碳纳米管协同氧化铁对硅橡胶热氧稳定作用及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅橡胶与其他橡胶相比最为显著的特征在于其优异的热稳定性,被广泛用作高温环境下的弹性材料。硅橡胶作为高性能合成橡胶中的重要一员,在现代高新技术、航空航天等高科技领域有着不可替代的地位。为了使硅橡胶适应更为苛刻的高温环境,提高硅橡胶热稳定性的研究被广泛开展。提高硅橡胶的热稳定性有许多方法,其中添加耐热添加剂是最为简便有效的方法之一。层状硅酸盐、聚合物、金属和金属氧化物等均可以作为硅橡胶的耐热添加剂。氧化铁作为众多耐热添加剂中最常使用的一种也被科学家们广泛研究。
     碳纳米管(CNTs)以其特殊的结构和优异的性能,在诸多领域都有潜在应用。因此对于CNTs的研究也非常广泛。近年来,将CNTs与高分子基体复合来提高复合材料力学、电导和热稳定性的研究也有很多报道。
     本论文将CNTs,α-Fe2O3,γ-Fe2O3,γ-Fe2O3与CNTs的混合物(γ-Fe2O3+CNTs)以及γ-Fe2O3修饰的CNTs (γ-Fe2O3-CNTs)与高温硫化硅橡胶体系复合。研究了氧化铁晶型以及氧化铁和CNTs间的协同作用对硅橡胶复合材料热氧稳定的影响。结果表明:CNTs的存在会改变氧化铁粒子的晶型,使其由α晶型转变为γ晶型,同时可以增加γ-Fe2O3的比表面积。与其他对照组相比,γ-Fe2O3-CNTs/硅橡胶试样具有较高的热氧稳定性。
     为了探究硅橡胶复合材料的热氧降解机理,从热老化过程中耐热添加剂的变化以及硅橡胶热降解产物的变化两个角度出发进行研究。结果表明:γ-Fe2O3/硅橡胶比α-Fe2O3/硅橡胶具有更高的热氧稳定性是源于γ-Fe2O3/硅橡胶热氧老化过程中的γ-Fe2O3的晶型变化。γ-Fe2O3与CNTs的协同作用,使得γ-Fe2O3在热氧老化过程中有更多的Fe元素发生了价态变化。由于CNTs具有的导热性,以及γ-Fe2O3与CNTs的协同作用,使得γ-Fe2O3-CNTs/硅橡胶试样在热氧降解过程中的侧甲基氧化的气体产物量大幅降低,从而提升复合材料的热氧稳定性。
     以γ-Fe2O3-CNTs作为无机粒子修饰CNTs的代表,以氨基单封端的聚二甲基硅氧烷(APDMS)修饰的CNTs(CNTs-APDMS)作为化学修饰CNTs的代表,利用Raman等手段表征复合材料在不同应变下的界面和相互作用。结果表明:CNTs-APDMS/硅橡胶会在相对较高的应变(250%)下才发生明显的界面破坏现象,且这种破坏会直接影响复合材料的热氧稳定性。而γ-Fe2O3-CNTs/硅橡胶虽在相对较低的应变(100%)下就发生界面的破坏,但这种破坏未影响其热氧稳定性。
Silicone rubber is one of the most important types of high performance rubberand known to exhibit excellent thermal stability over conventional carbon backbonerubber. With the rapid development of science and technology, a demand for highperformance silicone elastomer, especially for thermal resistant silicone rubber, hasincreased greatly. A lot of researches focus on the improvement of thermal stability ofsilicone rubber. There are many methods for improving the thermal oxidative stabilityof silicone rubber. Adding thermal resistant additives into silicone rubber matrix is acommon one. Layered silicate, polymer, metal, metal oxide, etc. can be used asthermal resistant additives of silicone elastomer. As one of the most convenient andeffective thermal resistant additives, metal oxides or hydroxides have been widelyinvestigated.
     Attentions have been paid to carbon nanotubes (CNTs), which consists ofrolled-up graphene sheet built from sp2carbon units, because of its potentialapplications due to extraordinary physical, chemical and mechanical properties.Recently, great interests have been shown on CNTs as an additive of polymer due toits advantages of small size, high aspect ratio, particularly excellent mechanicalproperties, high electrical conductivity, and high thermal conductivity.
     The effects of crystalline forms of iron (III) oxide and the synergy betweenγ-Fe2O3and CNTs on the thermal oxidative stability of silicone rubber were studied.A series of silicone rubber based composites filled with CNTs, α-Fe2O3, γ-Fe2O3, amixture of γ-Fe2O3and CNTs (γ-Fe2O3+CNTs), and γ-Fe2O3modified CNTs(γ-Fe2O3-CNTs) were prepared, respectively. The results indicated that the presence ofCNTs affected the crystalline form of attaching Fe2O3which was changed from α to γ.γ-Fe2O3also got an enlarged special surface area in the γ-Fe2O3-CNTs. γ-Fe2O3-CNTswas a more effective thermal resistant additive than the others.
