老鹰茶苗木耐涝性与抗寒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
老鹰茶是一种特色经济植物资源,在近年来国家大型生态工程建设中,营造了大面积老鹰茶,出现了寒害、涝害等较为突出的问题,造成了很大的损失。本文通过对老鹰茶的耐涝性和抗寒性进行研究,主要结果如下:
     Ⅰ老鹰茶耐涝性
     老鹰茶的叶绿素含量在整个处理过程中,是先上升,然后再下降。初期的涝害促进叶绿素的含量上升,但涝害加强,叶绿素含量下降。丙二醛含量在整个处理过程中一直上升。SOD(超氧化物歧化酶)活性在整个涝害处理过程中总的趋势是一直在下降,只有12号和38号在处理初期还有小幅度的上升。可溶性蛋白含量在处理期间,虽然中间有一些曲折和反复,但总体都是呈现下降的趋势。4个样品的可溶性糖含量变化幅度都很小。12号、38号样品的可溶性糖含量有小幅度的下降,而6号、8号的可溶性糖含量则有小幅度的上升。
     经分析,处理时间对4个品种间叶绿素含量有极显著的差异,品种对于老鹰茶的叶绿素含量也有显著性差异。因此,叶绿素可以作为老鹰茶耐涝性测定的指标之一。品种间的丙二醛含量有着极显著的差异,处理时间对丙二醛含量也有显著性差异。因此,丙二醛也可以作为老鹰茶耐涝性测定的一个指标。SOD活性与老鹰茶耐涝性有着非常显著的线性关系,是老鹰茶耐涝性测定的代表性指标。但在本试验中,可溶性蛋白含量在老鹰茶品种间的差异不显著,在较长时间的逆境处理下,变化也不显著。可溶性糖含量在品种间有显著性差异,但在处理时间上没有显著性差异,或许是可溶性糖对涝害不敏感。因此,可溶性蛋白和可溶性糖含量这两个指标,不适合作为老鹰茶耐涝性的测定指标。
     本研究通过主成分分析进行综合评价,对4个不同品种老鹰茶进行分析,综合了叶绿素含量、丙二醛、SOD、可溶性蛋白、可溶性糖,共5个主要特征指标,并按综合评价值的大小排序。在这4个样品中,耐涝性最高的是8号,其余依次为6号、12号,耐涝性最弱的是38号。
     Ⅱ老鹰茶抗寒性
     在低温胁迫下,电导率持续上升;CAT和POD活性明显提高;叶片中MDA含量先减小,但随着胁迫的加深,MDA含量持续增加;脯氨酸(Pro)含量在初期先上升,但随着逆境作用的加强,脯氨酸含量逐渐下降;可溶性糖含量,在处理初期先下降,在0℃以后,可溶性糖含量开始上升。
     经分析,不同处理温度对于老鹰茶电导率有着极显著的差异,而品种对于老鹰茶电导率没有显著性的影响。因此,评价老鹰茶品种间的抗寒性,电导率是一个不理想的测定指标。处理温度以及品种对老鹰茶的CAT、POD活性都有显著性的差异。因此CAT、POD都可以作为老鹰茶抗寒性评价的指标。通过逐步回归分析得出,POD活性是老鹰茶抗寒性测定的代表性指标。品种对于老鹰茶的丙二醛含量没有显著影响,只有处理温度对丙二醛含量有极显著的影响。因此,丙二醛在评价品种间的抗寒性时,也是一个不理想的指标。品种对于老鹰茶Pro含量的影响不显著,只有处理温度对Pro含量才有显著性的影响。因此,游离Pro作为评价老鹰茶品种间的抗寒性也不理想。品种对于可溶性糖含量的影响有显著性的差异,而处理温度的影响更是达到了极显著的影响。因此,可溶性糖可以作为评价老鹰茶抗寒性的指标。
     本文通过应用主成分分析进行综合评价,对4个不同品种老鹰茶进行分析,综合了相对电导率、CAT、POD、丙二醛、可溶性糖、游离Pro共6个主要特征指标,并按综合评价值的大小排序,在这4个样品中抗寒性最高的是12号,其余依次为6号、8号,抗寒性最弱的是38号。
Research on Waterlogging Tolerance and Cold Resistance of Litseacoreana Levl.var seedlings
     Litsea coreana Levl.var whose fresh branches and leaves are firstly fixed, rolled,fermented and parched can be made into a kind of tea product "Lao-ying-cha". This tea hasbeen widely drunk by many people in south of China.In recent years; many problems haveemerged in Lao-ying-cha's planting, which have reduced its yield greatly. Damage of floodand chilling are two typical problems. We investigated the waterlogging tolerance and thecold resistance of Lao-ying-cha and drew some conclusions as follows:
     WATERLOGGING TOLERANCE
     In the whole process of experimentation, chlorophyll content went up firstly and thencame down. The damage of flood made chlorophyll content up in early, while it declinedwith the damage of flood increasing. Chlorophyll content was analyzed, the result showedthat process time made extremely remarkable difference on the chlorophyll of four varitiesand the variety made remarkable difference too.Therefore, chlorophyll content can be oneof indices of waterlogging tolerance determination.
