用户名: 密码: 验证码:
生物油的分离与精制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境是关系国计民生的两个重大问题。作为唯一可直接转化为液体燃料的资源,生物质具有可再生和洁净等优点,引起了广大研究工作者的兴趣。通过高温快速热裂解生物质所得的生物油,不仅有望替代传统的化石燃料,还可以提供大量的化学品原材料,因而具有重要的研究价值和战略意义。但是现阶段的生物油品质还不够理想,极大地限制了其应用范围和产业化进程。因此,对生物油进行一定的精制加工处理是十分必要的。
     本研究以将生物质转化成高品位液体燃料为目的,在认识生物油的物理特性和化学组成等特点的基础上,围绕生物油的分离与精制的主题,致力研发一系列绿色环保的催化剂和工艺,对生物油开展了一系列基础性而又有针对性的分离与精制的研究。针对生物油含有裂解木质素和低聚糖等大分子物质,利用超临界流体萃取技术将其高效地除去;针对生物油中的强腐蚀性,采用催化酯化可以将生物油中的有机酸转变成酯类,从而改善油品质量;针对生物油中含有许多不饱和性物质,采用催化氢化的方式使其饱和,提高生物油的稳定性和燃烧性能。通过上述研究,实现了对生物油从单一提质发展到全方位提质加工的转变。
     论文第一章首先阐述了生物质转化与利用技术的现状;介绍了现阶段生物油的性质与成分组成;综合分析了当前生物油分离与精制的发展状况与趋势,并就其中存在的优点和缺点进行了简要的讨论;最后提出了本课题的研究内容和研究目标,并简单介绍了实验方法以及论文安排等。
     第二章主要介绍通过引进超临界二氧化碳萃取技术,实现了生物油轻质组分与低聚物、多羟基化合物的分离实验。在T=41℃,P=16 MPa的条件下,经萃取5h,可得60.4wt%的产物。该萃取油品的物化特性得到了很好的改善:黏度从1303 mm2/s下降到2.67 mm2/s;密度由1.20 g/mL降低到0.98g/mL,萃取油的稳定性明显优于萃取前的生物油。因此,超临界二氧化碳萃取这种绿色环保的技术实现了预期的生物油提质效果,同时不给环境带来负担。
     第三章主要讨论了纳米固体超强酸S042-/Zr02和离子交换树脂等固体催化剂在生物油催化酯化提质研究的中的应用。考察了催化剂在温和条件下催化酯化的活性和循环使用的情况。此外,对催化酯化方法处理生物油的品质改良程度以及工艺进行了简要的评估。在60~110℃条件下反应2-3h,酯化反应就可以完成,没有发生聚合、结焦的现象;酯化后的萃取油中的乙酸的含量明显降低,生物油的稳定性、热值等方面均有提升。强酸性离子交换树脂在效率方面要稍微优于纳米型固体酸,不仅分离更为简单,且无需处理直接循环利用。
     第四章介绍均相催化酯化提质生物油的研究。在模型反应的基础上,筛选出了催化活性强的双阳离子型离子液体催化剂;考察了催化剂的生物油提质的效果。结果显示酯化反应可以在常温常压条件下,且在较短时间3-6h内完成。酯化后的生物油自动发生分层,其中上层为提质酯层,产率接近48wt%;该层的提质油的物化特性较之酯化前的生物油得到极大的提升:水分由29.8wt%降低到8.2wt%;热值由17.3 MJ/kg升高到24.6 MJ/kg;黏度由13.03 mm2/s下降到4.90mm2/s;更为重要的是油样的pH值由2.9上升到5.1,很大程度上解决了生物油腐蚀性问题。另外,这种均相催化酯化反应不仅实现了高效地催化转化生物油中的有机酸,而且避免了固体超强酸所带来的酸性流失问题,循环使用性强,为生物油的酯化提供了一条切实可行的路线。
     第五章介绍了甲酸原位还原生物油的方法。首先比较了原位还原与直接氢化还原的效果,然后分析了各种催化剂在生物油原位还原反应中的催化效率;最后通过GC-MS检测结果,详细分析了原位还原中发生的化学反应,以及这些反应对生物油品质的影响。原位还原有效地避免了在直接还原方式中的结焦,传质传热等问题,还原效率更高,工艺设备得到了简化。加工后的生物油品质得到了极大的改善:热值从17MJ/kg左右升高到22MJ/kg,含氧量降低5-10wt%,pH值也从3.0升高到4.2左右,黏度由5.31mm2/s降低到4.0mm2/s左右,实现了全方位的提质生物油。成分分析表明生物油中的有机酸被有效地转化成酯类;生物油中碳碳和碳氧双键的化合物有效地被还原,但稳定的芳环结构环没有被还原;部分低聚物发生了氢化裂解反应;此外,没有分解完全的甲酸也与甲醇形成了甲酸甲酯,从而不影响产物的燃料性质。通过原位还原处理,一步就解决了生物油的热稳定性和腐蚀性问题,实现了全方位提质生物油的效果。
     综上所述,通过上述各种方法提质后的油品质量得到了很大的改善,催化剂和工艺设备绿色环保,且具有一定的产业化潜质,为生物油精制加工提供了重要技术支撑。
Energy and environment are important for every country, especially for our country. As the only one feed resource that can convert directly to liquid fuel, biomass has the advantages of aboudance, renewable and clean, and has caused the extensive concern in recent years. Through flash pyrolysis of biomass, the liquid product, known as bio-oil, not only is expected to replace traditional fossil fuels, but also to provide a lot of chemicals, raw materials. However, the quality of bio-oil is still not ideal, which limits its application and industrialization process. Therefore, an upgrading approach is necessary for the present bio-oil.
     According to the physical properties and chemical composition of bio-oil, a series of bio-oil separation and upgrading processes, as well environmental catalysts were proposed in our studies. The supercritical fluid extraction was employed to remove the oligomers; catalytic esterification was employed to convert the organic acids into the esters, so as to lower the high corrosion of bio-oil; while with catalytic hydrogenation process, most of the unsaturated component can be reduced so as to refine bio-oil. With these treatments, the change on the bio-oil quality from a single modification developing to all aspects upgrading was achieved.
     In the first Chapter, the state of the biomass conversion and utilization technology was described at benign, and the properties and chemical composition of the present bio-oil were introduced; then comprehensive analysis current evelopment status and trends in bio-oil separation and upgrading, and simple discuss the Pros and Cons of the treatments; at last, this research projects and methods, as well as arrangements of this paper, were briefly described.
     In the ChapterⅡ, studies focuses on the bio-oil separation through supercritical carbon dioxide extraction technology. Under the condition of T=41℃, P=16 MPa, and the extraction time of 5h, the extraction yield was 60.4 wt%. The physical and chemical properties of extracted oil have been well improved. The viscosity lowered from 13.03 mm2/s to 2.67 mm2/s; the density reduced from 1.20 g/mL to 0.98g/mL, and the stability of the extracted oil is superior to the bio-oil. Therefore, the supercritical carbon dioxide extraction process achieves the desired upgrading effect, at the same time, which avoids environment burden.