     In addition, the changes of the thermal resistant additives and the gas products ofthe silicone rubber composites during the thermal oxidative aging were alsoinvestigated. The results showed that the γ-Fe2O3was a more effective thermalresistant additive than α-Fe2O3due to the changes of crystalline form during thethermal aging. A synergy was found in the γ-Fe2O3-CNTs and much more changes ofvalence made γ-Fe2O3-CNTs as a more effective thermal resistant additive. The improvement of the thermal oxidative stability of γ-Fe2O3-CNTs/silicone rubber wasdue to the thermal conductivity of CNTs and the enhanced γ-Fe2O3by the CNTs. Theenhanced γ-Fe2O3sharply reduced the amount of the gases obtained from theoxidation of the side methyl groups of silicone rubber.
     To investigate the effect of the interfacial interaction on the thermal oxidativestability of chemical modified CNTs/silicone rubber composite and nanoparticleattached CNTs/silicone rubber composite, poly (dimethylsiloxane) grafted CNTs(CNTs-APDMS) and γ-Fe2O3-CNTs were prepared and embedded into silicone rubbermatrix respectively. The interfacial interaction between the CNTs and the matrix atvarying strains were investigated through the use of Raman spectroscopy, and theeffect of the variation of the interfacial interaction on the thermal oxidative stability ofthe SR was also studied. It was found that the interfacial interaction ofCNTs-APDMS/silicone rubber composite and γ-Fe2O3-CNTs/silicone rubber weredamaged at250%strain and100%strain, respectivily. After the thermal oxidativeaging, the mechanical properties of the CNTs-APDMS/SR composite decreasedsharply due to the damaged interface and the thermal stability was also reduced, butsuch damage did not affect the γ-Fe2O3-CNTs/silicone rubber composite on itsthermal stability.
引文
[1] Kim E S, Kim H S, Jung S H, et al., Adhesion properties and thermaldegradation of silicone rubber, J. Appl. Polym. Sci.,2007,103(5):2782-2787.
    [2] Hanu L G, Simon G P, Cheng Y B, Thermal stability and flammability ofsilicone polymer composites, Polym. Degrad. Stabil.,2006,91(6):1373-1379.
    [3] Hamdani S, Longuet C, Lopez-Cuesta J M, et al., Calcium and aluminium-basedfillers as flame-retardant additives in silicone matrices. I. Blend preparation andthermal properties, Polym. Degrad. Stabil.,2010,95(9):1911-1919.
    [4] Chen D, Nie J, Yi S, et al., Thermal behaviour and mechanical properties ofnovel RTV silicone rubbers using divinyl-hexa [(trimethoxysilyl) ethyl]-POSSas cross-linker, Polym. Degrad. Stabil.,2010,95(4):618-626.
    [5] Navarro R, Audouin L, Verdu J, Reactions of antioxidants with molecularoxygen. Part II. Isooctyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate insilicone matrix, Polym. Degrad. Stabil.,2011,96:965-973.
    [6] Navarro R, Audouin L, Verdu J, Reactions of antioxidants with molecularoxygen. Part I.2,2′-methylene-bis (4-methyl-6-tert-butylphenol) in siliconematrix, Polym. Degrad. Stabil.,2011,96(2):220-225.
    [7] Navarro R, Audouin L, Verdu J, Reactions of antioxidants with molecularoxygen. Part III. Influence of phenolic stabiliser structures on their oxidation inan inert matrix, Polym. Degrad. Stabil.,2011,96(7):1389-1396.
    [8] Yang Z, Han S, Zhang R, et al., Effects of silphenylene units on the thermalstability of silicone resins, Polym. Degrad. Stabil.,2011,96:2145-2151.
    [9] Sim L C, Ramanan S R, Ismail H, et al., Thermal characterization of Al2O3andZnO reinforced silicone rubber as thermal pads for heat dissipation purposes,Thermochim. Acta,2005,430(1):155-165.
    [10] Ko C J, Tseng I, Whang W T, et al., Effect of TiO2on thermal and adhesivecharacteristics of poly (imide siloxane)/TiO2hybrid films, J. Appl. Polym. Sci.,2012,124:1929-1937.
    [11] Shentu B, Gan T, Weng Z, Modification of Fe2O3and its effect on theheat-resistance of silicone rubber, J. Appl. Polym. Sci.,2009,113(5):3202-3206.
    [12] Diao S, Jin K, Yang Z, et al., The effect of phenyl modified fumed silica onradiation resistance of silicone rubber, Mater. Chem. Phys.,2011,129(1-2):202-208.
    [13] Wen J, Li Y, Zuo Y, et al., Preparation and characterization ofnano-hydroxyapatite/silicone rubber composite, Mater. Lett.,2008,62(19):3307-3309.
    [14] Razzaghi Kashani M, Javadi S, Gharavi N, Dielectric properties of siliconerubber-titanium dioxide composites prepared by dielectrophoretic assembly offiller particles, Smart Mater. Struct.,2010,19:035019.
    [15] Fateh-Alavi K, Gedde U W, Effect of stabilizers on surface oxidation of siliconerubber by corona discharge, Polym. Degrad. Stabil.,2004,84(3):469-474.
    [16] Ghanbari-Siahkali A, Mitra S, Kingshott P, et al., Investigation of thehydrothermal stability of cross-linked liquid silicone rubber (LSR), Polym.Degrad. Stabil.,2005,90(3):471-480.
    [17] Chinn S, DeTeresa S, Sawvel A, et al., Chemical origins of permanent set in aperoxide cured filled silicone elastomer-tensile and1H NMR analysis, Polym.Degrad. Stabil.,2006,91(3):555-564.
