Y特大桥桥面系病因及加固方案受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
y特大桥为76m+360m+76m三跨连续自锚中承式钢管混凝土拱桥,桥面结构由混凝土桥面板、钢小纵梁和钢横梁组成,混凝土桥面板与钢横梁相结合。该桥运营仅十年,桥面系钢纵、横梁连接处就出现严重病害。本文采用有限单元法对该桥桥面系钢纵、横梁连接处病因、桥面系加固方案和加固过程中桥面系的受力状态进行了研究,主要完成了以下工作:
     1.用M工DAS软件建立全桥及3个节间局部有限元模型,对原桥面系受力性能进行了研究,得出结论:该桥超载现象十分严重,钢纵横梁连接角钢、与钢纵梁相连的横梁腹板,超载下应力过大,发生疲劳破坏;钢横梁腹板在部分加劲肋下缘处有应力集中现象,造成开裂。
     2.对两个加固方案进行了对比研究。两个加固方案都增设了大纵梁、增强了钢横梁,并对钢纵、横梁采用新的连接,提高了桥面系的刚度、整体性和运营安全系数,桥面系钢结构应力得到大幅度下降,即使在超载下疲劳应力幅也在规范容许值内,两个加固方案原则上都是可行的。
     3.加固方案一中钢纵、横梁的连接更换为“悬挂式、横梁腹板与钢纵梁上翼缘用铰接螺栓连接,其它部位不连接”;方案二中“钢纵、横梁只在下翼缘用普通螺栓连接,其它部位不连接”。二者连接部位超载下的最大疲劳应力幅分别为70.6MPa.29.4MPa,方案二受力更为合理,为推荐方案。
     4.对加固过程中桥面系的受力状态进行了研究。加固过程中,钢横梁腹板和下翼缘开孔后钢横梁不会全断面屈服;建议先将钢横梁下翼缘与腹板焊缝裂缝处理后再在钢横梁上开孔;换吊索过程中,桥面系钢构件和邻索的最大应力均小于屈服强度;大纵梁安装顺序对桥面线形及吊杆受力无太大影响,可结合现场施工条件进行安排。
     本文的研究成果为Y特大桥加固设计、施工提供了依据,对其它类似结构也有参考价值。
Y is a self-anchored, semi-supported concrete-filled steel tube (CFST) arch bridge with three-span of 76m+360m+76m. The bridge's floor system consists of concrete slab, little steel stringer and steel beam, and concrete slab combined with steel beam. Serious diseases have found in the connection between little steel stringer and steel beam, just after a decade's operations. With finite element method, floor system disease cause, plan of reinforcement and floor system's mechanical behaviors in the process of Strengthening were analyzed in this paper. The maioj tasks are summrized as follows:
     1. The space finite element model of the full bridge and three segments local finite element model of the floor system were established by using Midas. By studying original floor system's mechanical behaviors, comes to the reason of the disease:due to the very severe overloading in Yajisha bridge, the stress of connection angle which connect little steel stringer with steel beam, steel beam web which connected with little steel stringer is too large, leading to fatigue damage. Steel beams at the edge of some stiffening ribs have stress concentration, resulting in cracking.
     2. The two plans of reinforcement are studied. Through adding large steel stringer, strengthening steel beams and making little steel stringer and steel beam have another kind of connection, it raise floor system integrity and improve the safety factor of the bridge operation, and the stress of floor system is much more less than before, fatigue stress amplitude are within the allowable value even under overload. The results showed that the two plans of reinforcement are feasible in principle.
     3. The connection of little steel stringer and steel change to "Hanging, connecting steel beam web with steel stringer top flange by a hinged bolts, other parts are not connected" in reinforcement planⅠ, "connecting steel beam bottom flange with steel stringer bottom flange by a ordinary bolts, other parts are not connected" in reinforcement planⅡ. The connection's Maximum fatigue stress of plan I is 70.6MPa, planⅡis 29.4MPa. The plan II is more reasonable than plan I, so plan II being recommended at last.
     4. Floor system's mechanical behaviors in the process of Strengthening were analyzed. Steel beam will not be full section yield after drilling holes in it's web and bottom flange. The suggestion is that dealing with crack before drilling holes. In the process of change sling, floor system and adjacent cable's maximum stress is less than the yield strength. The sequence of large steel stringer installation has no great impact on deformation and stress state, so the sequence can be choose according to on-site construction conditions.
     The research results of this paper have applied to the reinforcement design and construction control of Yajisha bridge. Meanwhile, it can be as a reference for others same type bridges.
引文
[1]梁俊松.中国桥梁未来发展的认识.科技传播,2010,17(2):87-88.
    [2]王能谋.既有桥梁的评估理论及其应用.西南交通大学硕士学位论文,2007.
    [3]顾尚华.中国高速铁路迅速崛起[J].运输与交通,2010,4:15-17.
    [4]曹炳坤.21世纪是高速铁路世纪[J].交通与运输,2006,06:46-47.