     In ChapterⅢ, the experiments research on the nanometer solid superacid SO42-/ZrO2 and ion-exchange resins applying in bio-oil catalytic esterification were described. At 60~110℃, the esterification reaction can be completed in 2-3h, and the polymerization, coking phenomenon did not occur during the reaction. The acetic acid content was lowered significantly, and the conversion rate of it is about 90%; consequently, the bio-oil stability, higher heating value, etc. have been improved. Moreover, the strong acidic ion-exchange resins are better than the solid acid, and the separation convenient is simpler.
     Homogeneous catalytic esterification of bio-oil had been examined in Chapter IV. With the ionic liquid catalyst, the esterification reaction can be carried out smoothly under the conditions of normal temperature and pressure, and in a relatively short time (3-6h). When the reaction was completed, the organic acids converted completely into the esters, and the reaction system turned into two layers (esters mixture and water). The properties of upgraded oil were improved significantly. The higher heating value approached to 24.6 MJ/kg, and the pH value rose from 2.9 to 5.1, as well as moisture decreased from 29.8 to 8.2 wt%. In addition, this ionic liquid catalyst can avoid the acidity loss of solid superacid, and its recycling is convenient.
     In the V Chapter, the effect of an in situ reduction process on the bio-oil upgrading was described. The treatments were preformed at 170~200℃for 5~10 h, in which the formic acid was decomposed into hydrogen and carbon dioxide, and then hydrogen reduces the bio-oil while compressible CO2 dissolves in methanol to form a CO2-CH3OH expanded liquid. With the effect of in situ reduction, the recovery yield of the liquid product was 80-90wt% and there was no obvious coke formation. The unsaturated components in bio-oil were reduced successfully, while the organic acids were converted into esters via reaction with methanol, and the oxygen content was lowered by ca.5~10 wt%. The properties of hydrogenated bio-oil were improved:the pH value increased from 3.0 to ca.4.2; the higher heating value approached to 20 MJ/kg, and the viscosity decreased from 5.31 mm2/s to ca.4.0 mm2/s.
     In summary, the quality of bio-oils has been improved to a certain extent; the catalysts, as well upgrading processes was environmental sustainability, and which is good for bio-oil research and development.
引文
[1]中国至2050年生物质资源科技发展路线图.中国科学院生物质资源领域战略研究组.科学出版社2009.
    [2]Kunkes E L, Simonetti D A, West R M, Serrano-Ruiz J C, Gartner C A, Dumesic J A. Catalytic Conversion of Biomass to Monofunctional Hydrocarbons and Targeted Liquid-Fuel Classes. Science,2008,322:417-421.
    [3]Cortright R D, Davda R R, Dumesic J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature,2002,418:964-967.
    [4]Goldemberg J. Ethanol for a sustainable energy future. Science,2007,315:808-810.
    [5]Huber G W, Cortright R D, Dumesic J A. Renewable Alkanes by Aqueous-Phase Reforming of Biomass-Derived Oxygenates. Angew. Chem. Int. Ed.2004,43:1549-1551.
    [6]Mohan D, Pittman-Jr C U, Steele P H. Pyrolysis of wood/biomass for bio-oil:A critical review. Energy Fuels,2006,20:848-889.
    [7]Zhao C, Kou Y, Lemonidou A A, Li X, Lercher JA. Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew. Chem. Int. Ed.2009,48:3987-3990.
    [8]肖烈,张忠河,何永梅,杨国峰,尤希凤.国内外生物质裂解技术发展和应用现状.安徽农业科学,2008,36:16102-16104.
    [9]Bridgwater A V. Biomass Fast Pyrolysis. Thermal Science,2004,8:21-49.
    [10]Bouchera M E, Chaalab A, Roy C. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part Ⅰ:Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy,2000,19:337-350.
    [11]Darmstadt H, Pe'rez G M, Adnot A, Chaala A, Kretschmer D, Roy C. Corrosion of Metals by Bio-Oil Obtained by Vacuum Pyrolysis of Softwood Bark Residues. An X-ray photoelectron spectroscopy and auger electron spectroscopy study. Energy Fuels,2004,18:1291-1301.
    [12]Elliott D C, Hart T R, Neuenschwander G G, Rotness L J, Zacher A H. Catalytic Hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products. Environ Progress Sustain Energy,2009,28:441-449.
    [13]Perez G M, Chaala A, Pakdel H, Kretschmer D, Rodrigue D, Roy C. Multiphase structure of bio-oils. Energy Fuels,2006,20:364-375.
    [14]Tzanetakis T, Ashgriz N, James D F, Thomson M J. Liquid fuel properties of a hardwood-derived bio-oil fraction. Energy Fuels,2008,22:2725-2733.
    [15]Oasmaa A, Meier D. Norms and standards for fast pyrolysis liquids 1. Round robin test. J. Anal. Appl. Pyrolysis,2005,73:323-334.
    [16]Chaala A, Ba T, Pe'rez G M, Roy C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark:Aging and thermal stability. Energy Fuels,2004,18:1535-1542.
    [17]Oasmaa A, Czernik S. Fuel oil quality of biomass pyrolysis oils state of the art for the end users. Energy Fuels,1999,13:914-921.
    [18]Pe'rez G M, Chaala A, Pakdel H, Chaala A, Kretschmer D, Roy C. Evaluation of the Influence of Stainless Steel and Copper on the Aging Process of Bio-Oil. Energy Fuels,2006, 20:786-795.
    [19]熊万明,傅尧,陆强,郭庆祥.生物质裂解油老化行为与机理研究.科学通报,2009,54:2188-2195.
    [20]Pe'rez G M, Chaala A, Pakdel H, Kretschmer D, Roy C. Characterization of bio-oils in chemical families. Biomass Bioenergy,2007,31:222-242.
    [21]Fratini E, Bonini M, Oasmaa A, Solantausta Y, Teixeira J, Baglioni P. SANS Analysis of the microstructural evolution during the aging of pyrolysis oils from biomass. Langmuir,2006, 22:306-312.
    [22]Mullen C A, Boateng A A. Chemical composition of bio-oils produced by fast pyrolysis of two energy crops, Energy Fuels,2008,22:2104-2109.
    [23]Sipila K, kuoppala E, Oassma A. Characterization of biomass-based flash pyrolysis oils, Biomass Bioenergy,14(1998) 103-113.
    [24]Wang S R, Gu Y L, Liu Q, Yao Y, Guo Z G, Luo Z Y, Cen K F. Separation of bio-oil by molecular distillation, Fuel Process. Technol.2009,90:738-745.
    [25]Lu Q, Yang X L, Zhu X F. Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk, J. Anal. Appl. Pyrolysis,2008,82:191-198.
