甘草抗旱特性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘草(Glycyrrhiza uralensis Fisch.)为国家二类保护植物,具有很高的药用价值和重要的生态保护功能。研究甘草抗旱特性,对于实施节水抗旱培育优质的人工甘草资源和快速恢复西部地区的甘草植被都具有重要意义。试验以甘草2a实生苗为材料,采用每日称重补水控制盆栽苗土壤相对含水量的土壤干旱处理方法,在人工控水的不同干旱条件下,对甘草的形态与生长反应、光合响应、水分状况变化、膜脂过氧化作用和渗透物质含量等方面内容进行了初步研究。主要结论如下:
     (1)在形态与生长反应方面,观察发现甘草地下和地上两部分都具有适应干早环境的特征,地下有庞大的根和根茎系统,吸水能力很强,地上茎叶形态表现出很强的节水能力,并且甘草群体抗旱优势很强;同时也观测到干旱对甘草地上茎叶生长抑制较为明显,但在一定程度上对地下根系生长起到了促进作用,导致根冠比增大、根皮颜色变红,即在产量和质量方面都有了很大地提高。
     (2)在光合响应方面,当土壤相对含水量下降到45%~50%时,甘草叶片气孔开度变大,净光合速率和水分利用效率最高,但是当干旱胁迫更加严重时,荧光动力学曲线发生明显变化,严重影响了甘草叶片光合作用的进行。
     (3)在水分状况变化方面,随着干旱胁迫的加剧,甘草叶水势和组织相对含水量下降,失水速率减缓,组织密度增大,束缚水含量提高,从而使甘草叶片细胞吸水和保水能力渐强,并且能够靠较高的组织弹性来维持膨压。
     (4)在膜脂过氧化作用和渗透物质含量的变化方面,处于干旱胁迫下的甘草叶片原生质膜相对透性增大,膜脂过氧化作用加强,但是由于SOD酶活性能够在较长时间内维持较高的水平,所以降低了膜脂过氧化程度,减轻了膜的伤害。另外,可溶性糖和脯氨酸等渗透物质含量在干旱胁迫下持续升高也使其渗透调节能力加强。
     综合分析各项抗旱指标,发现45%~50%的土壤相对含水量范围是适宜甘草生长的土壤水分条件,在这种干旱条件下,有利于培育高产优质的人工资源和大面积恢复甘草植被;同时研究结果也表明,甘草对于旱胁迫的反应是积极的,是多种抗旱途径综合作用的结果。
Glycyrrhiza uralensis Fisch., with high value of medicine and high ecological protection function, is belongs to the second degree protective plants in our country. In order to breed and cultivate new species of G.uralensis with the characteristic of water-saved and high medicine value, to fit drought condition in West of China, its drought resistance was Studied. The seedlings, which were two-year-old and planted in pots, were treated with different water stress by means of weighing and watering in the afternoon every day. Its response index to drought stress, including form, growth, photosynthesis, water status change, membrane lipid peroxidation and osmotic matter content, are shown as below.
    (1) In the response of form and growth, it is discovered that G. uralensis has the characteristic of adapting drought conditions on the ground and under ground. There were so huge roots and rhizome system under ground that they could absorb water from deep soil; Stems and leaves on ground could decrease water loss. The huge biomes of G.uralensis had strong drought resistance superiority. In the same time, drought stress significantly restrained the growth of G.uralensis. On the contrary, in some extent, drought stress could improve the growth of roots under ground and resulted in increasing the rate of root/shoot; moreover, made the color of velamen become red and enhanced the output and the quality.
    (2) In the response of photosynthesis, when the relative water content (RWC) of soil dropped to 40%~50%, the stomatal conductance of G.uralensis enlarged, the net-photosynthesis rate and the water use efficiency reach the top; but with RWC of soil further decreasing, the fluorescence dynamics curve changed obviously so as to affect seriously the performance of photosynthesis in the leaves of G.uralensis.
    (3) In water status change, with the water stress increasing, leaves water potential and relative water content of tissue in G.uralensis decreased; the water loss rate decreased; the tissue density increased; bound water content enhanced; which made the ability of cell absorbing and saving water increased gradually so as to maintain turgor by powerful tissue elasticity.