    [5]李亚东.桥梁工程概论.西南交通大学出版社,2001:19-20.
    [6]沈晓松.丫髻沙大桥转体施工测量控制.公路,2002,10:19-22.
    [7]石贵军.丫髻沙大桥主、边拱肋拼装施工技术.世界桥梁,2002,02:11-13.
    [8]R. L. Brockenbrough, F. S.Merritt. Structural Steel Designer's Handbook(Third Editon). McGraw-Hill, Inc.,1999.
    [9]尹浩辉.广州丫髻沙大桥系杆的选型与施工.OVM通迅,2000,04:1-4.
    [10]胡汉舟,叶梅新.桥梁事故及经验教训.桥梁建设,2002,3:71-74.
    [11]王元清.钢结构脆性破坏事故分析[J].工业建筑,1998,5:55-58.
    [12]万明坤等.桥梁漫笔[M].北京:中国铁道出版社,1997.
    [13]Charles G. Salmon, John E. Johnson. Steel Structures:Design and Behavior, Emphasizing Load and Resistance Factor Design. New York:Harper & Row Publisher,Inc.,1990.
    [14][英]马丁·韦尔斯.世界著名桥梁设计[M].张慧,黎楠,译.中国建筑工业出版,2003.
    [15]Honshu-Shikoku Bridge Authority. The Tatara Bridge,1999.
    [16]AASHTO. Standard Specification for Highway Bridge.1996.
    [17]吴冲.现代钢桥(上).人民交通出版社,2006:1-4.
    [18]小西一郎,钢桥.中国铁道出版社,1981.
    [19]李国豪.桥梁结构稳定与振动.北京:科学出版社,2004.
    [20]张建民,肖汝诚.巫峡长江大桥极限承载能力分析.公路交通科技,2004,21(2):37-40.
    [21]王石磊,高岩,张勇.以钢横梁受力为主的拱桥桥面系病害分析与加固方案探讨.铁道建筑,2010,06:37-40.
    [22]欧阳旭.140m下承式钢箱系杆叠拱桥受力特性分析.中南大学硕士学位论文,2010.
    [23]Wenxia Tong, H. saadatmanesh. Parametric Study of Continuous Prestressed Composite Girders[J]. Struct. Engrg. ASCE,1992,118(1): 186-206.
    [24]K. F. Dunker, R. W. Klaiber, F. K. Daoud, W.W.Sanders. Jr. Strengthening continuous composite bridges[J].Struct. Engrg. ASCE,1990,116(9):2464-2480.
    [25]MS. Troitsky. Othotropic bridges theory and design. James F.Liricoln arc welding fotmdation.1987.
    [26]British Standards Institution. Steel, concrete and composite bridges(BS5400), (Part3. Code of practice for design of steel bridge).1982,71-72
    [27]日本道路协会.道路桥示方书.东京:丸善株式会社,2001.
    [28]项海帆.高等桥梁结构理论.北京:人民交通出版社,2001:161-181.
    [29]Chajes, A. Principles of Structural Stability Theory. Prentice-Hall Inc. Englewood Cliffs,New Jersey.1974.
    [30]中华人民共和国建设部.钢结构设计规范GB50017-2003[S].中国建筑工业出版社,2003.
    [31]吴冲.公路钢桥常见破坏形式及设计方法.2009钢结构桥梁论坛论文集.2009.
    [32]中华人民共和国交通部.CECS 77:96钢结构加固技术规范[S].北京:人民交通出版社,1996.
    [33]中华人民共和国交通部.JTJ 025—86公路桥涵钢结构及木结构设计规范[S].北京:人民交通出版社,1986.
    [34]蒙云,艾吉人,乔墩.预防为先,标本兼治—谈桥梁加固改造的科学管理和技术发展.中国公路建设市场专刊.2004,2:61-63.
    [35]龙驭球.有限元法概论[M].北京:高等教育出版社,1991.
    [36]ZHOU Yi-lin.A SOLIT-CHARACTERISTIC FINITE ELEMNT MODEL FOR 1-D UNSTEADY FLOWS[J].Journal of Hydrodynamics,2007,19(01):54-61.
    [37]刘英魁.有限元分析的发展趋势[J].中国新技术产品,2009,6:157.
    [38]王助成.有限单元法[M].北京:清华大学出版社,2003:56-59.
    [39]朱伯芳.有限单元法原理与应用.中国水利水电出版社,1998.
    [40]嘉木工作室.ANSYS有限元实例分析教程[M].北京:机械工业出版社,2002.
    [41]Ikeda S. Progress of Hybrid Structure in Civil Engineering. Journal of Japan Concrete Institute.1998,36(10)
    [42]徐升桥.丫髻沙大桥主桥设计研究.铁道标准设计,2001,21(6):2-7.
    [43]徐升桥,尹浩辉.丫髻沙大桥主桥设计与施工.铁道标准设计,2000,20(5):9-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700