光皮桦种子超干储藏及回湿处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光皮桦(Betula luminifera)属桦木科桦木属落叶大乔木,具有生态幅较宽,耐干旱瘠薄的特点,同时还有材质优良、用途广、栽培容易、病虫害少等一系列优良性状。这一树种近几年成为安徽、福建、湖北等亚热带省份新发掘的优良乡土速生树种。
     因为其种子颗粒小,内含营养物少,导致种子储藏难度较大。种子超干储藏有利于种质资源的保存。超干种子的贮藏特性在不同种类、不同品种间有较大差异。所以本研究以光皮桦为材料,对光皮桦种子的生物学特性、成分分析、超干储藏最佳含水量、空气回湿处理最佳湿度和时间、PEG回湿处理最佳浓度和时间、种子萌发初期酶活性变化等做了初步研究,主要涉及以下几个方面:
     (1)生物学特性、成分分析方面的研究。安徽省绩溪县种源种子千粒重均值为0.2225g,净度为72.76%,种子初始含水量为8.03%,种子发芽试验的发芽率为67%。通过对种子中蛋白质、粗脂肪、可溶性糖和淀粉含量的测定,确定种子中含量最高的是可溶性糖,为干重的18.5%,其次是淀粉14.76%,粗脂肪3.15%,蛋白质2.0%。各成分指标不仅说明了种子内含物少,是短命种子。
     (2)光皮桦种子最佳超干贮藏含水量测定。将种子含水量由8.03%降至6.0%~2.5%,储藏种子一年。研究结果表明光皮桦种子适于超干储藏,其最适保存的超干燥含水量为4%~ 5%。在此条件下,其活力保持较高水平,且其种子抗老化的能力显著提高。主要表现在种子发芽率、发芽指数、细胞膜完整性、脱氢酶活性等指标均保持较高水平,丙二醛含量较低。而当含水量为2.0%~3.5%或6.0%,种子活力则显著下降。
     (3) PEG渗透调节处理最佳浓度和时间的研究。利用不同浓度的PEG浸泡超干燥种子,对其种子活力进行测定。结果表明,适宜的浓度PEG对种子有一定修复作用,提高了种子活力。短时间的PEG处理(2d~4d)更易提高种子活力,长时间PEG处理反而会降低种子活力。5%PEG处理4天效果最好。
     (4)根据不同处理对种子萌发初期影响,研究了种子萌发初期生理指标的变化。结果表明:在种子萌发初期,POD同工酶出现新酶谱带,随着萌发的推进,一些原有的谱带加深; CAT同工酶在萌发过程中没有新的谱带出现,但原有谱带颜色不断加深,表明酶代谢合成的增强。
Betula luminifera is categorized into Betulaceae,Betula L. defoliation broadleaf species. It not only has wide ecology breadth and can endure drought and barren, but also has many other good properties such as fine timber, wide use, easy growth, few plant diseases and insect pests,etc. And in recent years it has become fine species of fast-growing-in-countryside-soil, according to the practical result discovered in some subtropical provinces like Anhui, Fujian, Hubei, etc.
     Having small size and poor nutrimental content, Betula luminifera seeds are difficult to be stored. Ultra-dried treatment helps to storage germplasm resources. There are big differences in characteristics of ultra-dried storage treatment among different species and types. Thus, this paper took Betula luminifera seeds as research target, and did a pilot research on areas covering the seeds’biological characteristics, component analysis, optimal moisture content for ultra-dried storage, optimal density and time for PEG treatment, accordingly changes of enzyme activity at the early stage of seed germination. The results showed as follows:
     (1) Seeds’biological characteristics and components were studied. The average weight of one thousand seeds from Jiqi county Anhui province was 0.2225g;pure rate was 72.76%;initial moisture content was 8.03%; germination rate was 67%. The analysis result showed that the highest content in a seed was soluble sugar, which accounts for 18.5% of its dry weight; the second highest content was starch, 14.76%; then crude fat, 3.15%; and the lowest, protein, only 2.0%. The above result suggested that Betula luminifera seeds might be ephemeral because of poor contents.