    [26]Elliott D C. Chemical analysis of biomass fast pyrolysis oils. Biomass pyrolysis oil properties and combustion meeting (Conference), Estes Park, CO (United States),1994.
    [27]Huber G W, Iborra S, Corma A. Synthesis of Transportation Fuels from Biomass:Chemistry, Catalysts, and Engineering. Chem. Rev.2006,106:4044-4098.
    [28]Bridgwater A V, Czernik S, Diebold J, Meier D, Oasma A, Peackocke C, Pizkorz J, Radlein D. Fast pyrolysis of biomass:A handbook; CPL Press, Newbury Berkshire, UK,1999.
    [29]Piskorz J, Majerski P, Scott D S. Liquid fuels from canadian peat by the waterloo fast pyrolysis process. Can. J. Chem. Eng.,1990,68:465-472.
    [30]Akwasi A, Mullen C A, Goldberg N, Neil Goldberg, and Kevin B. Hicks. Production of bio-oil from alfalfa stems by fluidized-bed fast pyrolysis. Ind. Eng. Chem. Res.,2008,47: 4115-4122.
    [31]Scholze B, Meier D. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups. J. Anal. Appl. Pyrolysis, 2001,60:41-54.
    [32]Scholze B, Hanser C, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin) Part Ⅱ. GPC, carbonyl goups, and 13C-NMR. J. Anal. Appl. Pyrolysis,2001,58-59:387-400.
    [33]Bayerbach R, Nguyen V D, Schurr U, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin) Part Ⅲ. Molar mass characteristics by SEC, MALDI-TOF-MS, LDI-TOF-MS, and Py-FIMS. J. Anal. Appl. Pyrolysis,2006,77: 95-101.
    [34]Bayerbach R, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part IV:Structure elucidation of oligomeric molecules. J. Anal. Appl. Pyrolysis,2009,85:98-107.
    [35]何寿林,杨吕炎,关媛.生物油分离制备化学品和燃油的研究进展.现代化工,2008,10:79-84.
    [36]王泽,林伟刚,宋文立,姚建中,鲁长波,都林.生物质热化学转化制备生物燃料及化学品.化学进展,2007,19:1190-1197.
    [37]Chum H, Deibold J, Scahill J, Johnson D, Black S, Schroeder H, Kreibich R E. Biomass pyrolysis oil feedstocks for phenolic adhesives. Adhesives from Renewable Resources (Eds. Hemingway R W, Conner A H, Branham S J), American Chemical Society:Washington, DC, 1989.135-151.
    [38]Oasmaa A, Kuoppala E, Gust S, Solantausta Y. Fast pyrolysis of forestry residue.1. Effect of extractives on phase separation of pyrolysis liquids. Energy Fuels,2003,17:1-12.
    [39]Mahfud F H, Bussemaker S, Kooi B J, Ten Brink G H, Heeres H J. The application of water-soluble ruthenium catalysts for the hydrogenation of the dichloromethane soluble fraction of fast pyrolysis oil and related model compounds in a two phase aqueous-organic system. J. Mol. Catal. A:Chem.,2007,277:127-136.
    [40]张素萍,颜涌捷,任铮伟,李庭琛.生物质快速裂解液体产物的分析.华东理工大学学报,2001,27:666-668.
    [41]Ates F, Putun E, Putun A E. Fast pyrolysis of sesame stalk:yields and structural analysis of bio-oil. J. Anal. Appl. Pyrolysis,2004,71:779-790.
    [42]徐绍平,刘娟,李世光,刘淑琴,路庆花.杏核热解生物油萃取——柱层析分离分析和制备工艺.大连理工大学学报,2005,45:505-510.
    [43]李世光,许绍平),路庆花,刘淑琴.快速热裂解生物油柱层析分离与分析.太阳能学报,2005,26:549-555.
    [44]Das P. Sreelatha T, Ganesh A. Bio oil from pyrolysis of cashew nut shell-characterisation and related properties. Biomass Bioenergy,2004,27:265-275.
    [45]Sipila K, Kuoppala E, Fagernas L, Oasmaa A. Characterization of biomass-based flash pyrolysis oils. Biomass Bioenergy,1998,14:103-113.
    [46]Vispute T P, Huber. G W. Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils. Green Chem.2009,11:1433-1445.
    [47]Song Q H, Nie J Q, Ren M G, Guo Q X. Effective phase separation of biomass pyrolysis oils by adding aqueous salt solutions. Energy Fuels,2009,23:3307-3312.
    [48]Hu X G, Xu Y F, Wang Q J, Jiang S T, Zhu X F. Tribological performance of distilled biomass oil from rice straw by pyrolysis process. J. Synth. Lubr.,2008,25:95-104.
    [49]Mahfud F H, Cabrera I M, Manurung R, Heeres H J. Biomass to fuels:Upgrading of flash pyrolysis oil by reactive distillation using a high boiling alcohol and acid catalysts. Process Saf. Environ. Prot.,2007,85:466-472.
    [50]Deng L, Zhao Y, Fu Y, Guo Q X. Green solvent for flash pyrolysis oil separation. Energy Fuels,2009,23:3337-3338.
    [51]Xu J M, Jiang J C, Sun Y J, Lu Y J. A novel method of upgrading bio-oil by reactive rectification. J Fuel Chem Technol.,2008,36:421-425
    [52]Sandvig E G, Walling E G, Daugaard D E, Pletka R J, Radlein D, Johnson W, Brown R C. International Journal of Power and Energy Systems,2004.24:228-238.
    [53]Moens L, Black S K, Myers M D, Czernik S. Study of the neutralization and stabilization of a mixed hardwood bio-Oil. Energy Fuels,2009,23:2695-2699.
    [54]郭祚刚,王树荣,朱颖颖,骆仲泱,岑可法.生物油酸性组分分离精制研究.燃料化学学报,2009,37:49-52.
    [55]Rout P K, Naik M K, Naik S N, Goud V V, Das L M, Dalai A K. Supercritical CO2 fractionation of bio-oil produced from mixed biomass of wheat and wood sawdust. Energy Fuels,2009,23:6181-6188.
    [56]Hyotylainen T, Andersson T, Jussila M, Rautiainen M, Riekkola M L. Determination of phenols in pyrolysis oil by on-line coupled microporous membrane liquid-liquid extraction and multidimensional liquid chromatography. J. Sep. Sci.2001,24:544-550.
    [57]Mahfud F H, vangeel F P, Venderbosch R H, Heeres H J. An Exploratory study on liquid-liquid reactive extraction using aliphatic tertiary amines. Sep. Sci. Technol.2008,43: 3056-3074.
    [58]Chiaramonti D, Bonini M, Fratini E, et al. Development of emulsions from biomass pyrolysis liquid and Diesel and their use in engines-Part 1:Emulsion production. Biomass
    Bioenergy,2003,25(1):85-99.