     MDA content kept going up in each process period. MDA content was analized,extremely remarkable difference existed among four varities, while process time maderemarkable difference. MDA content can be also an index of waterlogging tolerancedetermination.
     In the whole process, the activity of SOD kept falling off, except number 12 andnumber 38 had slight increase.This is the proof that chilling damage can greatly restrict theactivity of SOD. According to stepwise regression analysis, SOD activity has remarkableliner relationship with waterlogging tolerance, which can be the representative index todetermine.
     The results showed that there were no obvious difference among varieties on thecontent of soluble protein and soluble sugar, their changes were slight in adversityenvironment for a long time. So the contents of soluble protein and soluble sugar were notfit to be the indices of waterlogging tolerance determination.
     In this paper, four varieties of Lao-ying-cha were studied by using principlecomponents analysis along with five attribute information including chlorophyll content,MDA, SOD, soluble protein and soluble sugar. Based on the standard of comprehensiveappraise value, waterlogging tolerance are sequenced as follows: number8(strongest), number6, number12,and 38(weakest).
     COLD RESISTANCE
     Different temperatures can make extremely remarkable difference on electricalconductivity, while the variety has no obvious relationship with it. Therefore electricalconductivity is not an suitable index to evaluat the cold resistance.
     POD and CAT were studied, the results showed that after chilling—stress, the activityof two enzymes both increased. Thus it can be seen that the two enzymes could enhancethe cold resistance of plants effectively by increasing their activity. Both temperature andvariety could make remarkable difference on CAT and POD. Therefore they can be indicesto evaluate cold resistance of Lao-ying-cha. According to stepwise regression analysis,POD is the representative index.
     MDA content decreased in coutinuous Chilling—stress environment, while itincreased with the enhancement of Chilling—stress.The rusults showed that temperaturemade extremely remarkable difference on MDA content while varieties had no obviousdifference. So MDA content is not a suitable index to evalute cold resistance.
     Pro content went up firstly, but it came down gradually with the enhancement ofadversity effect. The rusults showed that temperature could make remarkable difference onPro content while variety had no obvious difference. Thus Pro content also is not a suitableindex to evaluate cold resistance.
     During the whole process, soluble sugar Content came down firstly and began to go upwhen the temperature is up to 0℃. The final Soluble sugar content was higher than thebeginning. It can be seen that Lao-ying-cha enhances its cold resistance by increasingsoluble sugar content. The results showed that variety could make remarkable differenceon soluble sugar content, and temperature could make extremely remarkable difference too.Thus soluble sugar content can be an index to evaluate cold resistance.
     In this paper, four varieties of Lao-ying-cha were studied by using principlecomponents analysis along with six attribute information including electrical conductivity,CAT, POD, MDA, Pro and soluble sugar. Based on the standard of comprehensive appraisevalue, cold resistance are sequenced as follows: number12(strongest), number6,number8,and 38(weakest).
引文
[1] 许乾丽,孙向彤,李明炬等.老鹰茶、虫茶的化学成分研究[J].贵州科学,2000,18(3):191~195.
    [2] 赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].北京:化学工业出版社,2004.
    [3] 利容千 王建波.植物逆境细胞及生理学[M].湖北:武汉大学出版社,2002.
