跨海沉管隧道混凝土结构耐久性与抗裂性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了促进华南地区经济的进一步快速发展,港珠澳跨海大桥的建设正火热进行。跨海沉管隧道处于高温高湿的海洋环境中,受氯离子侵蚀严重、服役寿命要求高、可维修性差且维修成本高;沉管管节属于复杂截面大体积混凝土构件,早期裂缝控制要求极高。如何保证混凝土结构的耐久性与抗裂性、确保沉管隧道在设计基准期间不维修和少维修非常重要。因此,针对跨海沉管隧道耐久性与抗裂性开展专题研究十分必要与迫切。
     本文在全面论述华南地区跨海沉管隧道耐久性影响因素的基础上,针对华南地区高温高湿的海洋环境氯离子对混凝土侵蚀导致钢筋锈胀开裂引起结构耐久性损伤的原理、适用于沉管隧道的高耐久性高抗裂混凝土的制备与试验、大体积复杂截面混凝土构件水化热温度应力的参数化分析及其裂缝控制技术等问题进行了研究,建立了跨海沉管隧道重要结构耐久性与抗裂性的研究方法和理论框架体系。论文进行的工作及其创新点主要有:
     1)根据华南地区海洋环境,通过结构耐久性的影响因素、损伤机理以及结构耐久性寿命预测模型进行定性分析,提出混凝土耐久性主要影响因素为高温高湿高氯离子浓度的海洋环境;并综述了高温高湿环境对结构耐久性的影响研究。
     2)系统地总结了高耐久高抗裂混凝土的设计原则与方法,确定了采用粉煤灰和矿渣双掺,降低水化热,降低氯离子渗透系数的设计思想。并据此配制了沉管隧道用高耐久性高抗裂混凝土,通过普通力学试验、氯离子渗透试验、水化热试验优选混凝土最优配合比。
     3)建立复杂截面大体积混凝土早期应力有限元分析模型,系统分析预制沉管管节早期应力问题。在MIDAS平台开展水化热温度应力参数化分析,通过调整材料、施工及养护的参数寻找最优的总体方案,深入探究了各关键参数对混凝土水化热温度裂缝的影响,并确定满足裂缝控制要求的材料、施工、养护等关键技术指标。
     4)对早期裂缝的影响因素以及预防措施进行了系统的分析,提出了采用高耐久高抗裂混凝土,降低入模温度,室内恒温保湿保温养护等综合裂缝控制措施;结合早期应力参数化分析结果提出了危险期和危险区重点防护的裂缝控制思想和措施。
     论文还对大体积混凝土温度应力有限元分析软件的编程思路,前后处理中的各种分析模拟技术以及仿真分析所涉及的混凝土各种时变特性参数的模拟方法进行了探讨。
In order to further promote the rapid development of regional economy, the Hong Kong-Zhuhai-Macau Bridge's construction is carried out. Sea-crossing immersed tunnel is at high temperature and humidity in the marine environment, with the characteristics of chloride by serious, service life of high demand, poor maintenance and high maintenance costs. Immersed tunnel cube is a massive concrete structure of complex section. It is highly demanding in the early crack control. How to ensure the durability of concrete structure and crack resistance, to ensure the immersed tube tunnel in the design of the base period is not less maintenance and repair is very important. Therefore, the thematic research for the immersed tube tunnel durability and crack resistance is necessary and urgent.
     This article on the basis of comprehensive exposition the durability factors of immersed tube tunnel of the South China Sea,Against the principle of chloride ions of the marine environment erosion the the concrete than led to the cracking of steel corrosion and cause the damage of structure durability、applied to the preparation and test of the high durability and high cracking resistance concrete of immersed tube tunnel、studied the issues of parametric analysis and crack control technology of hydration heat temperature stress and massive concrete structures with complex cross,established the the research methodology and theoretical framework of the durability and crack resistance of the important structural of immersed tube tunnel.The work and innovation of the paper carried out mainly:
     1) According to the marine environment of south China, through qualitative analysis of influencing factors and damage mechanism of structure durability and the prediction model of durability lifetime are carried out,this paper proposes that the main factors affecting concrete structure durability is high-temperature and high-humidity and high chlorine ion concentration of Marine environment, and reviews the effect of high-temperature and high-humidity environment to structure durability.
     2) This paper summarizes design principle and method of high permanent stability and high crack resistance concrete, and determines the design ideas of double mixing fly ash and slag and decreasing hydration heat and chloride permeability coefficient.According to these, prepare high permanent stability and high crack resistance concrete using on immersed tunnel, through the common mechanical test and chloride permeability test and the hydration heat test, the optimize the optimum proportion of concrete is determined.