    [59]Ikura M, Stanciulescu M, Hogan E. Emulsification of pyrolysis derived bio-oil in diesel fuel. Biomass Bioenergy,2003,24:221-232.
    [60]Jiang X, Ellis N. Upgrading Bio-oil through Emulsification with Biodiesel:Mixture Production. Energy Fuels,2010,24:1358-1364.
    [61]Zhang S P, Yan Y J, Li T C, Ren Z W. Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour. Technol.2005,96:545-550.
    [62]Dilcio R J, Luengo C A, Snape C E. The scope for generating bio-oils with relatively low oxygen contents via hydropyrolysis-a versatile technique for solid fuel liquefaction, sulphur speciation and biomarker release. Organic Geochemistry,1999,30:1527-1534.
    [63]Mahfud F H. Exploratory studies on fast pyrolysis oil upgrading. Faculty of Mathematics and Natural Science,2007.
    [64]Wildschut J, Mahfud F H, Venderbosch R H, Heeres H J. Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind. Eng. Chem. Res.2009,48:10324-10334.
    [65]郭晓亚,颜涌捷,李庭琛,任铮伟,袁传敏.生物质裂解油催化裂解精制.过程工程学报,2003,3:91-95
    [66]Vitoloa S,Seggiania M,Fredianib P, Ambrosini G, Politi L. Catalytic upgrading of pyrolytic oils to fuels over different zeolites. Fuel,1999,78:1147-1159.
    [67]Kechagiopoulos P N, Voutetakis S S, Lemonidou A A, Vasalos I A. Hydrogen production via reforming of the aqueous phase of bio-oil over Ni/olivine catalysts in a spouted bed reactor. Ind. Eng. Chem. Res.2009,48:1400-1408.
    [68]Yuan L X, Chen Y Q, Song C F, Ye T Q, Guo Q X, Zhu Q S, Torimoto Y, Li Q X. Electrochemical catalytic reforming of oxygenated-organic compounds:a highly efficient method for production of hydrogen from bio-oil. Chem. Commun.2008,5215-5217
    [69]Gong F Y, Ye T Q, Yuan L X, Kan T, Torimoto Y, Yamamoto M, Li Q X. Direct reduction of iron oxides based on steam reforming of bio-oil:A highly efficient approach for production of DRI from bio-oil and iron ores. Green Chem.2009,11:2001-2012.
    [70]高鹏,崔波.低温沉淀法制备固体超强酸及其对酯化反应的催化作用[J].石油化工2004,331:5-8.
    [71]王绍艳,张志强,吕玉珍,侯鑫.纳米固体超强酸SO/Fe304的制备及其催化合成乙酸乙酯[J].无机化学学报2002,18(3):279-283.
    [72]周海峰.固体酸催化酯化反应的研究进展[J].精细与专用化学品,2004,12(23):1-6.
    [73]张琦,常杰,王铁军,吴创之,徐莹,朱锡锋.固体酸提质生物油的研究.燃料化学学报,2006,6:680-684.
    [74]Budarin V, Luque R, Macquarrie D J, Clark J H. Towards a bio-based industry:Benign catalytic esterifications of succinic acid in the presence of water. Chem. Eur. J.2007,13: 6914-6919.
    [75]Tang Y, Yu W J, Mo L Y, Lou H, Zheng X M. One-step hydrogenation-esterification of aldehyde and acid to ester over bifunctional Pt catalysts:A model reaction as novel route for catalytic upgrading of fast pyrolysis bio-Oil. Energy Fuels,2008,22:3484-3488.
    [76]Peng J, Chen P, Lou H, Zheng X M. Upgrading of bio-oil over aluminum silicate in supercritical ethanol. Energy Fuels,2008,22:3489-3492.
    [77]曾韬,刘玉鹏,梁静谊.固体酸碱催化马来松香酯化反应.林产化工通讯2001,6:18-21.
    [78]徐莹,常杰,张琦,王铁军,王晨光.固体碱催化剂上生物油催化酯化担质.石油化工2006.7:615-618.
    [79]Deng L, Fu Y, Guo Q X. Upgraded acidic components of bio-oil through catalytic ketonic condensation. Energy Fuels,2009,23 (1):564-568
    [80]Gartner C A, Serrano-Ruiz J C, Braden D J, Dumesic J A. Catalytic upgrading of bio-oils by ketonization. ChemSusChem,2009,2:1121-1124.
    [81]Yang X L, Chatterjee S, Zhang Z J, Zhu X F, Pittman-Jr. C U. Reactions of phenol, water, acetic acid, methanol and 2-hydroxymethylfuran with olefins as models for bio-oil upgrading. Ind. Eng. Chem. Res.2010,49(5):2003-2013.
    [82]Chiaramonti D, Bonini M, Fratini E. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines-Part 2:emulsion production. Biomass Bioenergy, 2003,25:101-111.
    [83]Garcia-Perez M, Shen J, Wang X S, Li C Z. Production and fuel properties of fast pyrolysis oil/bio-diesel blends. Fuel Process Technol.2010,91:296-305.
    [84]Senol O I, Viljava T R, Krause A O I. Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/y-Al2O3 catalysts. Catal. Today,2005,100:331-335.
    [85]Mahfud F H, Ghijsen F, Heeres H J. Hydrogenation of fast pyrolysis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts. J. Mol. Catal. A:Chem.2007,264:227-236.
    [86]Rocha J D, Luengo C A, Snape C E. The scope for generating bio-oils with relatively low oxygen contents via hydropyrolysis. Organic Geochemistry,1999,30:1527-1534.
    [87]Elliott D C and Hart T R. Catalytic hydroprocessing of chemical models for bio-oil. Energy Fuels,2009,23:631-637
    [88]Rocha J D, Uengo C A, Nape C E. Hydrodeoxygenation of oils from cellulose in single and two-stage hydropyrolysis. Renewable Energy,1996,9(1-4):950-953.
    [89]Fisk C A, Morgan T, Ji Y Y, Crocker M, Crofcheck C, Lewis S A. Bio-oil upgrading over platinum catalysts using in situ generated hydrogen. Appl. Catal. A:Gen.2009,358: 150-156.
    [90]Nokkosmaki M I, Kuoppala E T, Leppamaki E A. Catalytic conversion of biomass pyrolysis vapours with zinc oxide. J. Anal. Appl. Pyrolysis.2000,55:119-131.
    [91]Gayubo A G, Valle B, Aguayo A T, Olazar M, Bilbao J. Olefin production by catalytic transformation of crude bio-oil in a two-step process. Ind. Eng. Chem. Res.2010,49: 123-131.
    [92]Tang Z, Lu Q, Zhang Y, Zhu X F, Guo Q X. One step bio-oil upgrading through hydrotreatment, esterification, and cracking. Ind. Eng. Chem. Res.2009,48:6923-6929.