    [18] Haji K, Zhu Y, Otsubo M, et al., Studies on erosion of silicone rubber exposed topartial arc discharges, Polym. Degrad. Stabil.,2008,93(12):2214-2221.
    [19] Hamdani S, Longuet C, Perrin D, et al., Flame retardancy of silicone-basedmaterials, Polym. Degrad. Stabil.,2009,94(4):465-495.
    [20] Karlsson L, Lundgren A, Jungqvist J, et al., Influence of melt behaviour on theflame retardant properties of ethylene copolymers modified with calciumcarbonate and silicone elastomer, Polym. Degrad. Stabil.,2009,94(4):527-532.
    [21] Wang L, Ding T, Wang P, Effects of instantaneous compression pressure onelectrical resistance of carbon black filled silicone rubber composite duringcompressive stress relaxation, Compos. Sci. Technol.,2008,68(15-16):3448-3450.
    [22] Hao L, Shi Z, Zhao X, Mechanical behavior of starch/silicone oil/silicone rubberhybrid electric elastomer, React. Funct. Polym.,2009,69(3):165-169.
    [23] Lin L H, Liu H J, Hwang J J, et al., Photocatalytic effects and surfacemorphologies of modified silicone-TiO2polymer composites, Mater. Chem.Phys.,2011,127:248-252.
    [24] Silva V P, Paschoalino M P, Goncalves M C, et al., Silicone rubbers filled withTiO2: Characterization and photocatalytic activity, Mater. Chem. Phys.,2009,113(1):395-400.
    [25] Liptay G, Nagy J, Weis J C, et al., Thermoanalytical investigations of siliconecaoutchouc polymers and silicone rubbers, I, J. Therm. Anal. Calorim.,1987,32(5):1421-1433.
    [26] Dickstein W H, Siemens R L, Hadziioannou E, Dynamic mechanical andthermogravimetric analyses of the effect of ferric oxide on the thermaloxidativedegradation of silicone rubber, Thermochim. Acta,1990,166:137-145.
    [27]景治中,赵媛媛,许威亚,等,有机硅橡胶裂解产物气相色谱-质谱联用分析,分析测试学报,2000,19(3):31-33.
    [28] Camino G, Lomakin S M, Lazzari M, Polydimethylsiloxane thermal degradationPart1. Kinetic aspects, Polymer,2001,42(6):2395-2402.
    [29] Xiong Y L, Shen Q, Chen F, et al., The Effect of Surface Hydroxyl Groups onthe Properties of SR/Al2O3Composites, Adv. Mater. Res.,2009,66:277-279.
    [30] Zhang J, Feng S, Ma Q, Kinetics of the thermal degradation and thermal stabilityof conductive silicone rubber filled with conductive carbon black, J. Appl.Polym. Sci.,2003,89(6):1548-1554.
    [31] Chang C L, Don T M, Lee H S J, et al., Studies on the aminolysis of RTVsilicone rubber and modifications of degradation products, Polym. Degrad.Stabil.,2004,85(2):769-777.
    [32] Coons J E, McKay M D, Hamada M S, A Bayesian analysis of the compressionset and stress--strain behavior in a thermally aged silicone foam, Polym. Degrad.Stabil.,2006,91(8):1824-1836.
    [33] Chinn S C, Alviso C T, Berman E S F, et al., MQ NMR and SPME Analysis ofNonlinearity in the Degradation of a Filled Silicone Elastomer, J. Phys. Chem. B,2010,114:9729-9736.
    [34] Radhakrishman T S, New method for evaluation of kinetic parameters andmechanism of degradation from pyrolysis-GC studies Thermal degradation ofpolymethylsiloxanes, J. Appl. Polym. Sci.,1999,73(3):441-450.
    [35] Tiwari A, Hihara L H, Thermal stability and thermokinetics studies on siliconeceramer coatings: Part1-inert atmosphere parameters, Polym. Degrad. Stabil.,2009,94(10):1754-1771.
    [36] Deshpande G, Rezac M E, Kinetic aspects of the thermal degradation of poly(dimethyl siloxane) and poly (dimethyl diphenyl siloxane), Polym. Degrad.Stabil.,2002,76(1):17-24.
    [37] Lewicki J P, Liggat J J, Patel M, The thermal degradation behaviour ofpolydimethylsiloxane/montmorillonite nanocomposites, Polym. Degrad. Stabil.,2009,94(9):1548-1557.
    [38] Lewicki J P, Liggat J J, Pethrick R A, et al., Investigating the ageing behavior ofpolysiloxane nanocomposites by degradative thermal analysis, Polym. Degrad.Stabil.,2008,93(1):158-168.
    [39] Camino G, Lomakin S M, Lageard M, Thermal polydimethylsiloxanedegradation. Part2. The degradation mechanisms, Polymer,2002,43(7):2011-2015.
    [40] Hall A D, Patel M, Thermal stability of foamed polysiloxane rubbers: Headspaceanalysis using solid phase microextraction and analysis of solvent extractablematerial using conventional GC–MS, Polym. Degrad. Stabil.,2006,91(10):2532-2539.
    [41]陈剑华,冯圣玉,杜作栋,几种新的四苯(基)苯基有机硅化合物的研究,高等学校化学学报,1986,12:11-14.