     (2)The optimal moisture content of ultra-dry storage treatment for Betula luminif- era seeds were studied. Preserved Betula luminifera seeds for one year after lessening their moisture content from 8.03% to range of 6.0%~2.5%. The result showed that the ultra-dry storage were suitable for Betula luminifera seeds, and the optimal moisture content for the treatment lied in the range of 4%~5%。Under this condition, the seed vigor keeped relatively high level, and the aging-resistance increased remarkably. The results above were mainly embodied by relatively high germination percentage, germination index, cell membrane integrality, the activity of dhase, as well as relatively lower MDA content. However, when the seed moisture content become 2.0%~3.5% and 6.0%, the seed vigor decreased significantly.
     (3) Different density and time of PEG treatment for ultra-dried Betula luminifera seeds were studied. PEG of different density was utilized to soak the ultra-dried seeds, and then measured the conductance of seed and seed vigor. The result indicateed, PEG of fitting concentration had definite function in repairing on the aging seed, improving the vigor of seeds. The PEG of different density had different effect on all kinds of seeds. The shorter time(2d~4d)PEG treatment was tend to improve the vigor of seeds, but the longer time PEG treatment would hinder sucking water, then reduce the vigor of seeds.
     (4) According to the effect of seed germination for different PEG treatment, we disscussed the accordingly changes of physiology index. It showed that POD isozyme appeared a new isozyme trand at the early stage of seed germination, and later some of the intrinsic isozyme trands deepened. There wasn’t any new isozyme trand of CAT isozyme appearing in the seed germination, but the color of the intrinsic isozyme trands continuously deepened, which indicateed the inhancement of the enzymatic metabolism.
引文
[1] Berry J A, Downton W J S.Photosynthesis.Vol. Ⅱ Development,Carbon Metabolism and Plant Productivity[M].New York:Academic Press,1982:263~343.
    [2] Bewley J D. Seed germination and dormancy[J].Plant Cell,1997,9:1055~1066.
    [3] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye[J].Annal Biochem,1976,72(2):248~254.
    [4] Brown A H D,Clegg M T,Kahler A L.et al. Plant population genetics,breeding and genetic resources.Sunderland Mass:Sinauer and Comparison with other Gymnosperm Species[J].Annals of Botany,2002,43~63.
    [5] Buitink J,Claessens MMAE,Hemminga MA,et al. Influence of water content and temperature on molecular mobility and intracellular glasses in seeds and pollens [J].Plant Physiol,1998a,118:531~541.
    [6] Buitink J, Walters C, Hoekstra FA, et al. Storage behavior of Typha latifolia pollen at low water contents : interpretation on the basis of water activity and glass concepts [J].Physiol. Plant,1998b,103:145~153.
    [7] Buth D G,Dowling T E, Gold J R. Molecular and cytological investigation[A].Winfield I J,Nelson J S. Cyprinid fishes systematics,biology and exloitation[C]London:Chapman and Hall,1991.83~118.
    [8] Chang B S,Beauvais R M,Dong A,et al.Physical factors affecting the storage stability of freeze-dried interleukin receptor antagonist:glass transition and protein conformation[J].Arch. Biochem. Biophys., 1996,331:249~258.
    [9] Cheng H Y,Zheng G H, Qin H,et al.Water thermodynamic analysis on seed desiccation tolerance and its ultradry storage effects [J].Sci .Agric. Sin.,1996,29:65~73.
    [10] Cheng HY.Studies on germplasm of seed ultradrying storage[M].Beijing:Chinese Academy of Science, 1994.
    [11] Donald M B. Seed deterioration:physiology,repair and assessment[J].Seed Sci.Tech.,1999,27:177~237.