    [93]Gayubo A G, Valle B, Aguayo A T, Olazar M, Bilbao J. Pyrolytic lignin removal for the valorization of biomass pyrolysis crude bio-oil by catalytic transformation. J Chem. Technol. Biotechnol.2010,85:132-144
    [94]Garcia L, French R, Czernik S. Catalytic steam reforming of bio-oils for the production of hydrogen:effects of catalyst composition. Appl. Catal. A:Gen.2000,201:225-339.
    [95]Wu C, Sui M, Yan Y J. A comparison of steam reforming of two model bio-oil fractions. Chem. Eng. Technol.2008,31:1748-1753.
    [96]Takanabe K, Aika K, Seshan K. Catalyst deactivation during steam reforming of acetic acid over Pt/ZrO2. Chem. Eng. J.2006,120:133-137.
    [97]Li H Y, Xu Q L, Xue H S, Yan Y J. Catalytic reforming of the aqueous phase derived from fast-pyrolysis of biomass. Renewable Energy,2009,34:2872-2877
    [98]Lohitharn N, Shanks B H. Upgrading of bio-oil:Effect of light aldehydes on acetic acid removal via esterification. Catal. Commun.2009,11:96-99.
    [99]Hilten R N, Bibens B P, Kastner J R, Das K C. In-line esterification of pyrolysis vapor with ethanol improves bio-oil quality. Energy Fuels,2010,24:673-682.
    [100]Wang M C, Leitch M, Xu C C. Synthesis of phenolic resol resins using cornstalk-derived bio-oil produced by direct liquefaction in hot-compressed phenol-water. Ind. Eng. Chem. 2009,15,870-875.
    [101]Huang J, Long W, Jones C W. Effects of acidity on the conversion of the model bio-oil ketone cyclopentanone on H-Y zeolites. J. Phys. Chem. C,2009,13:16702-16710.
    [102]Tilman D, Socolow R, Foley J A, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R. Beneficial biofuels-the food energy and environment trilemma. Science,2009,325:270-271.
    [1]Mohan D, Charles U, Pittman J, Steele P H. Pyrolysis of wood/biomass for bio-oil:A critical review. Energy Fuels,2006,20:848-889.
    [2]Huber G W, Sara I, Corma A. Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering. Chem. Rev.2006,106:4044-4098.
    [3]Miao X L, Wu Q Y. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol.2004,110:85-93.
    [4]Luo Z Y, Wang S R, Liao Y F, Hong J, Gu Y L, Cen K F. Research on biomass fast pyrolysis for liquid fuel. Biomass Bioenergy,2004,26:455-462.
    [5]Nokkosmaki M I, Kuoppala E T, Leppamaki E A, Krause A O I. Catalytic conversion of biomass pyrolysis vapours with zinc oxide. J. Anal. Appl. Pyrolysis 2000,55:119-131.
    [6]Pe'rez M G, Chaala A, Pakdel H, Kretschmer D, Rodrigue D, Roy C. Evaluation of the influence of stainless steel and copper on the aging process of bio-oil. Energy Fuels 2006,20: 786-795.
    [7]Diebold J P. A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils. National Renewable Energy Laboratory, SR-570-27613, Jan.2000.
    [8]Oassma A, Koponen P, Tapola E. Physical characterization of biomass-based pyrolysis liquids. Applications of standard fuel oil analysis, VTT Publication 306, VTT Energy, Espoo, Finland, 2001.
    [9]Elliott D C. Historical developments in hydroprocessing bio-oils. Energy Fuels,2007,21: 1792-1815.
    [10]Chaala A, Ba T, Garcia-Perez M, Roy C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark:Aging and thermal stability. Energy Fuels,2004,18:1535-1542.
    [11]Kappenberger P. Process for the further processing of the vacuum distillation residue in a crude oil refinery. US 4925558,1990.
    [12]Murwanashyaka J N, Pakdel H, Roy C. Seperation of syringol from birch wood-derived vacuum pyrolysis oil. Sep. Purif. Technol 2001,4:155-165.
    [13]Gayubo A G, Aguayo A T, Atutxa A, Prieto R, Bilbao J. Deactivation of a HZSM-5 zeolite catalyst in the transformation of the aqueous fraction of biomass pyrolysis oil into hydrocarbons. Energy Fuels,2004,18:1640-1647.
    [14]Poiana M, Mincione A, Gionfriddo F, Castaldo D. Supercritical carbon dioxide separation of bergamot essential oil by a countercurrent process. Flavour Fragr. J.2003,18:429-435.
    [15]Shi T P, Hu Y X, Xu Z M, Su T, Wang R A. Characterizing petroleum vacuum residue by supercritical fluid extraction and fractionation. Ind. Eng. Chem. Res.1997,36:3988-3992.
    [16]Setianto W B, Yoshikawa S, Smith J RL, Inomata H L, Florusse J, Peters C J. Pressure profile separation of phenolic liquid compounds from cashew (Anacardium occidentale) shell with supercritical carbon dioxide and aspects of its phase equilibria. J. Supercrit Fluids 2009,48: 203-210.
    [17]Chang L H, Jong T T, Huang H S, Nien Y F, Chang C J. Supercritical carbon dioxide extraction of turmeric oil from Curcuma longa Linn and purification of turmerones. Sep. Purif. Technol.2006,47:119-125.
    [18]Patel R N, Bandyopadhyay S, Ganesh A. Economic appraisal of supercritical fluid extraction of refined cashew nut shell liquid. J. Chromatogr, A.2006,1124:130-138.
    [19]Gopalan A S, Wai C M, Jacobs H K. Supercritical carbon dioxide separations and processes, in:Proceedings of the ACS Symposium series, No.860, American chemical society, Washington, DC,2003,36-49.
    [20]Mullen C A, Boateng A A. Chemical composition of bio-oils produced by fast pyrolysis of two energy crops. Energy Fuels 2008,22:2104-2109.
    [21]Oasmaa A, Czernik S. Fuel oil quality of biomass pyrolysis oils-state of the art for the end users. Energy Fuels 1999,13,914-921.
    [22]Sipila K, kuoppala E, Oassma A. Characterization of biomass-based flash pyrolysis oils. Biomass Bioenergy 1998,14:103-113.
    [23]Garrcia-Perez M, Chaala A, Kretschmer D, Roy C. Characterization of bio-oils in chemical families. Biomass Bioenergy,2007,31:222-242.
    [24]Clarke M J, Harrison K L, Johnston K P, Howdle S M. Water in supercritical carbon dioxide microemulsions:Spectroscopic investigation of a new environment for aqueous inorganic chemistry. J. Am. Chem. Soc.1997,119:6399-6406.
    [25]Lemert R M, Johnston K P. Chemical complexing agents for enhanced solubilities in supercritical fluid carbon dioxide. Ind. Eng. Chem. Res.1991,30:1222-1231.
    [26]Zagrobelny J, Bright F V. Probing solute-entrainer interactions in matrix-modified supercritical CO2. J. Am. Chem. SOC.1993,115:701-707.