    [4] 刘军,陈礼清,唐茜.优良退耕还林树种老鹰茶[J].四川林业科技,2001,22(2):44~45.
    [5] 李俊,张健.毛豹皮樟的研究进展[J].四川农业大学学报,2005,23(2):247~252.
    [6] 李廷松.老鹰茶资源调查与开发利用[J].贵州茶叶,1995,84(4):10~13.
    [7] 唐茜,齐桂年.毛豹皮樟饮料资源的开发利用[J].四川林业科技,1998,19(4):66~68.
    [8] 方文培.四川植物志(第一卷)第1版[M].成都:四川出版社,1981.
    [9] 唐茜,刘军毛豹皮樟生物学特性及驯化栽培技术初探[J].贵州茶叶,2001,108(4):13~16.
    [10] 李锡文.中国植物志(第三十一卷)[M].北京:科学出版社,1982.296.
    [11] 中国科学院昆明植物研究所.云南植物志(第三卷)[M].北京:科学出版社,1983.34.
    [12] 郁建平,古练权.贵州老鹰茶的化学成分[J].植物资源与环境学报,2001,10(3):61~62.
    [13] 叶辉,郁建平.老鹰茶中三种黄酮类物质抗脂质过氧化作用初探[J].中药材,2004,27(2):112~114.
    [14] 胡成穆,陈琳,李荣,等.老鹰茶总黄酮对免疫低下小鼠的免疫功能的影响[J].中国药理通讯,2005,22(3):50.
    [15] 李俊.老鹰茶中黄酮成分抗炎免疫作用的研究[J]_中国药理通讯,2005,22(3):8.
    [16] 刘锦红.老鹰茶对小鼠血糖和血脂的影响观察[J].中华实用中西医杂志,2003,3(16):2057~2058.
    [17] 陈晓明,任正隆,张怀渝,等.蒙山绿茶和老鹰茶的防紫外线作用研究[J].辐射研究与辐射工艺学报,2005,23(5):278~281.
    [18] 许乾丽,茅向军,周雪松.老鹰茶和虫茶的6种生命元素分布状态和存在形态研究[J].贵州科学,1999,17(2):140~143.
    [19] 孔祥瑞.必需微量元素的营养、生理及临床意义[M].安徽科技出版社,1982.
    [20] 黄友谊,杨坚,李华钧.特种保健茶—虫茶[J].蚕桑茶叶通讯,1999,96(2):28~30.
    [21] 罗敦信.奇特的城步长安虫茶[J].茶叶机械杂志,1997,2:38.
    [22] 黄友谊,杨坚,李华钧.老鹰茶虫茶的生产及其利用初探[J]..茶叶机械杂志,1999,2:24~25.
    [23] 李廷松,李强,周维智.老鹰茶人工栽培初探[J].贵州茶叶,1999,97(1):9~10.
    [24] 赵可夫,王韶唐.作物抗性生理[M].北京:农业出版社,1990.
    [25] 曾建军,时明芝.植物涝害生理研究进展[J].聊城大学学报,2004,17(3):54~56.
    [26] 柴友,何立人,李正纬.大麦湿害机理研究[J].西南农业大学学报,1993,15(2):95~100.
    [27] Wang shan cen. A comparative study on the resistance of barley and wheat to waterlogging[J].Acta Agronomice sinica, 1996, 22 (2): 228~232.
    [28] 时明芝,周保松.植物涝害合耐涝机理研究进展[J].安徽农业科学,2006,34(2):209~210.
    [29] 卓英仁,陈益泰.木本植物抗涝性研究进展[J].林业科学研究,2001,14(2):215~222.
    [30] Kreuzwieser J, Furniss S, Rennenberg H. Impact of waterlogging on the N-metabolism of flood tolerant and non-tolerant tree species[J]. Plant, Cell and Environment, 2002, 25 (): 1039~1049.
    [31] 马焕普,刘志民,朱海旺,等.几种桃砧木的耐涝性及其解剖结构的观察比较[J].北京农学院学报,2006,21(2):1~4.
    [32] 董建国,余叔文.细胞分裂素对渍水小麦课衰老的影响[J].植物生理学报,1984,10:5.