    [42]苏正涛,刘君,孔毅,等,低苯基硅橡胶的耐热性能研究,材料工程,1999,4:7-8.
    [43]苏正涛,彭亚岚,刘君,等,苯基硅橡胶低温性能的研究,有机硅材料,2000,14(6):5-6.
    [44]谢泽民,王金亭,李其山,硅氮化合物在改进聚硅氧烷热稳定性中的作用,高分子学报,1989,1:46-51.
    [45]王一,谢择民,王清正,等,硅橡胶热降解动力学的研究,高分子学报,1996,2:202-208.
    [46] Sun J T, Huang Y D, Cao H L, et al., Effects of ambient-temperature curingagents on the thermal stability of poly (methylphenylsiloxane), Polym. Degrad.Stabil.,2004,85(1):725-731.
    [47] Kong Q, Hu Y, Song L, et al., Influence of Fe-MMT on crosslinking and thermaldegradation in silicone rubber/clay nanocomposites, Polym. Adv. Technol.,2006,17(6):463-467.
    [48] Guo J, Zeng X, Li H, et al., Effect of curatives and fillers on vulcanization,mechanical, heat aging, and dynamic properties of silicone rubber andfluororubber blends, J. Elastom. Plast.,2012,44(2):145-163.
    [49] Liu Y R, Huang Y D, Liu L, Thermal stability of POSS/methylsiliconenanocomposites, Compos. Sci. Technol.,2007,67(13):2864-2876.
    [50] Zhu M, Chung D D L, Resilient composite of silicone and foamed tin as a newmaterial for electrical and thermal contacts, Composites,1991,22(3):219-226.
    [51] Su Z, Interfacial reaction of stannic oxide in silicone rubber at300°C, J. Appl.Polym. Sci.,1999,73(13):2779-2781.
    [52] Wilson B, Ricardo F S, Fernando G, Interfacial reactions and self-adhesion ofpolydimethylsiloxanes, J. Adhes. Sci. Technol.,1992,6(7):791-805.
    [53]郑俊萍,苏正涛,过渡金属氧化物对硅橡胶耐热性的影响,合成橡胶工业,1997,(5):296-299.
    [54]郑俊萍,苏正涛,蔡宝连,耐高温硅橡胶用金属氧化物及复合物的研究,高分子材料科学与工程,1999,15(3):157-158.
    [55] Iijima S, Helical microtubules of graphitic carbon, Nature,1991,354(6348):56-58.
    [56] Ajayan P M, Tour J M, Materials science: nanotube composites, Nature,2007,447(7148):1066-1068.
    [57] Spitalsky Z, Tasis D, Papagelis K, et al., Carbon nanotube--polymer composites:Chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci.,2010,35(3):357-401.
    [58] Tasis D, Tagmatarchis N, Bianco A, et al., Chemistry of carbon nanotubes, Chem.Rev.,2006,106(3):1105-1136.
    [59] Wu W, Tsarevsky N V, Hudson J L, et al.,"Hairy" single-walled carbonnanotubes prepared by atom transfer radical polymerization, Small,2007,3(10):1803-1810.
    [60] Gao C, Muthukrishnan S, Li W, et al., Linear and hyperbranchedglycopolymer-functionalized carbon nanotubes: Synthesis, kinetics, andcharacterization, Macromolecules,2007,40(6):1803-1815.
    [61] Ma P C, Kim J K, Tang B Z, Effects of silane functionalization on the propertiesof carbon nanotube/epoxy nanocomposites, Compos. Sci. Technol.,2007,67(14):2965-2972.
    [62] Yang M, Gao Y, Li H, et al., Functionalization of multiwalled carbon nanotubeswith polyamide6by anionic ring-opening polymerization, Carbon,2007,45(12):2327-2333.
    [63] Viswanathan G, Chakrapani N, Yang H, et al., Single-step in situ synthesis ofpolymer-grafted single-wall nanotube composites, J. Am. Chem. Soc.,2003,125(31):9258-9259.
    [64] Kobashi K, Chen Z, Lomeda J, et al., Copolymer of single-walled carbonnanotubes and poly(p-phenylene benzobisoxazole), Chem. Mater.,2007,19(2):291-300.
    [65] Li H, Adronov A, Water-soluble SWCNTs from sulfonation of nanotube-boundpolystyrene, Carbon,2007,45(5):984-990.
    [66] Hill D, Lin Y, Qu L, et al., Functionalization of carbon nanotubes withderivatized polyimide, Macromolecules,2005,38(18):7670-7675.
    [67] Lou X, Detrembleur C, Pagnoulle C, et al., Surface modification of multiwalledcarbon nanotubes by poly(2-vinylpyridine): Dispersion, selective deposition,and decoration of the nanotubes, Adv. Mater.,2004,16(23-24):2123-2127.
    [68] Baskaran D, Mays J W, Bratcher M S, Noncovalent and nonspecific molecularinteractions of polymers with multiwalled carbon nanotubes, Chem. Mater.,2005,17(13):3389-3397.
    [69] Zhang A, Tang M, Luan J, et al., Noncovalent functionalization of multi-walledcarbon nanotubes with amphiphilic polymers containing pyrene pendants, Mater.Lett.,2012,67(1):283-285.