    [27]Wang S R, Gu Y L, Liu Q, Yao Y, Guo Z G, Luo Z Y, Cen K F. Separation of bio-oil by molecular distillation. Fuel Process. Technol.2009,90:738-745
    [28]Lu Q, Yang X L, Zhu X F. Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. J. Anal. Appl. Pyrolysis 2008,82:191-198
    [29]Guo Z G, Wang S R, Zhu Y Y, Luo Z Y, Cen K F. Separation of acid compounds for refining biomass pyrolysis oil. J. Fuel Chem. Technol.2009,37:49-52.
    [30]Xu J M, Jiang J C, Sun Y J, Lu Y J. Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics. Biomass Bioenergy 2008,32:1056-1061.
    [31]Zhang Q, Chang J, Wang T J, Xu Y. Upgrading bio-oil over different solid catalysts. Energy Fuels 2006,20:2717-2720.
    [32]Boucher M E, Chaala A, Pakdel H, Roy C. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part Ⅱ:Stability and ageing of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy,2000,19:351-361.
    [1]徐俊明,蒋剑春,卢言菊.生物热解油精制改性研究进展.现代化工,2007,7:13—17.
    [2]陆强等,朱锡锋,李全新,郭庆祥,朱清时.生物质快速热解制备液体燃料.化学进展,2007,7/8(19):1064-1071.
    [3]Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering. Chem. Rev.2006,106:4044-4098
    [4]Fagernas L. Chemical and physical characterization of biomass based pyrolysis oils:literature Review; VTT Research Notes,1706; VTT Energy; Espoo, Finland,1995.
    [5]Czernik S, Johnson D K, Black S. Stability of wood fast pyrolysis oil. Biomass Bioenergy 1994,7:187-92.
    [7]Pe'rez G M, Chaala A, Pakdel H, Kretschmer D, Roy C. Characterization of bio-oils in chemical families. Biomass Bioenergy,2007,31:222-242.
    [8]Oasmaa A, Meier D. Subject group:analysis and characterization. PyNe workshop Birmingham, UK,2-4 December 2000.
    [9]Pe'rez G M, Chaala A, Pakdel H, Kretschmer D, Roy C. Vacuum pyrolysis of softwood and hardwood biomass. Comparison between product yield and bio-oil properties. J. Anal. Appl. Pyrolysis,2007,78:104-116.
    [10]Das P, Sreelatha T, Ganesh A. Bio-oil from pyrolysis of cashew nut shell-characterization and related properties. Biomass Bioenergy,2004,27:265-275.
    [11]Patel R N, Bandyopadhyay S, Ganesh A. Economic appraisal of supercritical fluid extraction of refined cashew nut shell liquid J. Chromatogr. A 2006,1124:130-138
    [12]Mukhopadhyay M. Natural extract using supercritical carbondioxide. CRC Press, Boca Raton. FL,2000.
    [13]Pakdel H and Roy C. Separation and characterization of steroids in biomass vacuum pyrolysis oils. Bioresour. Technol.1996,1:83-88.
    [14]Murwanshyaka J N, Pakdel H, Roy C. Seperation of syringol from birch wood-derived vacuum pyrolysis oil. Sep. Purif. Technol.2001,24:155-165
    [15]徐莹,常杰,张琦,王铁军,王晨光.固体碱催化剂上生物油催化醋化提质.石油化工,2006,35(7):615—618
    [16]职慧珍,罗军,马伟,吕春绪.PEG型酸性温控离子液体中芳香酸和醇的酯化反应,高等学校化学学报,2008,29(4):772—774
    [17]周海峰.固体酸催化酯化反应的研究进展.精细与专用化学品,2004,12(23):126.
    [18]高鹏,崔波.低温沉淀法制备固体超强酸及其对酯化反应的催化作用.石油化工,2004, 33(1):528.
    [19]Peng J, Chen P, Zheng X M. Upgrading of bio-oil over aluminum silicate in supercritical ethanol. Energy Fuels,2008,22(5):3489-3492
    [20]Delgado P, Sanz M T, Beltran S. Kinetics study of esterification of acetic acid with isobutanol in the presence of amberlite catalyst. Chem. Engin. J.2007,126:111-118
    [21]Mullen C A and Boateng A A. Chemical composition of bio-oils produced by fast pyrolysis of two energy crops. Energy Fuels,2008,22(3):2104-2109
    [22]Zhang Q, Chang J, Wang T J. Upgrading bio-oil over different solid catalysts. Energy Fuels, 2006,20:2717-2720.
    [23]Mahfud F H, Cabrera I M, Heeres H J. Biomass to fuels ugrading of flash pyrolysis oil by reactive distillation using a high boiling acohol and acid catalysts. Process Saf. Environ. Prot. 2007,85(B5):466-472
    [24]Izci A, Bodur F. Liquid-phase esterification of acetic acid with isobutanol catalyzed by ion-exchange resins. React. Funct. Polym.2007,67:1458-1464
    [25]Nanla O, Oktar N, Tapan A N. Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins. Fuel,2008,87:1789-1798
    [26]Ardizzone S, Bianchi C L, Signoretto M. Acidity, sulphur coverage and XPS analyses of ZrO2-SO4 powders by different procedures. Appl. Surf. Sci.1999,152:63-69
    [27]Khder S A, Hakam S A, Sharkawy E A. Surface characterization and catalytic activity of sulfated tin oxide catalyst. Catal. Commun.2008,9:769-777
    [28]Guo J J, Jin T S, Zhang S L. TiO2/SO42-:an efficient and convenient catalyst for preparation of aromatic oximes. Green Chem.2001,3:193-195
    [29]吴春华,赵黔榕,张加研,蒋建新,安鑫南.纳米级固体超强酸的制备与表征.南京林业大学学报,2004,5(28):49—53
    [30]赵黔榕,吴春华,毕韵梅,杜霞,迟绍明.制备条件对纳米级固体超强酸SO42-/ZrO2性能的影响.化学通报,2006,9:661—667.
    [31]Ganapati D Y, Jauesh J N. Sulfated zirconia and its modified versions as promising catalysts for industrial processes. Micropor. Mesopor. Mater.1999,33:1-48.
    [1]Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass:Chemistry, Catalysts, and Engineering. Chem. Rev.2006,106:4044-4098
    [2]Adjaye J D, Bakhshi N N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil.1. Conversion over various catalysts. Fuel Process. Technol.1995,45: 161-183.
    [3]Lu, Q, Zhu X F, Li Q X, Guo Q X. Biomass fast pyrolysis for liquid fuels. Progress in Chemistry,2007,19:1064-1071
    [4]Liou, T. H, Chang F W, Lo J J. Pyrolysis kinetics of acid-leached rice husk. Ind. Eng. Chem. Res.1997,36:568-573
    [5]Tsai W T, Lee M K, Chang Y M. Fast pyrolysis of rice husk:Product yields and compositions. Bioresour. Technol.2007,98:22-28
    [6]Zheng J L, Zhu X F, Guo Q X. Thermal conversion of rice husks and sawdust to liquid fuel. Waste Manage.2006,26:1430-1435.