    [33] Grichko, Varvara P, Bernard R Click[J]. Plant. Physiology and Biochemistry (Paris), 2001, 39 (1): 1~9.
    [34] 刘飞.湿涝对花生营养吸收和生长的影响及其营养调控研究[D].硕士论文.湖南:湖南农业大学,2005.
    [35] 李纪元.枫杨苗期性状遗传变异及其耐涝机理的研究[D].博士论文.北京:北京林业大学,2000.
    [36] 董登峰,骆炳山,陈大清.小麦苗期和孕穗期涝渍的某些生理特性比较研究[J].广西农业大学学报,1998,17(4):351~355.
    [37] 姜华武,张祖新.玉米的厌氧代谢与耐涝性[J].湖北农学院学报,1999,19(1):79~84.
    [38] 刘晓忠,李建坤,王志霞,等.涝渍逆境下玉米叶片超氧物歧化酶和过氧化氢酶活性与抗涝性的关系[J].华北农学报,1995,10(3):29~32.
    [39] 樊明寿,张福锁.植物通气组织的形成过程和生理生态学意义[J].植物生理学通讯,2002,38(6):611~615.
    [40] Jackson M B, Fenning T M, Drew M C, et al. Stimulation of ethylene production and gas space formation in adventitious roots of zea mays L. by small partial pressures of oxygen[J].Planta, 1995, (165): 486~492.
    [41] 张维强,唐秀芝.同工酶与植物遗传育种[M].北京:北京农业大学出版社,1993.
    [42] 张石诚.植物的抗寒生理[M].北京:农业出版社,1990.
    [43] 刘祖棋,张石诚.植物抗性生理[M].北京:北京农业出版社,1994.
    [44] 何若韫.植物低温逆境生理[M].北京:中国农业出版社,1995.
    [45] 贺庆棠.森林环境学[M].北京:高等教育出版社,1999.
    [46] 程洪,蔡儒珍,傅恒生,等.公路工程中的香根草等高等植物篱护坡技术[J].华东公路,2003,140(1):45~47.
    [47] 王静,魏小红,龙瑞军.植物抗寒机制的研究方法与进展[J].农林科技,2004,33(6):72~73.
    [48] 欧阳丹.阿月浑子病害的初步调查[J].新疆林业,1998,(2):34.
    [49] Rosengarten F Jr. The book of edible nuts[J]. New York Walker and Company, 1984, 3: 197~201.
    [50] Ferguson L.Pistachio production.Davis[J].Department of University of California, 1995, 4 (2): 30~38.
    [51] Sturrock D.Fvruits for southern Florida[J].Southeastern Printing Co Inc, 1959, 5 (3): 24~ 30.
    [52] Dan E Parfit. Pistachio cultivars and prospects for improvement. Fruit Gardener[J]. Amer.Hort.Sci, 1990, 12 (1): 58~61.
    [53] Wang Shuqin, Shang Xinye. The Resources and Production of pistachio in XinJiang[J].The second international sympodium of pistachios and almoads, 1997, 1 (2): 33~35.
    [54] 简令成.生物膜与植物抗寒害和抗寒性的关系[J].植物学通报,1993,(1):48~57.
    [55] 朱素琴.膜脂与植物抗寒性关系研究进展[J].湘潭师范学院学报(自然科学版),2002,24(4):49~54.
    [56] 吴楚,王政权.膜脂变化与植物抗寒性及HⅡ相位形成的关系[J].湖北农学院学报,2000,20(1):84~89.
    [57] Wu J, BrowseT. Elevated leaves of high-melting-pointp bosphatidylglycerols do not induce chilling sensitivity in an Arabidopsis mutant[J].The Plant Cell, 1995, 7: 17~27.
    [58] 刘琳,毛凯,干友民,等.暖地型草坪草抗寒性的研究概况[J].草原与草坪,2004,104(1):8~13.
    [59] 黄建安.茶树保护酶类与抗寒性的关系[J].茶叶科学,1990,10(1):35~40.
    [60] 罗军武,唐和平.茶树不同抗寒性品种间保护酶类活动的差异[J].湖南农业大学学报,2001,27(2):94~96.