    [12] Ellis R H,Hong T D,Robert E H.A. Low-moisture-content limit to logarithmic relation between seed moisture content and longevity in sesame seeds[J].Ann. Bot.,1988,61:405~408.
    [13] Ellis R H,Hong T D,Robert E H.Moisture content and the longevity of seeds of phase [J].Annals of Botany,1990a.66:341~348.
    [14] Ellis R H,Hong T D,Roberts EH,et al.Low moisture content limits to relations between seed,longevity and moisture[J].Ann. Bot.,1990,65:493~504.
    [15] Ellis R H,Hong T D,Roberts EH.Ligarutgnic relationship between moisture content and longevity in sesame seeds[J].Ann. Bot.,1986,57:499~503.
    [16] Ellis R H,Hong T D,Roberts EH.Moisture content,storage,viability and vigor[J].Seed Sci. Res., 1991, 1:275~277.
    [17] Ellis R H,Hong T D,Roberts E H.Survival of lettuce and sunflower seeds stored at low and very moisture contents[J].Ann. Bot.,1995,76:521~534.
    [18] Ellis R H,Hong T D.Survival of dry and ultra-dry seeds of carrot,groundnut,lettuce,oilluce rape,and onion during five year’s hermetic storage at two temperatures[J].Seed Sci. & Technol.,1996,24:347~358.
    [19] Ellis R H.Longevity of seeds stored hermetically at low moisture contents[J].Seed Sci. Res.,1998, 8(1):9~10.
    [20] Heyes J A,Sealey D F,Vre de L A.Plasma membrane ATPase activity during pepino ( Splanum muricatun) ripening[J].Physiol. Plant,1997,101:570~576.
    [21] Kalpana R,Madhava Rao K V.On the ageing mechanism in pigeonpea (Cajanus cajan Millsp. )seeds [J]. Seed Sci.&Tech.,1995,23:1~9.
    [22] Kochloa J,Fong K L.Evidence of peroxidation of lysosomal memberanes is in itiated by hydroxy free raicals produced during flavin enzyme activity[J].Plant Cell Physiol.,1977,18:463.
    [23] Koster K L.Glass formation and desiccation tolerance in seeds [J].Plant Physiol,1991,96:302~304
    [24] Larson R A.Naturally occurring antioxidants[M]. Boca Raton :Lewis Publ., ,1997.
    [25] Leopold A C,Sun W Q, Bernal-Lugo I.The glassy state in seeds:analysis and function [J].Seed Sci. Res., 1994,4:267~274
    [26] Lin (J林坚),Zheng G H.A study on ultradrying sorghum seed [J].Plant Physiol. Comm.,1993,29:435~436.
    [27] Litay A,Tan C S.Effect of various levels of available water on germination of PEG pretreated or untreated tomato seeds[J].Journal of the American society for Horti-cultural Science,1985,110:748~751.
    [28] Li HuiLin.Ginkgo-the maidenhair tree[M].Amer:Hort.Mag.,1961,40:239~249.
    [29] Luisaetal C.Sunflower seedlings subjected to increasing water deficit stress,oxidative stress and defense mechanisms[J].Physiol. Plant,1995,93:25~30.
    [30] Priestley D A,Wetner B G,Leopold AC.Organic free radical levels in seeds and pollen:The effects of hydration and aging [J].Plant Physiol.,1985,64:88~94.
    [31] Rich P R,Bonner W D.The sites of superoxide anion generation in higher plant-mitochondria[J].Biochem Biophys,1978,188:210~213.
    [32] Robert J W. Methods for determination of glass transitions in seeds[J].Ann Bot,1994,74:525~530.
    [33] Sun W Q.Glassy state and seed storage stability:the WLF kinetics of seed viability loss at T-Tg and the plasticization effect of water on storage stability[J].Ann. Bot.,1997,79:291~297.
    [34] Thaliyal R C,Connor K R.Effect of accelerated ageing on viability, leachate exudation,and fatty acid content of Dalbergia sissoo Roxb Seeds [J].Seed Sci.&Tech.,1997,25:311~319.