     3) In order to systematically analyze the pre-stress problems early section of immersed tunnel tube, complex cross-section of early stress in mass concrete finite element analysis model is established. This paper carries out the hydration heat temperature stress analysis In MIDAS platform and deeply investigates the effect of various parameters on the temperature cracks of concrete hydration heat by adjusting the parameters of the materials, construction and maintenance to find the optimal overall scheme, and determines the key technical indexes meeting the requirements for crack control, such as materials, construction and maintenance.
     4) For the influencing factors of early cracks and preventive measures, the systemic analysis is carried out. This paper proposes comprehensive crack control measures, such as using high permanent stability and high crack resistance concrete, reducing molding temperature, and so on. Combining with the early stress analysis, this paper proposes the key protective apparatus for crack control thoughts and actions.
     Finite element analysis software programming ideas of mass concrete temperature stress and the various simulation analysis and simulation analysis techniques involved in various time-varying parameters of concrete of the simulation method are also discussed.
引文
[1]吴中伟.混凝土的耐久性问题[J].混凝土,1982,(02)
    [2]吴中伟.混凝土耐久性综合症及其防治[J].混凝土,1991,(04)
    [3]洪乃丰.混凝土碱度与钢筋锈蚀[J].混凝土与水泥制品,1990,(05)
    [4]李果,袁迎曙,耿欧.气候条件对混凝土碳化速度的影响[J].混凝土,2004,11:49-51
    [5]Tuutti, K.Service life of structures with regard to corrosion of embedded steel, rilem quality control of conerete structure.Stockholm, Sweden:1979.293-299.
    [6]Vargova. M. Signcance of the ambient temperature and the steel material in the process of concrete reinforcement corrosion. Construction and Materials,1997,1 I (2):99-103.
    [7]蒋德稳,李林,袁迎曙.温度、湿度对钢筋锈蚀速度的影响[[J].淮海工学院学报,2004(3):59-62
    [8]混凝土结构耐久性设计规范.中国建筑工业出版社.2009
    [9]冯乃谦,邢锋.混凝土与混凝土结构的耐久性[M].机械工业出版社:2009
    [10]姚燕.新型高性能混凝土耐久性的研究与工程应用[M].中国建材工业出版社:2004
    [11]中国工程院土木水利与建筑学部工程结构安全[M].混凝土结构耐久性设计与施工指南[M].中国建筑工业出版社:2004
    [12]徐强、俞海勇.大型海工混凝土结构耐久性研究与实践[M].中国建筑工业出版社:2008
    [13]金伟良、赵羽习.混凝土结构耐久性设计与评估方法(第四届混凝土结构耐久性科技论坛论文集)[M].机械工业出版社:2006
    [14]中华人民共和国行业标准(JGJ/T 193-2009·备案号J957-2009):混凝土耐久性检验评定标准.中华人民共和国住房和城乡建设部.中国建筑工业出版社.2010
    [15]张誉,等.混凝土结构耐久性概论[M].上海科学技术出版社:2003
    [16]周新刚.混凝土结构的耐久性与损伤防治[M].中国建材工业出版社:1999
    [17]牛荻涛.混凝土结构耐久性与寿命预测[M].科学出版社:2003
    [18]覃维祖.混凝土耐久性研究的现状和发展动向[J].建筑技术,2001,(01)
    [19]覃维祖.重视混凝土基础设施的耐久性[J].公路,2001,(02)
    [20]P. K. Mehta. Concrete Technology at the Crossroads Problems and Opportunities. ACI SP 144-1,1994
    [21]R. Miller, B·Shahrooz, et al.. Testing of High Performance Concrete Single-Span Box Girder.TRANSPORTATION RESEARCH RECORD 1624
    [22]Rupert Springenschmid. Development of the Cracking Frame and the Temperature-Stress Testing Machine. Thermal Cracking in concrete at Early Ages. E&FN SPON.1995
    [23]Final Report by RILEM TC 116-PCD. Concrete Durability—An Approach towards performance Testing. Materials and Structures. April 1999
    [24]Geert De Schutter. Hydration and temperature development of concrete made with blast-furnace slag cement. Cement and Concrete research.29(1999)
    [25]P·K·Mehta. Advancements in Concrete Technology.Concrete International.June 1999
    [26]P·K·Mehta. Role of Pozzolanic and Cementious material in Sustainable Development of the Concrete Industry. ACI SP178-19
    [27]A·Sarja. Durability Design of ConcreteStructures—Committee Report 130-CSL. Materials and Structures. Jan-Feb 2000
    [28]金伟良,吕清芳,赵羽习,干伟忠.混凝土结构耐久性设计方法与寿命预测研究进展[J].建筑结构学报,2007,(01)
    [29]刘凯,路新瀛.混凝土结构耐久性设计与耐久性寿命预测[J].四川建筑科学研究,2006,(04)
    [30]Pietro Lura, Klass van Breugel, Ippei Maruyama. Effect of curing temperature and type of cement on early-age shrinkage of high-performance concrete [J]. Cement and Concrete Research,2001,31(12):1867-1872.