    [7]Elliott D C, Beckman D, Bridgwater A V. Developments in direct thermochemical liquefaction of biomass:1983-1990. Energy Fuels 1991,5:399-410.
    [8]Srinivas S T, Dalai A K, Bakhshi N N. Thermal and catalytic upgrading of a biomass-derived oil in a dual reaction system. Can. J. Chem. Eng.2000,78:343-354.
    [9]Wang D, Montane D, Chornet E. Catalytic steam reforming of biomass-derived oxygenates: acetic acid and hydroxyacetaldehyde. Appl. Catal. A:Gen.1996,143:245-70.
    [10]Galdamez J R, Garcia L, Bilbao R. Hydrogen production by steam reforming of bio-oil using coprecipitated Ni-Al Catalyst. Acetic acid as a model compound. Energy Fuels,2005,19: 1133-1142.
    [11]Rioch C E, Kulkarni S, Meunier F C. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts. Appl. Catal. B:Environ.2005,61: 130-139.
    [12]Wang Z, Pan Y, Li Q X. Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O-based catalysts, Appl. Catal. A:gen.2007,320:24-34.
    [13]Mohan D, Pittman C U, Steele P H. Pyrolysis of wood/biomass for bio-oil:A critical review. Energy Fuels,2006,20:848-889.
    [14]Mahfud F H, Ghijsen F, Heeres H J. Hydrogenation of fast pyrolysis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts. J. Mol. Catal. A:Chem.2007,264:227-236
    [15]Senol O I, Viljava T R, Krause A O I. Hydrodeoxygenation of methyl esters on sulphided NiMo/c-Al2O3 and CoMo/c-Al2O3 catalysts. Catal. Today 2005,100:331-335.
    [16]Nokkosmaki M I, Kuoppala E T, Leppamaki E A. Catalytic conversion of biomass pyrolysis vapours with zinc oxide. J. Anal. Appl. Pyrolysis 2000,55:119-131.
    [17]Oasmaa A, Kuoppala E, Selin J F. Improvement of the product quality by solvent addition, Energy Fuels,2004,18:1578-1583.
    [18]Zhang Q, Chang J, Wang T J. Upgrading bio-oil over different solid catalysts. Energy Fuels, 2006,20:2717-2720.
    [19]Doshi V A, Vuthaluru H B, Bastow T. Investigations into the control of odour and viscosity of biomass oil derived from pyrolysis of sewage sludge. Fuel Process. Technol.2005,86: 885-897.
    [20]Mahfud F H, Cabrera I M, Heeres H J. Biomass to fuels ugrading of flash pyrolysis oil by reactive distillation using a high boiling alcohol and acid catalysts. Process Saf. Environ. Prot. 2007,85:466-472
    [21]Cole A C, Jensen J L, Weave K J. Forbes D C, Davis J H. Novel bronsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc.,2002,124:5962-5963
    [22]Shi F, Zhang Q H, Li D M, Deng Y Q. Silica-gel-confined ionic liquid:A new attempt for the development of supported nanoliquid catalyst. Chem. Eur. J.2005,11:5279-5288
    [23]Smiglak M, Metlen A, Rogers R D. The second evolution of ionic liquids:From solvents and separations to advanced from solvents and materials energetic examples from the ionic liquid cookbook. Acc. Chem. Res.2007,40:1182-1192
    [24]Welton T. Room-temperature ionic liquids:Solvents for synthesis and catalysis. Chem. Rev. 1999,99:2071-2083
    [25]Mu Z, Zhou F, Liu W M. Effect of the functional groups in ionic liquid molecules on the friction and wear behavior of aluminum alloy in lubricated aluminum-on-steel contac. Tribol. Int.2005,38:725-731
    [26]Angueira E J. and Mark G W. Ionic liquid structure effect upon reactivity of toluene carbonylation:1. Organic Cation structure. J. Mol. Catal. A:Chem.2005,238:163-174
    [27]Sheldrake G N, Schleck D. Dicationic molten salts (ionic liquids) as re-usable media for the controlled pyrolysis of cellulose to anhydrosugars. Green Chem.2007,9:1044-1046
    [28]Fei Z, Geldbach T J, Dyson P J. From dysfunction to bis-function:On the design and applications of functionalised ionic liquids. Chem. Eur. J.2006,12:2122-2130
    [29]Zhang H B, Xu F, Zhou X H. A Br(?)nsted acidic ionic liquid as an efficient and reusable catalyst system for esterification. Green Chem.2007,9:1208-1211
    [30]Pralhad A G, Gigi G, Jagannath D. Br(?)nsted acidic ionic liquids derived from alkylamines as catalysts and mediums for Fischer esterification:Study of structure-activity relationship. J. Mol. Catal. A:Chem.2008,279:182-186
    [31]Li X Z, Wu M J, Eli A. Green approach for the synthesis of long chain aliphatic acid esters at room temperature. J. Mol. Catal. A:Chem.2008,279:159-164
    [32]Anderson J L, Ding R F, Ellern A, Armstrong D W. Structure and properties of high stability geminal dicationic ionic liquids. J. Am. Chem. Soc.2005,127,593-604
    [33]Payagala, T, Huang, J. M, Armstrong, D. W. Unsymmetrical dicationic ionic liquids: manipulation of physicochemical properties using specific structural architectures. Chem. Mater.2007,19:5848-5850
    [34]Liu Q, Rantwijk V F, Sheldon R A. Synthesis and application of dicationic ionic liquids. J Chem. Technol. Biotechnol.2006,81:401-405
    [35]Ranke J, Stolte S, Stormann R. Design of sustainable chemical products:the example of ionic liquids. Chem. Rev.2007,107:2183-2206.
    [36]Lee B S, Chi Y S, Lee S. Imidazolium ion-terminated self-Assembled monolayers on Au: effects of counter anions on surface wet ability. J. Am. Chem. Soc.2004,126:480-481.
    [37]Yu G Q, Yan S Q, Liang Y M. Synthesis of dicationic symmetrical and asymmetrical ionic liquids and their tribological properties as ultrathin films. Tribol. Lett.2007,25:197-205
    [38]Neeraj G, Sonu, Jasvinder S. Acidic ionic liquid [bmim]HSO4-:An efficient catalyst for acetalization and thioacetalization of carbonyl compounds and their subsequent deprotection. Catal. Commun.2007,8:1323-1328
    [1]Mohan D, Pittman C U, Steele P H. Pyrolysis of wood/biomass for bio-oil:A critical review. Energy Fuels,2006,20:848-889.