    (4) In the membrane lipid peroxidation and osmotic matter content, under the condition of drought stress, the relative membranes permeability of the leaves in the G.uralensis increased; the membrane lipid peroxidation effect enhanced. However, because the activity of SOD could maintain a high level in a long time, it reduced the
    4 9
    
    
    
    membranes lipid peroxidation so as to lessen the harm to the membranes. In addition, under the condition of drought stress, the continuous rise of the content of fusibility total sugar and proline increased the osmotic adjustment ability.
    Through comprehensive analysis,, the results showed the range of 45%~50% relative water content of soil was the best condition to suit the growth of G.uralensis, which benefited to cultivate the artificial resources of high production and high medicine value, recovered wild area of G.uralensis plant. In the same time, the results also demonstrated G. uralensis was active to the response of drought stress with multiple ways of drought resistances.
引文
[1] 刘友良主编.植物水分逆境生理[M].北京:农业出版社,1992.
    [2] 杨敏生.白杨双交杂种无性系抗旱性生理基础及苗期鉴定的研究[D].北京林业大学博士论文,1996,3.
    [3] 顾振瑜,胡景江,文建雷,等.元宝枫对干旱适应性的研究[J].西北林学院学报,1999,14(2):1~6.
    [4] 徐坤,郑国生.水分胁迫对生姜光合作用及保护酶活性的影响[J].园艺学报,2000,27(1):47~51.
    [5] 李中存,开新华,余松烈.土壤干旱对冬小麦植株光合及蒸腾特性的影响[J].华北农学报,1990,5(增):92~93.
    [6] 刘建伟,刘雅荣,于世绩.不同杨树无性系光合作用与其抗旱能力的初步研究[J].林业科学,1994,30(1):83—87.
    [7] 刘爱琴,冯丽珍.干旱胁迫对杉木无性系光合特性的影响[J].福建林学院学报,1998,18(3):238~241.
    [8] 关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31(4):293~297。
    [9] 姚雅琴,王沛洪,胡东维.水分胁迫下小麦叶肉细胞超微结构变化与抗旱性的关系[J].西北植物学报,1993,13(1):16~20.
    [10] 王忠主编.植物生理学[M].北京:中国农业出版社,2000,5.
    [11] Levitt J. Responses of Plants to Environmental Stresses. New York:.Academic Press. 1972:325~358.
    [12] Turner NC. Drought resistance and adaptation to woter deficits in crop plants [A]. In:Harry Mussall(ed.).Stress Physiology in Crop Plants[c]. New York: John Wiley and Sons, 1979:343~372.
    [13] Hall A.E. Physiological ecology of crops in relation to light, water,,and tempdfature, In:Carroll C.R.,Vandermeer J.H.,Rosset P. (eds),Agroecolegy, New York:Mc Graw Hill Publishing Company. 1990,191~233.
    [14] 李吉跃.杨树耐旱性及其生理[J].北京林业大学学报,1991,13(3):92—99.
    [15] 杨敏生.树木抗旱性研究进展[J].河北林果研究,1997,12(1):87~93.
    [16] 王学臣,任海云,娄成后.干旱胁迫下植物根系与地上部间的信息传递[J].1992,28(6):397~402.
    [17] 郭卫东,沈向,李嘉瑞.植物抗旱分子机理[J].西北农业大学学报,1999,27(4):102~107.
    [18] 李德全.植物渗透调节研究概况.植物抗性生理研究[M].济南:山东科学技术出版社,1992,5~9.
    [19] Wood, A.J.,Saneoka, H.,Rhodes, D.,Joly, R.J.,and Goldsbrough, P.B. Plant Physiol. 1997,110:1301~1308.
    
    
    [20] 蒋明义,荆家海,王韶唐.渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响[J].植物生理学报,1991,17(1):80~84.
    [21] 许长城,邹琦.植物水分胁迫与活性氧代谢[J].山东农业大学学报,1993,24(1):113~117.
    [22] 吕庆,郑荣梁.干旱及活性氧引起小麦膜脂过氧化与脱脂化[J].中国科学(C辑)1996,26(1):26~30.