    [70] Hu C, Liao H, Li F, et al., Noncovalent functionalization of multi-walled carbonnanotubes with siloxane polyether copolymer, Mater. Lett.,2008,62(17–18):2585-2588.
    [71] Zhao Y, Stoddart J F, Noncovalent Functionalization of Single-Walled CarbonNanotubes, Accounts Chem. Res.,2009,42(8):1161-1171.
    [72] Woan K, Pyrgiotakis G, Sigmund W, Photocatalytic carbon-nanotube--TiO2Composites, Adv. Mater.,2009,21(21):2233-2239.
    [73] Yao Y, Li G, Ciston S, et al., Photoreactive TiO2/carbon nanotube composites:synthesis and reactivity, Environ. Sci. technol.,2008,42(13):4952-4957.
    [74] Kim I T, Nunnery G A, Jacob K, et al., Synthesis, characterization, andalignment of magnetic carbon nanotubes tethered with maghemite nanoparticles,J. Phys. Chem. C,2010,114(15):6944-6951.
    [75] Yan X, Tay B K, Yang Y, Dispersing and functionalizing multiwalled carbonnanotubes in TiO2sol, J. Phys. Chem. B,2006,110(51):25844-25849.
    [76] Corrias M, Serp P, Kalck P, et al., High purity multiwalled carbon nanotubesunder high pressure and high temperature, Carbon,2003,41(12):2361-2367.
    [77] Kongkanand A, Kamat P V, Electron storage in single wall carbon nanotubes.Fermi level equilibration in semiconductor–SWCNT suspensions, ACS Nano,2007,1:13-21.
    [78] Charlier J C, Defects in carbon nanotubes, Acc. Chem. Res.,2002,35:1063-1069.
    [79] Yu H, Quan X, Chen S, et al., TiO2-multiwalled carbon nanotube heterojunctionarrays and their charge separation capability, J. Phys. Chem. C,2007,111:12987-12991.
    [80] Yi D K, Lee S S, Ying J Y, Synthesis and applications of magneticnanocomposite catalysts, Chem. Mater.,2006,18(10):2459-2461.
    [81] Correa-Duarte M A, Grzelczak M, Salgueiri o-Maceira V, et al., Alignment ofcarbon nanotubes under low magnetic fields through attachment of magneticnanoparticles, J. Phys. Chem. B,2005,109(41):19060-19063.
    [82] Jia B, Gao L, Sun J, Self-assembly of magnetite beads along multiwalled carbonnanotubes via a simple hydrothermal process, Carbon,2007,45(7):1476-1481.
    [83] Bauhofer W, Kovacs J Z, A review and analysis of electrical percolation incarbon nanotube polymer composites, Compos. Sci. Technol.,2009,69(10):1486-1498.
    [84] Peng C, Zhang S, Jewell D, et al., Carbon nanotube and conducting polymercomposites for supercapacitors, Prog. Nat. Sci.,2008,18(7):777-788.
    [85] Ci L, Suhr J, Pushparaj V, et al., Continuous carbon nanotube reinforcedcomposites, Nano Lett.,2008,8(9):2762-2766.
    [86] Guo W, Liu C, Sun X, et al., Aligned carbon nanotube/polymer composite fiberswith improved mechanical strength and electrical conductivity, J. Mater. Chem.,2011,22(3):903-908.
    [87] Coleman J N, Khan U, Blau W J, et al., Small but strong: a review of themechanical properties of carbon nanotube--polymer composites, Carbon,2006,44(9):1624-1652.
    [88] Chen L, Xie H, Li Y, et al., Surface chemical modification of multiwalled carbonnanotubes by a wet-mechanochemical reaction, J. Nanomater.,2008,2008:783981.
    [89] Bikiaris D, Vassiliou A, Chrissafis K, et al., Effect of acid treated multi-walledcarbon nanotubes on the mechanical, permeability, thermal properties andthermo-oxidative stability of isotactic polypropylene, Polym. Degrad. Stabil.,2008,93(5):952-967.
    [90] Li J, Tong L, Fang Z, et al., Thermal degradation behavior of multi-walledcarbon nanotubes/polyamide6composites, Polym. Degrad. Stabil.,2006,91(9):2046-2052.
    [91] Wu D, Wu L, Zhang M, et al., Viscoelasticity and thermal stability of polylactidecomposites with various functionalized carbon nanotubes, Polym. Degrad.Stabil.,2008,93(8):1577-1584.
    [92] Du B, Fang Z, Effects of carbon nanotubes on the thermal stability and flameretardancy of intumescent flame-retarded polypropylene, Polym. Degrad. Stabil.,2011,96:1725-1731.
    [93] Lorenz H, Fritzsche J, Das A, et al., Advanced elastomer nano-composites basedon CNT-hybrid filler systems, Compos. Sci. Technol.,2009,69(13):2135-2143.
    [94] Wang D, Fujinami S, Nakajima K, et al., Production of a cellular structure incarbon nanotube/natural rubber composites revealed by nanomechanicalmapping, Carbon,2010,48(13):3708-3714.
    [95] Subramaniam K, Das A, H A U Ss Ler L, et al., Enhanced thermal stability ofpolychloroprene rubber composites with ionic liquid modified MWCNTs,Polym. Degrad. Stabil.,2012,97(5):776-785.
