. Ecology 2001, 82 (5):
    [91] Schulte-Hostedde A I, Zinner B, Millar J S, et al. Restitution of mass-size residuals validating body condition indices [J]. Ecology, 2005, 86 (1): 155-163.
    [92] Lewis S E. Low roost-site fidelity in pallid bats: associated factors and effect on group stability [J]. Behav. Ecol. Sociobiol., 1996, 39: 335-344.
    [93] Sonenshine D E. Biology of ticks[M]. New York: Oxford University Press, 1993.
    [94] Cox R, Stewart P D, Macdonald D W. The ectoparasites of the European badger, Meles meles, and the behavior of the hostspecific flea, Paraceras melis [J]. Journal of Insect Behavior, 1998, 12: 245-265.
    [95] Devine G J, Ingvarsdottir A, Mordue W, et al. Salmon lice, Lepeophtheirus salmonis, exhibit specific chemotactic responses to semiochemicals originating from the salmonid, Salmo salar [J]. J Chem. Ecol., 2000, 26: 1833-1847.
    [96] Osterkamp J, Wahl U, Schmalfuss G, et al. Host-odour recognition in two tick species is coded in a blend of vertebrate volatiles [J]. J Comp. Physiol., 1999, 185: 59-67.
    [97] McCoy K D, Boulinier T, Tirard C, et al. Host specificity of a generalist parasite: genetic evidence of sympatric host races in the seabird tick Ixodes uriae [J]. Journal of Evolution Biology, 2001, 14: 395-405.
    [98] Gandon S. Evolution of multihost parasites [J]. Evolution, 2004, 58 (3): 455-469.
    [99] Hawlena H, Abramsky Z, Krasnov B R. Age-biased parasitism and density-dependent distribution of fleas (Siphonaptera) on a desert rodent [J]. Oecologia, 2005, 146: 200-208.
    [100] Weddle C B. Effects of ectoparasites on nestling body mass in the house sparrow [J]. Condor, 2000, 102: 684-687.
    [101] M?ller A P. Survival and reproductive rate of mites in relation to resistance of their barn swallow hosts [J]. Oecologia, 2000, 124: 351-357.
    [102] Archer M S, Cardinal B R. Seasonal reproduction and host infestation rates for nycteribiids of the large bentwing bat [J]. Med. Vet. Entomol., 2001, 15: 452-454.
    [103] Eckstein R A, Hart B L. Grooming and control of fleas in cats [J]. Appl. Anim. behav. Sci., 2000, 68: 141-150.
    [104] Rigby M C, Hechinger R F, Stevens L. Why should parasite resistance be costly? [J]. Trends in parasitology, 2002, 18 (3): 116-120.
    [105] Overal W L. Host-relations of the bat fly Megistopoda aranea (Diptera: Streblidae) in Panama [J]. Univ Kans Sci Bull, 1980, 52: 1-20.
    [106] Fritz G N. Biology and ecology of the bat flies (Diptera: Streblidae) on bats of the genus Carollia [J].Journal of Medical Entomology, 1983, 20: 1-10.
    [107] M?ller A P. The preening activity of swallows, Hirundo rustica, in relation to experimentally manipulated loads of hematophagous mites [J]. Animal Behavior, 1991, 42: 251-260.
    [108] Mooring M S. The effect of tick challenge on grooming rate by impala [J]. Animal Behavior, 1995, 50: 377-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700