    [23] 胡景江,顾振瑜,文建雷,等.水分胁迫对元宝枫膜脂过氧化作用的影响[J].西北林学院学报,1999,14(2):7~11.
    [24] 阎秀峰,李晶,祖元刚.干旱胁迫对红松幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,1999,19(6):850~854.
    [25] 罗华建,刘星辉,谢厚叉.水分胁迫对枇杷叶片活性氧代谢的影响[J].福建农业大学学报,1999,28(1):33~37.
    [26] 陈立松,刘星辉.水分胁迫对荔枝叶氮和核酸代谢的影响及其与抗旱性的关系[J].植物生态学报,1999,25(1):49.
    [27] 谢寅峰,沈惠娟,罗爱玲等.干旱胁迫时红松幼苗保护酶活性及膜脂过氧化作用的影响[J].生态学报,1999,14(4):27~30.
    [28] 章崇玲,曾国平,陈建勋.干旱胁迫对菜薹叶片保护酶活性和膜脂过氧化的影响[J].植物资源与环境学报,2000,9(4):23~26.
    [29] 陈由强,朱锦懋,叶冰莹.水分胁迫对芒果幼叶细胞活性氧伤害的影响[J].生命科学院,2000,4(1):60~64.
    [30] 陈红兵,郭继虎,王金胜等.水分胁迫对小麦生化指标与抗旱性的关系[J].山西农业大学学报,2000,20(2):129~131.
    [31] 谢寅峰,水分胁迫下三种针叶树幼苗抗旱性与硝酸还原酶和超氧化物歧化酶活性关系[J].浙江林学院学报,2000,17(1):24~27.
    [32] 柴宝峰,李洪建,王孟本.急西黄土丘陵区若干树种幼苗抗旱性与硝酸还原酶和超氧化物歧化酶活性关系[J].木本植物研究,2000,20(1):173—176.
    [33] 许丽丽.水杨酸对水分胁迫下小麦幼苗叶片膜损伤的保护作用[J].植物生理学通讯,2000,36(2):110~113.
    [34] 张立军.小麦幼苗干旱逆境蛋白与抗旱性关系的研究[J].沈阳农业大学学报,1998,29(2):106~109.
    [35] XU D,DUAN X,WANG B,et al.Expression of a late embryogenesis abundant protein gene,HAVl from barley confers tolerance to water deficit and salt stress in transgenic rice.Plant Physiol.,1996,110:249~257.
    [36] 余叔文,汤章城主编.植物生理与分子生物学(第二版)[M].北京:科学出版社,2001,6.
    [37] 李妮亚,曹翠玲,高峻凤.干旱对小麦诱导蛋白表达与某些生理特性的初步探讨[J].西北植物学报,1997,17(2):210~216.
    [38] Shagan T., Bar-Zvi D. Nucheotide sequence of an arabidopsis-thaliana turgor-respnsive cDNA clone encoding TMP-A atransmembrane protein containg the maior intrinsic protein motif. Plant Physiol.,1993,101(4):1397~1398.
    
    
    [39] Hamed A.A.,Al-Wakeel A.S.A.M.,Dadoura S.S. Interactive dffects of water stress and gibberellic acid on nitrogen content of Fenugreek plant. Egyptian J. Of Physiologcal Science, 1994,18(2):295~308.
    [40] Mayne M.B.,Coleman J.R., Blumwald E. Identification of drought-soecufuc clines in jack pine seedlings induced during drought conditioning. Plant Physiology, 1994,05:109.
    [41] Farshsdfar E., Koszegi B., Tischner T., Sutka J., Substitution analysis of drought tolerance in wheat(Triticum aestivum L.).Plant Breeding,1995,114(6):542~544.
    [42] Ingram J.,Gallagher L.,Ekster r.,barteles D., bianchi G. The role of sucrose-phosphate sycrise synthase in the desiccation toleranc of the resurrection plant, Craterostigma Plantagineunm Hochst. J. of Experimental Botany, 1995,46:14.
    [43] Zhang C-S, Lu Q., Verma DD. S. Removal of feedback inhibition of DELTA-l-Pyrroline-5-carbosylate synthetase, a biunctional enzyme cata lyzing the first two steps of proline biosynthesis in lants. J. of Biol. Chem.,1995,270(35):20491~20496.