    [31]Cussion D, Repette W L. Early-age cracking in reconstructed concrete bridge barrier walls [J]. ACI Materials Journal,2000,97(4):438-446.
    [32]Ei-ichi Tazawa, Shingo Miyazawa. Influence of cement and admixture on autogeous shrinkage of cement paste [J]. Cement and Concrete Research,1995,25(2):281-287.
    [33]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997:144-151Wang Tiemeng. Cracking-Control in Structure[M]. Beijing:China Architecture& Building Press,1997:144-151.
    [34]陈肇元,崔京浩,朱金铨,安明喆,俞哲夫.钢筋混凝土裂缝分析与控制[J].工程力学,2001[增刊]:57-84.
    [35]袁勇.混凝土结构早期裂缝控制[M].北京:科学出版社,2004:146-160
    [36]朱伯芳.大体积混凝土温度应力和温度控制[M].北京:中国电力出版社,1998:156-166
    [37]吴瑾,吴胜兴.氯离子环境下钢筋混凝土结构耐久性寿命评估[J].土木工程学报,2005,(2).
    [38]陈向勇.带裂缝钢筋混凝土构件的耐久性寿命预测[J].福建建设科技,2004,(1).
    [39]孙富学,梁本亮,.隧道衬砌结构耐久性寿命影响因素敏感性分析[J].地下空间与工程学报,2006,(2).
    [40]刘凯,路新瀛,.混凝土结构耐久性设计与耐久性寿命预测[J].四川建筑科学研究,2006,(4).
    [41]史波,赵国藩.基于可靠度的锈蚀钢筋混凝土结构使用寿命预测[J].大连理工大学学报,2007,(01)
    [42]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学版),2002,(04)
    [43]马亚丽,张爱林.基于规定可靠指标的混凝土结构氯离子侵蚀耐久寿命预测[J].土木工程学报,2006,(02)
    [44]惠云玲.混凝土结构钢筋锈蚀耐久性损伤评估及寿命预测方法[J].工业建筑,1997,(06)
    [45]赵尚传.钢筋混凝土结构基于可靠度的耐久性评估与试验研究[D].大连理工大学,2002
    [46]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998.
    [47]B.M.莫斯克文等著,倪继森译.混凝土和钢筋混凝土的腐蚀及其防护方法[M].北京:化学工业出版社,1988.
    [48]邸小坛,周燕.旧有建筑物的检测加固与维修[M].北京:地震出版社,1991.
    [49]张恺,包琦玮,等.北京地区立交桥梁耐久性调查分析,土建结构的安全性与耐久性[C].北京,2001.
    [50]Powers T C. A working hypothesis for further studies of frost resistance of concrete. ACI Journal,1945,41:245-272.
    [51]王胜年,黄君哲,张举连,潘德强,华南海港码头混凝土腐蚀情况的调查与结构耐久必分析[J].水运工程,2000,(6):8-12.
    [52]中国人民共和国建设部.混凝土结构设计规范(GB50010--2002)[S].北京:中国建筑工业出版社,2002.
    [53]中华人民共和国化学工业部.工业建筑防腐蚀设计规范(GB50046-1995)[S].北京:中国计划出版社,1995.
    [54]中国工程土木水利与建筑学部,工程结构安全与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[MI.北京:中国建筑工业出版社,2004.
    [5j]中华人民共和国建设部.建筑气候区划标准(GB50178-1993)[S].北京:中国计划出版社,1993.
    [56]龚洛书,柳春圃.混凝土的耐久性及其防护修补[M].中国建筑工业出版社,1990.
    [57]朱安民,混凝土碳化与钢筋混凝土耐久性[J1.混凝土,1992,4(6):18--22.
    [58]牛荻涛,董振平.预测混凝土碳化深度的随机模型[J1.工业建筑,1999,29(9):41-45.
    [59]李果,袁迎曙,耿欧.气候条件对混凝土碳化速度的影响[J].混凝土,2004,11:4951
    [60]Tuutti,K.Service life of structures with regard to corrosion of embedded steel.rilem quality control of conerete structure.Stockholm, Sweden:1979.293 299.