    [35] Vertucci C W,Roos E E.Theoretical basis of protocols for seed storage Ⅱ.The influence of temperature on optimal moisture levels[J].Seed Sci. Res.,1993,3:201~213.
    [36] Walters C,Engels J.The effects of storing seeds under extremely dry condition[J].Seed Sci. Res.,1998, 8(1):3~8.
    [37] Wendell Q S,Leopold A C.Glass state and seeds storage stability:A viability equation analysis[J].Ann. Bot.,1994,74:601~604.
    [38] Wiebe H J.Improvement of emergence by osmotic seed treatments in soil of saltnity [J].Acta Horticulture, 1987,1:91~100.
    [39] Zheng GH,Jing XM, Tao KL.Ultra-dry seed storage cuts costs of gene bank[J].Nature,1998,39, (21):223~224.
    [40] 蔡礼鸿.枇杷属的等位酶遗传多样性和种间关系及品种鉴定研究[D].武汉:华中农业大学.
    [41] 陈存及,李生等.光皮桦苗高生长期划分有序样本聚类分析[J].福建林学院学报,2002,22(3):197~200.
    [42] 陈存及,刘春霞,陈登雄等.光皮桦扦插繁殖试验研究[J].福建林学院学报,2002,22(2):101~104.
    [43] 陈建业,宁玉霞等.河南桂花品种过氧化物酶同工酶研究[J].园艺学报,1995,22(2):176~180.
    [44] 陈光仪,傅家瑞.花生种子劣变过程中的一些酶活性的变化[J].植物学报,1987, 29(2):164~170.
    [45] 陈鹏,肖亮,关志华.菜豆种子的超干研究[J].西北植物学报,2005,25(7):1463~1466.
    [46] 陈信波.种子处理技术在提高种子活力上的应用[J].种子,1991,(1): 43~45.
    [47] 陈幼生.中国木本植物种子[M].北京:中国林业出版社,2001.
    [48] 程红焱,郑光华,陶嘉龄.超干处理对几种芸苔属植物种子生理生化和细胞超微结构的效应[J].植物生理学报,1991,17(3):273~284.
    [49] 程红焱.种子超干贮藏技术研究的背景和现状[J].云南植物研究,2005,27(2):113~124.
    [50] 程立生.同工酶电泳技术在动物分类上的应用[J].动物学杂志,1987,4:20~23.
    [51] 程晓阳.光皮桦等 4 种树种造林试验效果分析[J].安徽林业科技,2005,2:13~14.
    [52] 崔秀敏,土秀峰,杜宏斌.PEG 引发种子的研究进展[J].塔里木农垦大学学报,2000,12(4):47~52.
    [53] 方乐金,曹健康,方太平.遮光对光皮桦苗木存活率及生长效应分析[J].黄山学院学报,2005, 104(6):36~38.
    [54] 方乐金.光皮桦无性系当代测定结果分析[J].黄山学院学报,2006,8(5):49~51.
    [55] 傅立国.中国高等植物第四卷[M].北京:科学出版社, ,2005,278.
    [56] 国际种子检验协会(ISTA).国际种子检验规程[M].上海:上海科学技术出版,1996.
    [57] 何家庆,黄训端,黎承姬,施忠辉.聚乙二醇对括楼种子萌发的影[J].激光生物学报,2005,14(6):416~419.
    [58] 洪法水,赵海泉.聚乙二醇和聚乙烯醇对黄瓜种子活力和抗寒性的影响[J].园艺学报,1997, 24(4):395~396.
    [59] 胡家恕,曾广文.超干红花种子耐藏性及抗老化作用[J].浙江大学学报(农业与生命科学版),2000, 26(6):653~656.
    [60] 胡家恕,朱成,曾广文,郑光华.超干红花种子抗老化作用及其机理[J].植物生理学报,1999, 25(2):171~177.