    [44] 李跃强,王学臣.根信号及其在植物水分利用最优化中的调节作用[J].1994,11(2):37~43.
    [45] Davies W J,Jianhuazhang.Root Signals and the Regulation of growth ang derelopment Of plangts in drying Soil[J].Annu.Rev.plant physiol.Plant Mol.biol.1991,42:55~76.
    [46] 梁宗琐,康绍忠,高峻凤.植物对土壤干旱信号的感知、传递及其利用的控制[J].干旱地区农业研究,1999,17(2):72~78.
    [47] 陈玉玲,曹敏.干旱条件下ABA与气孔导度和叶片生长的关系[J].植物生理学通报,1999,35(5):398.
    [48] 路贵和,安海润.作物抗旱性鉴定方法与指标研究进展[J].山两农业科学,1999,27(4):39~43.
    [49] 胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望[J].林业科学,1998,34(2):77~89.
    [50] 野并浩(爱媛大衣).农作物水分生理[M].农业园艺,1999,74(12):1325~1333.
    [51] 郭卫东,饶景萍,徐炎等.抗旱基因HDCSl的植物表达载体构建[J].西北植物学报,1999,19(3):371~375.
    [52] 王兰兰,王鸣.JN提高苹果幼树抗旱性的研究初报[J].园艺学报,1991,18(2):153~158.
    
    
    [53] 张海旺.聚乙二醇(PEG)渗透处理对老化油菜种子过氧化及细胞膜透性的影响[J].华北农学报,1989,4(2):56~59.
    [54] T.MuHYADDIN,H—J.WIEBE.聚乙二醇(PEG)对蔬菜种子出苗的影响(译文)[J].1990(6):74~76.
    [55] 陈禅友.PEG处理提高长豇豆种子火力的初步研究[J].种子,1991(1):32~35.
    [56] 廖祥儒,孙群,高俊凤等.PEG预处理引发绿豆种子的某些生理生化变化(简报)[J].植物生理学通讯,1995,31(3):189~191.
    [57] 智慧,陈洪斌.PEG处理对提高谷子种子活力的研究[J].种子,1998(3):11~13.
    [58] 王飞,丁勤.PEG预处理对老化杜梨种子活力的影响[J].种子,1999(4):20~22.
    [59] 中国科学院兰州沙漠研究所编.中国沙漠植物志[M].北京:科学出版社,1987,232~236.
    [60] 中国植物志[M].1998,42卷2分册:167~175.
    [61] 傅克治主编.中国甘草野生变家植[M].哈尔滨:东北林业大学出版社.1989.
    [62] 张康健,王蓝编著.药用植物资源开发利用学[M].北京:中国林业出版社,1997.
    [63] 徐良主编.中药无公害栽培加工与转基因工程学[M].北京:中国医药科技出版社,2000.
    [64] 贾谦,赵润怀主编.濒危中药资源保护利用战略研讨会论文集[C].中药研究与信息,2000,增刊6.
    [65] 王文全.乌拉尔甘草生态学特性及生态环境对其药材质量影响的研究[D].北京林业大学博士学位论文,2000,11.
    [66] 张鹏云,彭泽祥.西北的甘草—西北资源植物资料之一[J].兰州大学学报(自然科学版),1960,(1):57~87.
    [67] 朱震达.中国脆弱带与土地沙漠化[J].中国沙漠,1991,11(4):11~22.
    [68] 张国盛.干旱、半干旱地区乔灌木树种耐旱性及林地水分动态研究进展[J].中国沙漠,2000,20(4):363~368.
    [69] 林寿全,林琳.生态因子对中药甘草质量影响的初步研究[J].生态学杂志,1992,11(6):7~20.
    [70] 王涛.西部大开发中的沙漠化研究及其灾害防治[J].中国沙漠,2000,20(4):345~348.
    [71] 王涛,赵哈林,肖洪良.我国沙漠化研究进展[J].中国沙漠,1999,19(4):299~311.
    [72] 张宪政.植物叶绿素含量测定——丙酮乙醇混合液法[J].辽宁农业科学,1986,(3):26~28.