    [61]Vargova. M. Signcance of the ambient temperature and the steel material in the process of concrete reinforcement corrosion. Construction and Materials,1997,1 I(2):99-103.
    [62]蒋德稳,李林,袁迎曙.温度、湿度对钢筋锈蚀速度的影响[[J].淮海工学院学报,2004(3):59-62
    [63]蒋清野,王洪深.混凝土碳化数据库与混凝土碳化分析.攀登计划一钢筋锈蚀与混凝土冻融破坏的预测模型1997年度研究报告,1997.
    [64]冯乃谦.实用混凝土大全[M].北京:科学出版社,2001.
    [65]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003
    [66]黄士元,蒋家奋,杨南如,周兆桐.近代混凝土技术[M].陕西科学技术出版社,1998.
    [67]文俊强.广州珠江黄埔大桥超大掺量粉煤灰混凝土的初步研究[D].暨南大学:暨南大学,2006.
    [68]黄华县,欧阳东,文俊强,范圆圆,蔡瑞环,李寒标,.搅拌工艺和粉煤灰掺量对混凝土氯离子渗透性的影响[J].腐蚀与防护,2007,(7).
    [69]俞海勇,吴科如,杨波,徐强,邓咏梅.粉煤灰水泥胶凝体系水化温升及其抗裂性能的关系[J].混凝土,2000,(11).
    [70]刘数华,方坤河,曾力,孙永波.粉煤灰对混凝土抗裂性能的影响[J].粉煤灰综合利用,2004,(2).
    [71]任铮钺,王立久,尹少鹏.高掺量粉煤灰混凝土水化热及其抗裂分析[J].混凝土,2002,(5).
    [72]刘数华,方坤河.胶凝材料的水化热研究综述[J].商品混凝土,2008,(03)
    [73]吴景晖,董维佳.掺矿渣粉、粉煤灰对水泥水化热的影响[J].粉煤灰,2005,(06)
    [74]杨华全,董维佳,林育强.粉煤灰与矿渣粉对水泥水化热及胶砂强度影响[J].人民长江,2007,(05)
    [75]CHLORTEST, Resistance of concrete to chloride ingress, Deliverable D23, Project No. GRD1-2002-71808,2006
    [76]Neville AM. Properties of concrete.4th ed. Longman;1995.
    [77]de Borst R, van den Boogaard AH, Sluys LJ, van den Bogert PAJ. Computational issues in time-dependent deformation and fracture of concrete. In:Bazant ZP, Carol I, editors. Creep and shrinkage of concrete. London:E&FN Spon; 1993. p.209-326.
    [78]Bazant ZP. Numerical stable algorithm with increasing time steps for integral-type aging creep. Proc. of the 1st Int. Conf. on Struct. Mech. In Reactor Technology. West Berlin,4,1971. H2/2.
    [79]Bazant ZP, Wu ST. Dirichlet series creep function for aging concrete. J of Eng Mech ASCE 1974;100(3):575±97.
    [80]欧阳东.广州新白云机场补偿收缩纤维混凝土技术[J].建筑技术,2004,(01).50-52
    [81]朱伯芳.混凝土极限拉伸变形与混凝土龄期及抗拉抗压强度的关系[J].土木工程学报,1996.(5):72-76
    [82]祝效华,余志祥等ANSYS高级工程有限元分析范例精选[M].北京:电子工业出版社,2004:156-158
    [83]P. K. Mehta. R. W. Burrows. Building Durable Structures in The 21st Century. Concrete International. March.2001.
    [84]黄士元.混凝土早期裂纹的成因及防治[J].混凝土.2000(7):3-6
    [85]王铁梦.工程结构裂缝控制的综合方法[J].施工技术.2000(5):5-9
    [86]李玉琳,廉慧珍.加强施工质量的控制过程[J].建筑技术.2009(5):429-433
    [87]吴中伟.混凝土科学技术的反思[J].混凝土与水泥制品.1988(6):4-5
    [88]吴中伟,廉慧珍.水泥基复合材料科学研究中的辩证思维[J].混凝土.2000(4):3-7
    [89]朱伯芳.混凝土坝温度控制与防止裂缝的现状与展望[J].水利学报.2000(12):1424-1432
    [90]袁建虎,等.钢丝网增强混凝土中基体性能与增强效果的关系[J].解放军理工大学学报(自然科学版).2009(04):362-365
    [91]田正宏,白凯国,朱静.透水模板布改善混凝土表层质量试验研究[J].东南大学学报:自然科学版,2008,38(1):146-150.
    [92]赵国藩,彭少民,黄承逵.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999:88-109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700