    [96] Kim H S, Kwon S M, Lee K H, et al., Preparation and characterization ofsilicone rubber/functionalized carbon nanotubes composites via in situpolymerization, J. Nanosci. Nanotechnol.,2008,8(10):5551-5554.
    [97] Wang P, Geng S, Ding T, Effects of carboxyl radical on electrical resistance ofmulti-walled carbon nanotube filled silicone rubber composite under pressure,Compos. Sci. Technol.,2010,70(10):1571-1573.
    [98] Kim T A, Kim H S, Lee S S, et al., Single-walled carbon nanotube/siliconerubber composites for compliant electrodes, Carbon,2011,50:444-449.
    [99] Lim S W, Park E Y, Cha K S, et al., Glass beads-assisted fine dispersion ofmultiwalled carbon nanotube in silicone matrix, Macromol. Res.,2010,18(8):766-771.
    [100]Zhang N, Xie J, Guers M, et al., Chemical bonding of multiwalled carbonnanotubes to polydimethylsiloxanes and modification of the photoinitiatorsystem for microstereolithography processing, Smart Mater. Struct.,2004,13:N1.
    [101]Khosla A, Gray B L, Preparation, characterization and micromolding ofmulti-walled carbon nanotube polydimethylsiloxane conducting nanocompositepolymer, Mater. Lett.,2009,63(13-14):1203-1206.
    [102]Raza M A, Westwood A, Stirling C, et al., Transport and mechanical propertiesof vapour grown carbon nanofibre/silicone composites, Compos. Part A-Appl.S.,2011,42(10):1335-1343.
    [103]Wang L, Wang X, Li Y, Relation between repeated uniaxial compressivepressure and electrical resistance of carbon nanotube filled silicone rubbercomposite, Compos. Part A-Appl. S.,2012,43:268-274.
    [104]Liu C H, Fan S S, Effects of chemical modifications on the thermal conductivityof carbon nanotube composites, App. Phys. Lett.,2005,86:123106.
    [105]Liu C H, Huang H, Wu Y, et al., Thermal conductivity improvement of siliconeelastomer with carbon nanotube loading, Appl. Phys. Lett.,2004,84:4248-4250.
    [106]Hong J, Lee J, Jung D, et al., Thermal and electrical conduction behavior ofalumina and multiwalled carbon nanotube incorporated poly (dimethyl siloxane),Thermochim. Acta,2011,512(1-2):34-39.
    [107]Wang P, Geng S, Ding T, Effects of carboxyl radical on electrical resistance ofmulti-walled carbon nanotube filled silicone rubber composite under pressure,Compos. Sci. Technol.,2010,70(10):1571-1573.
    [108]Rastogi R, Kaushal R, Tripathi S K, et al., Comparative study of carbonnanotube dispersion using surfactants, J. Colloid Interf. Sci.,2008,328(2):421-428.
    [109]Jiang M J, Dang Z M, Yao S H, et al., Effects of surface modification of carbonnanotubes on the microstructure and electrical properties of carbonnanotubes/rubber nanocomposites, Chem. Phys. Lett.,2008,457(4):352-356.
    [110]Jiang M J, Dang Z M, Xu H P, Enhanced electrical conductivity in chemicallymodified carbon nanotube/methylvinyl silicone rubber nanocomposite, Eur.Polym. J.,2007,43(12):4924-4930.
    [111]Jiang M J, Dang Z M, Xu H P, Significant temperature and pressure sensitivitiesof electrical properties in chemically modified multiwall carbonnanotube/methylvinyl silicone rubber nanocomposites, Appl. Phys. Lett.,2006,89:182902.
    [112]Jiang M J, Dang Z M, Xu H P, Giant dielectric constant and resistance-pressuresensitivity in carbon nanotubes/rubber nanocomposites with low percolationthreshold, Appl. Phys. Lett.,2007,90(4):042914.
    [113]Jiang M J, Dang Z M, Xu H P, et al., Effect of aspect ratio of multiwall carbonnanotubes on resistance-pressure sensitivity of rubber nanocomposites, Appl.Phys. Lett.,2007,91:072907.
    [114]Dang Z M, Jiang M J, Xie D, et al., Supersensitive linear piezoresistive propertyin carbon nanotubes/silicone rubber nanocomposites, J. App. Phys.,2008,104(2):024114.
    [115]Jiang M J, Dang Z M, Bozlar M, et al., Broad-frequency dielectric behaviors inmultiwalled carbon nanotube/rubber nanocomposites, J. Appl. Phys.,2009,106(8):084902-084902.
    [116]Liu C H, Fan S S, Nonlinear electrical conducting behavior of carbon nanotubenetworks in silicone elastomer, Appl. Phys. Lett.,2007,90(4):041905.
    [117]Chen G X, Kim H S, Park B H, et al., Highly insulating silicone composites witha high carbon nanotube content, Carbon,2006,44(15):3373-3375.
    [118]Xu J, Razeeb K M, Roy S, Thermal properties of single walled carbonnanotube-silicone nanocomposites, J. Polym. Sci. Pol. Phys.,2008,46(17):1845-1852.
    [119]Nayak G C, Rajasekar R, Das C K, Dispersion of SiC coated MWCNTs inPEI/silicone rubber blend and its effect on the thermal and mechanicalproperties, J. Appl. Polym. Sci.,2011,119(6):3574-3581.