    [61] 刘琳.四川野生假俭草的抗寒性研究[D].硕士论文.雅安:四川农业大学,2004.
    [62] Dan E Parfit. Devlopmem of pistachio as a crop in the United States[J].Annual Report Northern Nut Growers association, 1991, 82: 135~143.
    [63] Lyons J M.Chilling injury in plants[J].Plant Physiol, 1983, (73): 877~878.
    [64] 张水金,黄庭旭,章杏,等.植物抗寒性研究进展[J].福建农业学报(增刊),2005,20:154~159.
    [65] Holappa L D, Walker-Simmons M K. The wheat abscisic acid-responsive protein kinase mRNA, PKABAI, is up-regulated by dehydration, cold temperature, and osmotic stress[J].Plant Physiology, 1995, 108: 1203~1210.
    [66] 罗正荣.植物激素与抗寒力的关系[J].植物生理学通讯,1989,(3):1~5.
    [67] Thomas H, James A R.Freezing tolerance and solute changes in contrastion genotypes of Lolium pererune L. acclimated to cold and drought[J].Physiology Plant, 1993, 72: 249~254.
    [68] Skriver K, Mundy J. Gene expression in response to abscisic acid and osmotic Stress[J].Plant Cell, 1990, 2: 503~512.
    [69] Gusta L V. Stress tolerance induction: the role of ABA and heat stable proteins[J].Horticultural Science, 1994, 29: 571.
    [70] 熊佑清,李崇涛,刘晓辉.大叶黄杨的抗寒性及其应用研究[J].中国园林,2004,20(4):36~38.
    [71] 周瑞莲,赵哈林.高寒山区牧草生长过程中低温保护物质的作用[J].中国草地,2001,23(5): 19~26.
    [72] 耿广东,李建设.水杨酸对茄子幼苗抗寒性的影响[J].西北农林科技大学学报,2002,30(6):101~103.
    [73] 孙丽华.黄杨粗蛋白、氨基酸组分与脯氨酸等与其耐寒性的研究[J].干旱区资源与环境,2006,20(6):202~206.
    [74] 丁印龙,谢潮添等.低温胁迫下夏威夷椰子幼苗叶肉细胞Ca~(2+)水平及细胞超微结构变化的研究[J].厦门大学学报(自然科学版),2002,41(5):679~682
    [75] 黄永红,沈洪波,陈学森.杏树抗寒生理研究初报[J].山东农业大学学报(自然科学版),2005,36(2):191~195.
    [76] Levitt J. Excess water of flooding stress: Responses of plants to environmental stress.Scademic press, 1980 (2): 213~228.
    [77] 简今成,吴素萱.植物抗寒性的细胞学研究—小麦越冬过程中细胞内物质的变化[J].植物学报,1965b,13:198~208.
    [78] 简令成,孙龙华,施国雄,等.不同柑橘种类叶片组织的细胞结构与抗寒性的关系[J].园艺学报,1986,13:163~168.
    [79] 刘冰.花椒抗寒性研究[D].硕士论文.甘肃:甘肃农业大学,2005.
    [80] 梅丽.山东引种茶树时片结构与抗寒性评价研究[D].硕士论文.山东:山东大学,2003.
    [81] 崔国文,马春平.紫花苜蓿叶片形态结构及其与抗寒性的关系[J].草地学报,2007,15(1):70~75.
    [82] 黄意欢.茶树叶片水分与抗性的关系[J].湖南农学院学报,1991,17(3):452~467.
    [83] 张文娥,潘学军,王飞.葡萄枝条水分含量变化与抗寒性鉴定[J].中国果树,2007(1):14~15.
    [84] 张钢.国外木本植物抗寒性测定方法综述[J].世界林业研究,2005,18(5):14~20.
    [85] 向应海,鲁新成.老鹰茶—贵州大娄山民族民间古茶种[J].贵州科学,1998,16(3):216~220.
    [86] 熊庆娥.植物生理学实验教程[M].四川:四川科学技术出版社,2003.
    [87] 邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000。
    [88] 陈建勋,王小峰主编.植物生理学实验指导[M].广州:华南理工大学出版社,2002.