    [61] 胡晋.种子生物学[M].北京:高等教育出版社,2006,49~64.
    [62] 胡灶新.光皮桦采种育苗技术[J].安徽林业,2004,(3):13~14.
    [63] 黄学林,陈润政.种子生理实验手册[M].北京:农业出版社,1990,46~48.
    [64] 江瑞荣,廖柏林.不同遮荫方式对光皮桦出苗量的影响[J].林业科技开发,2003,17(3):19~20.
    [65] 景新明,陶嘉龄.超干的榆树种子在加速老化过程中活力变化与染色体变异[J].植物学报:增刊,1994,73~78.
    [66] 雷凌菁,陈伟,耿玉敏.光皮桦扦插育苗技术研究[J].林业科技开发,2004,18(6):51~52.
    [67] 雷治国,蔡发国,何会蓉等.山茶属植物同工酶的研究进展[J].经济林研究,2003,21(2):68-70.
    [68] 李建民.光皮桦天然林群落特征研究[J].林业科学,2000,36(2):122~124.
    [69] 李季平,古红梅,吴诗光,李杰刚.聚乙二醇(PEG)处理对小麦萌发种子生理生化特性的影响[J].河南农业科学,2002,(6):4~6.
    [70] 林坚,汪晓峰,景新明,郑光华.超干小麦种子抗脂质过氧化的效果[J].种子,2002, 121(2):46.
    [71] 林坚,郑光华,张庆昌.杜仲种子低温储藏技术的探讨[J].种子,1989, 8(3):8~10.
    [72] 林坚,郑光华.超干贮藏杜仲种子的研究[J].植物学通报,1996,13:58~62.
    [73] 林坚,郑光华.高梁种子的超干研究[J].植物生理学报,1993,29(6):435~436.
    [74] 国家质量技术监督局.林木种子检验规程-中华人民共和国国家标准 GB2772-1999 [M].北京:中国标准出版社,2000.
    [75] 刘芳.杉木光皮桦纯林及混交林生物量[J].浙江林学院学报,2002,19(2):143~147
    [76] 刘健,张柱岐,文俊玲.种子超干贮藏的研究进展[J].滨州职业学院学报,2004,1(3):74~77.
    [77] 刘杰. 聚乙二醇处理对羊草种子萌发及活性氧代谢的影响[J].草叶科学,2002,11(I):59~64.
    [78] 刘鹏,杨玉爱.钼硼对大豆膜脂过氧化及体内保护系统的影响[J].植物学报,2000,42 (5):461~466.
    [79] 刘亚萍 , 计巧灵 , 葛春辉等 . 不同萌发率胡杨种子萌发前后同工酶动态变化分析 [J]. 种子,2005.24(11):1~4.
    [80] 刘永庆.PEG 高渗预处理对番茄种子活力的影响[J].湖南农学院报,1994,20(1):42~46.
    [81] 吕梅. PEG 处理对两种恺木种子发芽的影响[J].林业科技开发,2006,20(3):33~35.
    [82] 卢圣栋.现代分子生物学实验技术与原理[M].北京:科学出版社,1997.
    [83] 马文丽,王转花.乌麦萌发前后抗氧化酶的研究[J].山西大学学报(自然科学版), 2003,26 (4):352~355.
    [84] 欧国腾.光皮桦种子质量特征[J].贵州林业科技,2002,30(3):11~15.
    [85] 浦心春 , 韩建国 , 王培等 . 高羊茅种子生活力丧失过程中遗传物质的降解 [J]. 草地学报 , 1996,4(3):180~185.
    [86] 宋丁全 , 姜志 林 , 郑 作孟 . 光皮 桦种群生 物量的测 定 [J]. 南京 林业大学 学报 ( 自然 科 学版),2002,26(3):40~42.
    [87] 宋丁全,姜志林,郑作孟.光皮桦种群自疏调节的初步研究[J].南京林业大学学报(自然科学版),1999,23(3):33~36.