    [120]Iqbal N, Khan M B, Sagar S, et al., Fabrication and characterization ofmultiwalled carbon nanotubes/silicone rubber composites, J. Appl. Polym. Sci.,2013,128(4):2439-2446.
    [121]Katihabwa A, Wang W, Jiang Y, et al., Multi-walled carbon nanotubes/siliconerubber nanocomposites prepared by high shear mechanical mixing, J. Reinf.Plast. Compos.,2011,30(12):1007-1014.
    [122]Norkhairunnisa M, Azizan A, Mariatti M, et al., Thermal stability and electricalbehavior of polydimethylsiloxane nanocomposites with carbon nanotubes andcarbon black fillers, J. Compos. Mater.,2011,46(8):903-910.
    [123]Shi X, Wang J, Jiang B, et al., Hindered phenol grafted carbon nanotubes forenhanced thermal oxidative stability of polyethylene, Polymer,2013,54(3):1167-1176.
    [124]Galano A, Influence of diameter, length, and chirality of single-walled carbonnanotubes on their free radical scavenging capability, J. Phys. Chem. C,2009,113(43):18487-18491.
    [125]Li Z, Lin W, Moon K S, et al., Metal catalyst residues in carbon nanotubesdecrease the thermal stability of carbon nanotube/silicone composites, Carbon,2011,49:4138-4148.
    [126]丁子上,翁文剑,溶胶-凝胶技术制备材料的进展,硅酸盐学报,1993,20(5):443-450.
    [127]王韵,庄志强,齐雪君,金属氧化物溶胶-凝胶法制备技术及其应用,化工进展,2002,2(10):707-712.
    [128]丁犀兆,何怡贞,溶胶-凝胶工艺在材料科学中的应用,材料科学与工程,1994,12(2):1-8.
    [129]Flynn J H, Thermal analysis kinetics—past, present and future, Thermochim.Acta,1992,203(1):519-526.
    [130]Vyazovkin S, Wight C A, Isothermal and non-isothermal kinetics of thermallystimulated reactions of solids, Int. Rev. Phys. Chem.,1998,17(3):407-433.
    [131]Prasad T P, Kanungo S B, Ray H S, Non-isothermal kinetics: some merits andlimitations, Thermochim. Acta,1992,203(1):503-514.
    [132]Vyazovkin S, Kinetic concepts of thermally stimulated reactions in solids: Aview from a historical perspective, Int. Rev. Phys. Chem.,2000,19(1):45-60.
    [133]Flynn J H, The ‘Temperature Integral’—Its use and abuse, Thermochim.Acta,1997,300(1):83-92.
    [134]Vyazovkin S, Alternative description of process kinetics, Thermochim. Acta,1992,211(1):181-187.
    [135] esták J, Berggren G, Study of the kinetics of the mechanism of solid-statereactions at increasing temperatures, Thermochim. Acta,1971,3(1):1-12.
    [136]Anthony G M, Kinetic and chemical studies of polymer cross-linking usingthermal gravimetry and hyphenated methods. Degradation of polyvinylchloride,Polym. Degrad. Stabil.,1999,64(3):353-357.
    [137]Aracil I, Font R, Conesa J A, et al., TG–MS analysis of the thermo-oxidativedecomposition of polychloroprene, J. Anal. Appl. Pyrol.,2007,79(1-2):327-336.
    [138]Chien Y, Lu M, Chai M, et al., Characterization of Biodiesel and BiodieselParticulate Matter by TG, TG MS, and FTIR, Energy&Fuels,2008,23(1):202-206.
    [139]Xie W, Heltsley R, Cai X, et al., Study of stability of high-temperaturepolyimides using TG/MS technique, J. Appl. Polym. Sci.,2002,83(6):1219-1227.
    [140]Perng L H, Thermal decomposition characteristics of poly(phenylene sulfide) bystepwise Py-GC/MS and TG/MS techniques, Polym. Degrad. Stabil.,2000,69(3):323-332.
    [141]Perng L H, Tsai C J, Ling Y C, Mechanism and kinetic modelling of PEEKpyrolysis by TG/MS, Polymer,1999,40(26):7321-7329.
    [142]Tang C W, Wang C B, Chien S H, Characterization of cobalt oxides studied byFT-IR, Raman, TPR and TG-MS, Thermochim. Acta,2008,473(1-2):68-73.
    [143]Xie W, Gao Z, Liu K, et al., Thermal characterization of organically modifiedmontmorillonite, Thermochim. Acta,2001,367-368:339-350.
    [144]Yoshioka T, Akama T, Uchida M, et al., Analysis of two stagesdehydrochlorination of poly(vinyl chloride) using TG-MS, Chem. Lett.,2000,29(4):322-323.
    [145]Kueseng K, Jacob K I, Natural rubber nanocomposites with SiC nanoparticlesand carbon nanotubes, Eur. Polym. J.,2006,42(1):220-227.
    [146]Frogley M D, Ravich D, Wagner H D, Mechanical properties of carbonnanoparticle-reinforced elastomers, Compos. Sci. Technol.,2003,63(11):1647-1654.
    [147]Cui S, Kinloch I A, Young R J, et al., The effect of stress transfer withindouble-walled carbon nanotubes upon their ability to reinforce composites, Adv.Mater.,2009,21(35):3591-3595.