    [89] 中国科学院上海植物生理研究所,上海市植物生理学会编.现代植物生理学实验指南[M].北京:科学出版社,1999.
    [90] 高俊凤.植物生理学试验指导[M].北京:高等教育出版社,2006.
    [91] Arnon D I. Copper enzymes in isolated chloroplast: polyphenol oxidase in Beta vulgaris[J].Plant Physic 1., 1949, 24: 1~15.
    [92] 赵铭钦,王玉胜,刘国顺等.SPSS软件在烤烟品种综合评价中的应用[J].农艺科学,2006,22(10):128~130.
    [93] 陈平雁 黄浙明.SPSS 10.0统计软件应用教程[M],北京:人民军医出版社,2002.
    [94] 余建英 何旭宏.数据统计分析与SPSS应用[M].北京:人民邮电出版社,2003.
    [95] 刘先勇.SPSS 10.0统计分析软件与应用[M].北京:国防工业出版社,2002.
    [96] 朱根海.应用Logistic方程确定植物组织低温半致死温度的研究[J].南京农业大学学报,1986(3):11~16.
    [97] 罗正荣,张文彩.应用Logistic方程测定柑桔抗寒力的探讨[J].果树科学,1994,11(2):100~10.
    [98] Sakai A, Yoshida S.The role of sugar and related compounds in variations of freezing resistance[J].Cryobiology, 1968, 5: 160~174.
    [99] 姜东,谢祝捷,曹卫星,等.花后干旱和渍水对冬小麦光合特性和物质运转的影响[Jj.作物学报,2004,30(2):175~182.
    [100] Y. Ye, Nora F. Y. Tam, Y. S. Wong and C. Y. Lu. Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging [J]. Environmental and Experimental Botany, 2003, 49 (3): 209~221.
    [101] 王华田,孙明高.水涝对银杏生长及生理的影响[J].经济林研究,1997,15(2):14~18.
    [102] 李纪元.涝渍胁迫对枫杨幼苗保护酶活性及膜脂过氧化物的影响[J].安徽农业大学学报,2006,33(4):450~453.
    [103] Mckevlin M R, Hook D D, Rozelle A A. Adaption of plants to flooding and soilwaterlogging[A].In: Messina MG and Conner W Heds[C]. Southern Forested Wetlands: Ecology and Management Law is publishs, 1998.173~204.
    [104] 魏凤珍,李金才,董琦.孕穗期至抽穗期湿害对耐湿性不同品种冬小麦光合特性的影响[J].植物生理学通讯,2000:36(2):199.
    [105] 魏和平,利容干,王建波.淹水对玉米叶片细胞超微结构的影响[J].植物学报,2000,42(8):811~817.
    [106] 陈永华,赵森,严钦泉.不同淹涝胁迫强度对杂交稻和常规稻农艺性状和生化特性的影响[J].中国水稻科学,2006,20(5):512~516.
    [107] 安渊,陈凡毅,王俊,等.半秋眠和非秋眠紫花苜蓿品种耐涝性能研究[J].中国草地,2004,26(4):31~36.
    [108] 熊冬金,林志红.玉米在涝渍和低温胁迫过程中四种酶同工酶分析及丙二醛的变化[J],南昌大学学报:理科版,1996,20(4):314~319.
    [109] Reddy M D. Effects of Complete plant submergence on vegetative growth. Grain yield and some biochemical change in rice plant. Plant and soil, 1985, 87 (3): 365~374.
    [110] Kuznotsova GA, Kuznotsova M G. Characteristics under condictions of flooding. Sov Plant Physiol (engltransl),1981 (28):241~248.
    [111] 李乐农,彭克勤.洪涝对棉花产量与糖含量的影响[J].华南师范大学学报:自然科学版,1998(1):60~63.
    [112] 徐锡增,唐罗忠.涝渍胁迫下杨树内源激素及其它生理反应[J].南京林业大学学报:自然科学版,1999,23(1):1~5.
    [113] 杨向娜,魏安智,杨途熙,等.仁有杏3个生理指标与抗寒性的关系研究[J].西北林学院学报,2006,21(3):30~33.
    [114] 宋尚伟,李靖,闫锋,等.4个桃品种抗寒性研究初报[J].中国农学通报,2007,23(1):225~227.