    [73] 李吉跃.太行山区主要造林树种耐旱特性的研究[D].北京林业大学博士学位论文,1990,6.
    [74] 华东师范大学生物系植物生理教研组编著.植物生理实验指导[M].北京:高等教育出版社,1990.
    [75] 何维明.水分因素对沙地柏实生苗水分和生长特征的影响.植物生态学报,2001,25(1):11~16.
    
    
    [76] 沈繁宜,康惠宁,李吉跃.对PV曲线分析方法的进一步探讨[J].植物生理学通讯,1995,31(4):286~289.
    [77] 邹琦主编.植物生理生化实验指导[M].北京:中国农业出版社,1995.
    [78] 朱广廉,钟诲文,张爱琴编.植物生理学实验[M].北京:北京大学出版社,1990.
    [79] 白宝璋主编.植物生理学测试技术[M].北京:中国科学技术出版社,1993.
    [80] 李如亮主编.生物化学实验[M].武汉:武汉大学出版社,1998.
    [81] 张殿忠,汪沛洪,赵会贤.测定小麦叶片游离脯氨酸含量的方法[J].植物生理学通讯,1990,(4):62—65.
    [82] 裴喜春,薛河儒主编.SAS及应用[M].北京:中国农业出版社,1998,3.
    [83] 林定波,颜秋生,沈德绪.植物对水分胁迫的分子响应及其遗传改良研究进展[J].广西农业大学学报,1996,15(2):161~166.
    [84] 林世青,许春辉,张其德等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J].植物学通报,1992,9(1):1~16.
    [85] 梁新华,许兴,徐兆桢等.干旱对春小麦旗叶叶绿素a荧光动力学特征及产量间关系的影响[J].干旱地区农业研究,2001,19(3):72~77.
    [86] 张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444~448.
    [87] 曹慧,兰颜平,王孝威等.果树水分胁迫研究进展[J],果树学报,2000,18(2):110~114.
    [88] 张永强,姜杰.水分胁迫对冬小麦叶片水分生理生态过程的影响[J].干旱区研究,2001,18(1):57~61.
    [89] Midgley G.F.,Moll E.J.Gas exchange in afld-adapted shrubs:when is efficient water use a disadvantage South African J.of Botany,1993,59(5):491~195.
    [90] 黄颜梅,张健,罗承德.树木抗旱性研究(综述)[J].四川农业大学学报,1997,15(1):49~54.
    [91] 顾振瑜,文建雷,胡景江,等.应用P-V技术对元宝枫水分生理特点的研究[J].西北林学院学报,1999,14(4):17~22.
    [92] 李吉跃.太行山主要造林树种耐旱特性的研究(Ⅲ—Ⅳ)[J].北京林业大学学报,1991,13(增2):230~179.
    [93] 黎裕.植物的渗透调节与其它生理过程的关系及其在作物改良中的应用[J].植物生理学通讯,1994,30(5):377~385.
    [94] Hcque E, Dathe W, Tesche M, et al. Abscisic acid and its beta-D-lucopyranosyl easter in sapings of Scots Pine in relation to water stress. Biochemoeund-Physiologie-Pflanzen, 1983,178(4):287~295.
    [95] Quartacci MF and Navari lzzo F. Water stress and free radical mediated changes in sunflowers sedding. J PantPhsiol,1991,139(5):621~625.
    
    
    [96] Mccord J Mand Fridovich J. Superoxide dismutase:An enzymic function for erythrocuprein(Hemoccaprein).J BiolCHem.,1969,224:6049~6055.
    [97] Dhindsa R S, Ries S K. Drought tolerance in two mosses:correirted with enzymatic defence agzinst lipid peroxidation [J].J Exp Sor, 1982,32:79~91.
    [98] 赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展[J].植物学通报,1999,16(5):540~546.
    [99] 王中英著.果树抗旱生理[M].北京:中国农业出版社,2000,6.
    [100] Kaur S.,Gupta A K., Kaur N. 水分下发芽实生炭水化物代谢及GA3效果,酢酸效果[J].Plant Growth Regul,2000,30(1):61~70.
    [101] 李春阳.桉树的抗旱性研究进展[J].林业科学,1998,11(3):22—36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700