    [88] 宋丁全,姜志林.光皮桦群落邻体干扰指数的研究[J].生态学志,2002, 21(3):15~17.
    [89] 宋丁全.光皮桦种群不同空间层次的分布格局研究[J].福建林学院学报,1999,19(1):4~7.
    [90] 宋丽华,刘雯雯,陈淑芬. PEG 处理对臭椿种子萌发的影响[J].农业科学研究,2005,26(4):25~29.
    [91] 宋廷茂.林木种子[M].北京:中国林业出版社,1984,5~9.
    [92] 孙爱清,高荣岐,尹燕枰.种子超干贮藏研究进展[J].山东农业大学学报,2000,31(3):325~329.
    [93] 孙渭,李斌,杨建雄等.聚乙二醇浸种对烟草种子萌发的影响[J].种子,2003,22(3): 10~14.
    [94] 谭常,杨惠东,余叔文.植物生理学实验手册[M].上海:上海科学技术出版社,1985:67~70.
    [95] 陶嘉玲,郑光华.种子活力[M].北京:科学出版社,1991,107~162.
    [96] 田国忠,李怀方,裘维蕃.植物过氧化物酶研究进展[J].武汉植物学究,2001,19(4):332~344.
    [97] 檀建新,尹君,王文忠等.镉对小麦、玉米幼苗生长和生理生化反应的影响[J].河北农业大学学报(增刊), 1994, 17:83~87.
    [98] 王冬群,李太武,苏秀榕.贝类同工酶研究进展[J].科学视野,2004,28(11):72-76.
    [99] 汪晓峰,景新明,郑光华.含水量对种子贮藏寿命的影响[J].植物学报,2001,43 (6 ):551~557.
    [100] 王绍林.聚乙二醇溶液对长白落叶松种子活力的影响[J].齐齐哈尔师范学院学报,1995,15(1):46~50.
    [101] 王献溥,孙世洲,李信贤.广西光皮桦林的分类和演替[J].广西植物,1998,18(2):123~138.
    [102] 王中仁.植物遗传多样性和系统学研究中的等位酶分析[J].生物多样性,1994a,2(1):38~43.
    [103] 王中仁.植物遗传多样性和系统学研究中的等位酶分析(续)[J].生物多样性,1994b,2(2):91~95.
    [104] 伍贤进.玉米种子吸胀萌发过程中抗氧化酶活性的变化[J].吉林农业大学学报,2004,26(1):6~9.
    [105] 吴晓珍,傅家瑞.衬质渗调对菜心种子的引发效果[J].中山大学学报(自然科学版),1997,36(1):69~73
    [106] 吴子诚,王乐辉. 光皮桦选择群体特征和改良技术[J].四川林业科技,1996,17 (4):17~27.
    [107] 熊全沫.同工酶电泳数据的分析及其在种群遗传上的应用[J].遗传,1986,8(l):l~5.
    [108] 徐荣,韩建国.草坪型高羊毛茅种子成熟过程中活力变化及适宜收获期研究[J].中国农业科学,2003,36(7):834~839.
    [109] 薛应龙主编.植物生理学实验手册[M].上海:上海科学技术出版社,1985.
    [110] 杨太兴,曾孟潜等.我国南方糯玉米的过氧化物酶同工酶分析[J].植物学报,1981,23(2):110~114.
    [111] 李合生,赵世杰.植物生理生化实验原理和技术[M].武汉:华中农业大学出版社,2000,167~169.
    [112] 叶芬.光皮桦繁殖方法[J].林业科技开发,1998,(4):42~43.
    [113] 易咏梅,罗世家.光皮桦苗期生长特性的初步研究[J].湖北民族学院学报(自然科学版),1998, 16(6):16~19.
    [114] 曾广文,朱诚,胡家恕,郑光华,景新民.红花种子超干期间自由基和水分状态的研究[J].浙江农业大学学报,1998,2(2):111~115.