    [148]Blighe F M, Young K, Vilatela J J, et al., The effect of nanotube content andorientation on the mechanical properties of polymer–nanotube composite fibers:Separating intrinsic reinforcement from orientational effects, Adv. Funct. Mater.,2011,21(2):364-371.
    [149]Cui S, Kinloch I A, Young R J, et al., Response to “Comment on the effect ofstress transfer within double-walled carbon nanotubes upon their ability toreinforce composites”, Adv. Mater.,2010,22(11):1180-1181.
    [150]Prabhakaran K, J S, Deformation of isolated single-wall carbon nanotubes inelectrospun polymer nanofibres, Nanotechnology,2007,18(23):235707.
    [151]Young R J, Kinloch I A, Gong L, et al., The mechanics of graphenenanocomposites: A review, Compos. Sci. Technol.,2012,72(12):1459-1476.
    [152]Prasithphol W, Young R J, Interfacial micromechanics of technora fibre/epoxycomposites, J. Mater. Sci.,2005,40(20):5381-5386.
    [153]Cooper C A, Young R J, Halsall M, Investigation into the deformation of carbonnanotubes and their composites through the use of Raman spectroscopy,Compos. Part A-Appl. S.,2001,32(3):401-411.
    [154]Xu J, Wang N, Guan L, Controlled assembly of ultrasmall iron oxidenanoparticles on carbon nanotubes: Facile preparation and interfacially inducedferromagnetism, Chem. Lett.,2012,41(3):227-228.
    [155]de Faria D L A, Venancio Silva S, de Oliveira M T, Raman microspectroscopyof some iron oxides and oxyhydroxides, J. Raman Spectrosc.,1997,28(11):873-878.
    [156]Corrias M, Serp P, Kalck P, et al., High purity multiwalled carbon nanotubesunder high pressure and high temperature, Carbon,2003,41(12):2361-2367.
    [157]Málek J, Criado J M, A simple method of kinetic model discrimination. Part1.Analysis of differential non-isothermal data, Thermochim. Acta,1994,236:187-197.
    [158]Ozawa T, Kinetics of non-isothermal crystallization, Polymer,1971,12(3):150-158.
    [159]Reich L, Levi D W, Dynamic thermogravimetric. Analysis in polymerdegradation, J. Polym. Sci.: Macromol. Rev.,1967,1(1):173-275.
    [160]Coats A W, Redfern J P, Kinetic Parameters from Thermogravimetric Data,Nature,1964,201(4914):68-69.
    [161] esták J, Málek J, Diagnostic limits of phenomenological models ofheterogeneous reactions and thermal analysis kinetics, Solid State Ionics,1993,63-65:245-254.
    [162]Málek J, Smr ka V, The kinetic analysis of the crystallization processes inglasses, Thermochim. Acta,1991,186(1):153-169.
    [163]Málek J, The kinetic analysis of non-isothermal data, Thermochim. Acta,1992,200:257-269.
    [164]Málek J, A computer program for kinetic analysis of non-isothermalthermoanalytical data, Thermochim. Acta,1989,138(2):337-346.
    [165]Criado J M, Málek J, Ortega A, Applicability of the master plots in kineticanalysis of non-isothermal data, Thermochim. Acta,1989,147(2):377-385.
    [166]Phadnis A B, Deshpande V V, Determination of the kinetics and mechanism of asolid state reaction. A simple approach, Thermochim. Acta,1983,62(2):361-367.
    [167]Rosmaninho M G, Moura F, Souza L R, et al., Investigation of iron oxidesreduction by ethanol as potential route to produce hydrogen, Appl. Catal. B-Environ.,2012,115-116:45-52.
    [168]Liu Y, Yu Y X, Zhang W D, Photoelectrochemical properties of Ni-doped Fe2O3thin films prepared by electrodeposition, Electrochim. Acta,2012,59:121-127.
    [169]An Z, Zhang J, Pan S, et al., Novel peanut-like alpha-Fe2O3superstructures:Oriented aggregation and ostwald ripening in a one-pot solvothermal process,Powder Technol.,2012,217:274-280.
    [170]冯圣玉,张洁,李美江,等,有机硅高分子及其应用,北京:化学工业出版社,2004.9-15.
    [171]Nath D C D, Sahajwalla V, Application of fly ash as a catalyst for synthesis ofcarbon nanotube ribbons, J. Hazard. Mater.,2011,192(2):691-697.
    [172]Cai D, Neyer A, Kuckuk R, et al., Raman, mid-infrared, near-infrared andultraviolet--visible spectroscopy of PDMS silicone rubber for characterization ofpolymer optical waveguide materials, J. Mol. Struct.,2010,976(1):274-281.
    [173]Bokobza L, A Raman investigation of carbon nanotubes embedded in a softpolymeric matrix, J. Inorg. Organomet. Polym.,2012,22:629-635.
    [174]Naumenko A, Yashchuk V, Bliznyuk V, et al., Peculiarities of Raman spectra ofpolyurethane/carbon nanotube composite, Eur. Phys. J. B,2012,85(4):1-6.
    [175]Kao C, Young R J, Assessment of interface damage during the deformation ofcarbon nanotube composites, J. Mater. Sci.,2010,45(6):1425-1431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700