    [115] 缴丽莉,路丙社,白志英,等.四种园林树木抗寒性的比较分析[J].园艺学报,2006,33(3):667~670.
    [116] 朱湘渝,王瑞玲.欧美杨新品种抗寒性的研究[J].林业科学研究,1990,3(5):487~490.
    [117] 孙秉均,黄礼森,李树玲,等.利用电解质渗出率方法测定梨的耐寒性[J].中国果树,1987,(1):15~18.
    [118] 高秀萍,郭修武.葡萄砧木抗寒与抗根癌病的研究[J].园艺学报,1993,20(4):313~318
    [119] 马翠兰,刘星辉,胡又厘.PP333对柚越冬期耐寒性调控的研究[J].果树科学,1999,16(3):197~201
    [120] Wang C Y. Physiological and biochemical responses of plants to chilling stress[J]. Hortscience, 1986, 21 (1): 172~175.
    [121] 郝丽娟,姚月俊,王智君,等.杏品种花器官耐寒性的研究[J].山西农业大学学报:自然科学版,2006,26(4):342~344.
    [122] 冯彩平.水分胁迫对冬小麦过氧化物酶与超氧化物歧化酶的影响[J].林木抗性生理研究,1992,3:53~56.
    [123] 刘友良.林木抗冻性测定技术的原理和比较[J].林木生理学通讯,1985,(1):40~43.
    [124] 孟庆瑞,徐秀英,杨建民,等.杏花器官抗寒性初步研究[J].河北农业大学学报,2006,29(3):22~25.
    [125] 陈力耕,胡西琴.脐橙品系耐寒性的研究[J].浙江大学学报:农业与生命科学版,2000,26(5):505~508.
    [126] 罗军武,唐和平.茶树不同抗寒性品种间保护酶类活性的差异[J].湖南农业大学学报:自然科学版,2001,27(2):94~96.
    [127] 吕庆,郑荣良.干旱及活性氧引起小麦膜脂过氧化与脱脂化[J].中国科学,1996,26(1):7~11.
    [128] Bon M C. Nucleotide status and protein synthesis in vivo in the apices of juvenile and matures Sequoiadendron giganteum during budbreak[J].Physiol.Plant, 1988, 7 (2): 769~800.
    [129] 刘兴宇,周广柱,王新颖.日本厚朴抗寒生理研究[J].沈阳农业大学学报,2006,37(6):845~848.
    [130] 何开跃,李晓储,黄利斌,等.3种含笑耐寒生理机制研究[J].南京林业大学学报:自然科学版,2004,28(4):62~64.
    [131] 郭太君,杨金茹.山楂等果树越冬期枝条丙二醛含量与抗寒性的关系[J].特产研究,1993(1):22~23.
    [132] 赵玉宏.两种草坪草抗寒性的探究[J].湖北民族学院学报:自然科学版,2005,23(4):381~ 383.
    [133] 刘杰,龙桂友,饶力群,等.抗寒性不同的枳和宫本柑桔苗生长期致死低温的探讨[J].生命科学研究,2006,10(1):82~86.
    [134] 赵勇,马雅琴,翁跃进.盐胁迫下小麦甜菜碱的脯氨酸含量变化[J].植物生理与分子生物学报,2005,31(1):103~106.
    [135] 李迈和,Norbert Kraeuchi.全球高山林线研究现状与发展方向[J].四川林业科技,2005,26(4):36~42.
    [136] 王丽雪,李荣富,马兰青,等.葡萄枝条中淀粉、还原糖及脂类物质与抗寒性的关系[J].内蒙古农牧学院学报,1994,15(4):1~7.
    [137] 肖艳,张延龙,牛立新.百合种球抗寒性的研究[J].陕西农业科学,2005(5):35~37.
    [138] 鲍思伟.自然降温过程中云锦杜鹃抗寒适应性研究——水分、渗透调节物的动态变化与低温半致死温度的关系[J].福建林业科技,2005,32(2):13~16.
    [139] 黄治远,李隆华,张云贵.龙眼耐寒性与叶片可溶性糖含量的关系[J].中国南方果树,2005,34(2):32~33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700