    [115] 曾广文,朱诚,胡家恕等.红花种子超干期间自由基和水分状态的研究[J].浙江农业大学学报,1998,24(2):111~115.
    [116] 张海旺,芦翠乔,吴丁等.聚乙二醇渗透处理对老化油菜种子过氧化及细胞膜透性的影响[J].华北农业学报,1989,4 (2):56~62.
    [117] 张明方,朱诚,胡家恕.洋葱种子种质超干保存的效果及其对膜系统的影响[J].浙江农业大学学报,1999,2(3):255~259.
    [118] 张庆潮.同工酶的种类与生理功能[J].生命的化学,1993,13(6):18~20.
    [119] 张燕,方力,李人飞等.聚乙二醇对烟草种子活力及幼苗保护酶活性的影响[J].云南农业大学学报,2004,19(1):36~39.
    [120] 张永春,包满珠等.梅花品种资源同工酶多态性分析[J].北京林业大学学报,1999,21(2):94~99.
    [121] 赵世杰,许长成,邹琦等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207~210.
    [122] 赵小兰,姚崇怀.桂花部分品种的同工酶研究[J].华中农业大学学报,2000,19(6):595~599.
    [123] 甄志高,段莹.芝麻种子超干贮藏研究[J].中国油料作物学报,2003,25(1):76~77.
    [124] 郑光华.种子生理研究[M].北京:科学出版社,2004.
    [125] 郑仁华,杨宗武,肖石海等.光皮桦优良单株自由授粉子代苗期性状的遗传变异[J].植物资源与环境学报,2001,10(4):52~54.
    [126] 郑仁华,邹绍荣,杨宗武.光皮桦优树子代性状遗传变异及选择[J].植物资源与环境学报,2004, 13(2):44~48.
    [127] 郑万钧.中国树木志[M].北京:中国林业出版社,1997,2~124.
    [128] 郑淮兵,董丽,郑彩霞.低温和 PEG“渗控”预处理促进石楠种子萌发的研究[J].林业科学,2005, 41(3):54-57.
    [129] 周爱清,罗顺.种子活力[M].北京:中国农业出版社,1990,105~108.
    [130] 周陛勋,华启斌,陈幼生.林木种子检验[M].北京:中国标准出版社,1986.
    [131] 周广栋,王秀峰,魏珉,尹燕东.提高甜椒种子活力的方法及机理初探[J].西北农业学报,2005,14(3):89~93.
    [132] 周化斌.大豆种子萌发中过氧化物酶同工酶的动态研究[J].种子,2002, 21 (1):9~12.
    [133] 朱诚,曾广文,景新明等.洋葱种子含水量与贮藏温度对其寿命的影响[J].植物生理学报, 2001, 27(3):261~266.
    [134] 朱诚,曾广文,郑光华.超干花生种子耐藏性与脂质过氧化作用[J].作物学报,2000,26(2):235~338.
    [135] 祝小科,朱守谦.光皮桦种子千粒重、寿命及生命力研究[J].林业科学,2003,39(4):168~172.
    [136] 祝小科.光皮桦生殖生态学初步研究--结实量和幼苗幼树数量,喀斯特森林生态研究(Ⅱ).[M].贵阳:贵州科技出版社,1997..
    [137] 张晓艳,李宇歌.PEG 渗透处理对老化种子活力的影响[J].吉林师范大学学报(自然科学版),2005,5(2):50~52.
    [138] 郑郁善,王舒同,陈礼等.光衬度处理提高超干贮藏林木种子活力研究[J].福建林学院学报,2002,22(2):97~100.
    [139]《中国森林》编委会.中国森林[M].北京:中国林业出版社, 2003,1329~1359.
    [140] 邹冬梅.柱花草超干燥种子预先回湿方法研究[J].种子,2004,23(8):16~18.
    [141] 邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1988,53~55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700