    [2]Tang Y, Yu W J, Mo L Y, Lou H, Zheng X M. One-step hydrogenation-esterification of aldehyde and acid to ester over bifunctional Pt catalysts:A model reaction as novel route for catalytic upgrading of fast pyrolysis bio-oil. Energy Fuels,2008,2:3484-3488.
    [3]Xu J M, Jiang J C, Sun Y J, Lu Y J. Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics. Biomass Bioenergy,2008,32:1056-1061.
    [4]Zhang Q, Chang J, Wang T J, Xu Y. Upgrading bio-oil over different solid catalysts. Energy Fuels,2006,20:2717-2720.
    [5]Elliott D C, Hart T R. Catalytic hydroprocessing of chemical models for bio-oil. Energy Fuels, 2009,23:631-637.
    [6]Donnis B, Egeberg R G, Blom P. Knudsen K G. Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes. Top. Catal.2009,52:229-240.
    [7]Czernik S, Maggi R, Peacocke G V C. A review of physical and chemical methods of upgrading biomass-derived fast pyrolysis liquids. Biomass:A growth opportunity in green energy and value-added products, Vols 1 and 2,1999,1235-1240.
    [8]Mahfud F H, vangeel F P, Venderbosch R H, Heeres H J. Acetic acid recovery from fast pyrolysis oil. An exploratory study on liquid-liquid reactive extraction using aliphatic tertiary amines. Sep. Sci. Technol.2008,43:3056-3074.
    [9]Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering. Chem. Rev.2006,106:4044-4098.
    [10]Mahfud F H, Bussemaker S, Kooi B J, TenBrink G H, Heeres H J. The application of water-soluble ruthenium catalysts for the hydrogenation of the dichloromethane soluble fraction of fast pyrolysis oil and related model compounds in a two phase aqueous-organic system. J. Mol. Catal. A:Chem.2007,277:127-136.
    [11]Rocha J D, Luengo C A, Snape C E. The scope for generating bio-oils with relatively low oxygen contents via hydropyrolysis. Org. Geochem.1999,30:1527-1534.
    [12]Zhang S P, Yan Y J, Ren J W, Li T C. Study of hydrodeoxygenation of bio-oil from the fast pyrolysis of biomass. Energy Sources,2003,25:57-65.
    [13]Adjaye J D, Bakhshi N N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil.1. Conversion over various catalysts. Fuel Process. Technol.1995,45:
    161-183.
    [14]Valle B, Gayubo A G, Atutxa A, Alonso A, Bilbao J. Integration of thermal treatment and catalytic transformation for upgrading biomass pyrolysis oil. Int. J. Chem. React. Eng.2007, 5.
    [15]Vitolo S, Bresci B, Seggiani M, Gallo M G. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite:behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel,2001,80:17-26.
    [16]Park H J, Jeon J K, Kim J M, Lee H I, Yim J H, Park J, Park Y K. Synthesis of nanoporous material from zeolite USY and catalytic application to bio-oil conversion. J. Nanosci. Nanotechnol.2008,8:5439-5444.
    [17]Stocker M. Biofuels and biomass-to-liquid fuels in the biorefinery:Catalytic conversion of lignocellulosic biomass using porous materials. Angew. Chem. Int. Ed.2008,47:9200-9211.
    [18]Jessop P G. Subramaniam, B., Gas-expanded liquids. Chem. Rev.2007,107:2666-2694.
    [19]Araia M, Fujitaa S, Shirai M. Multiphase catalytic reactions in/under dense phase CO2. J. Supercrit. Fluids,2009,47:351-356.
    [20]Hao J M, Xi C Y, Cheng H Y, Liu R X, Cai S X, Arai M, Zhao F Y. Influence of compressed carbon dioxide on hydrogenation reactions in cyclohexane with a Pd/C catalyst. Ind. Eng. Chem. Res.2008,47:6796-6800.
    [21]Devetta L, Giovanzana A, Canu P, Bertucco A, Minder B J. Kinetic experiments and modeling of a three-phase catalytic hydrogenation reaction in supercritical CO2. Catal. Today, 1999,48:337-345.
    [22]Fellay C, Dyson P J, Laurenczy G. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Angew. Chem. Int. Ed.2008,47: 3966-3968.
    [23]Junge H, Boddien A, Capitta F, Loges B, Noyes J R, Gladiali S, Beller M. Improved hydrogen generation from formic acid. Tetrahedron Lett.2009,50:1603-1606.
    [24]Hyde J R, Poliakoff M. Supercritical hydrogenation and acid-catalysed reactions "without gases". Chem. Commun.2004,1482-1483.
    [25]Hyde J R, Walsh B, Singh J, Poliakoff M. Continuous hydrogenation reactions in supercritical CO2 "without gases". Green Chem.2005,7:357-361.
    [26]Jin F M, Yun J, Li G M, Kishita A, Tohji K, Enomoto H. Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chem.2008,10:612-615
    [27]Xiang Y Z, Ma L, Lu C S, Zhang Q F, Li X N. Aqueous system for the improved hydrogenation of phenol and its derivatives. Green Chem.2008,10:939-943.
    [28]Wang Z J, Xie Y B, Liu C J. Synthesis and characterization of noble metal (Pd, Pt, Au, Ag) nanostructured materials confined in the channels of mesoporous SBA-15. J. Phys. Chem. C 2008,112:19818-19824.
    [29]Guo H, Sun Y, Prins R. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pt supported on gamma-Al2O3, SBA-15, and HZSM-5. Catal. Today,2008,130:249-253.
    [30]Tsai W T, Lee M K, Chang Y M. Fast pyrolysis of rice husk:Product yields and compositions. Bioresour. Technol.2007,98:22-28.
    [31]Lu Q, Yang X L, Zhu X F. Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk J. Anal. Appl. Pyrolysis 2008,82:191-198.
    [32]Burgener M, Ferri D, Grunwaldt J D, Mallat T, Baiker A. Supercritical carbon dioxide:An inert solvent for catalytic hydrogenation? J. Phys. Chem. B,2005,109:16794-16800.
    [33]Mahfud F H, Ghijsen F, Heeres H J. Hydrogenation of fast pyrolyis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts. J. Mol. Catal. A:Chem.2007,264:227-236.
    [34]Elliott D C. Historical developments in hydroprocessing bio-oils. Energy Fuels,2007,21: 1792-1815.
    [35]Fisk C A, Morgan T, Ji Y Y, Crocker M, Crofcheck C, Lewis S A. Bio-oil upgrading over platinum catalysts using in situ generated hydrogen. Appl. Catal. A:Gen.2009,358: 150-156.
    [36]Zhao C, Kou Y, Lemonidou A A, Li X, Lercher J A. Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew. Chem. Int. Ed.2009,48:3987-3990.
    [37]Fellay C, Yan N, Dyson P J, Laurenczy G. Selective formic acid decomposition for high-pressure hydrogen generation:a mechanistic study. Chem. Eur. J.2009,15:3752-3760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700