再生粗骨料对混凝土结构耐久性影响机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于可持续发展战略思想和土木工程建设的需要,将再生混凝土这种新型绿色建筑材料应用到土木工程,特别是结构工程中,已是大势所趋。因此,本文从结构耐久性角度出发,对再生混凝土的碳化性能、氯离子渗透性能和钢筋锈蚀性能展开试验研究,并率先建立再生骨料和再生混凝土微观结构模型,探讨再生骨料对再生混凝土结构耐久性影响的机理。
     本文首先通过建立再生骨料和再生混凝土微观结构模型,确定影响再生混凝土宏观性能的微观因素即水灰比和再生骨料掺量。然后通过改变水灰比和再生骨料掺量,对再生混凝土碳化性能、渗透性能及钢筋锈蚀性能进行了试验研究,为后续再生混凝土结构耐久性影响机理的研究奠定基础。鉴于目前对再生混凝土碳化性能和钢筋锈蚀研究较少的现状,建立了以再生骨料掺量为主要分段参数的再生混凝土碳化模型和再生混凝土钢筋锈蚀物理模型。基于试验研究成果,逐步创建再生混凝土渗透模型和再生混凝土孔隙裂隙双重逾渗模型,着重围绕再生骨料对再生混凝土钢筋锈蚀的影响机理展开分析。
     总结本文主要研究工作和预期成果如下:
     在分析和总结现有研究成果的基础上,首创了以“再生骨料效应层”作为再生骨料性能表征的再生骨料微结构模型,并就再生骨料效应层体积分数进行了计算,确定再生骨料吸水率和再生骨料效应层体积之间存在的函数关系:V0=25×(γsWm-1.33),并以此为基础提出了由再生骨料、新界面过渡区和水泥砂浆三相组成的再生混凝土微观结构模型。通过对微观结构和宏观性能相关关系的分析,建立再生混凝土宏观性能和微观结构相关关系:K*=C(W/C,M),以此为理论基础对再生混凝土结构耐久性进行深入研究。
     根据本文理论研究基础K*=C(W/C,M),配制了水灰比分别为0.45、0.55、0.65和再生骨料掺量分别为0、30%、50%、70%和100%的15组再生混凝土试件,测定了其28d抗压强度及3d、7d、14d、28d和56d碳化深度,分析了水灰比和再生骨料掺量对再生混凝土的抗压强度和碳化性能的影响规律。试验结果表明水灰比对再生混凝土性能的影响规律与普通混凝土类似,均随着水灰比的增大,28d抗压强度呈下降趋势,碳化深度呈增大趋势。但受再生骨料高吸水性的影响,当水灰比由0.45增大到0.65时,再生混凝土碳化深度的增长速度不如普通混凝土那样显著;再生骨料掺量的变化对再生混凝土28d抗压强度和碳化性能均有明显影响,其影响的程度取决于再生骨料高吸水性引起的有利作用和损伤结构带来的不利作用两方面的对比,与水灰比的大小有一定的关系。在试验分析的基础上,考虑水灰比和再生骨料掺量的交互影响作用,以再生骨料50%掺量为分段点,建立了再生混凝土抗压强度函数关系表达式和碳化深度模型。运用数学统计和误差分析的方法,验证了模型具有较好的吻合度。
     为明确再生骨料对混凝土渗透性能的影响,共进行了15组再生混凝土试件的6h电通量测定,并计算了相应对比组的氯离子扩散系数,分析了水灰比和再生骨料掺量对再生混凝土氯离子渗透性能的影响规律。研究结果表明:在各配合比下,再生混凝土氯离子渗透性为中等水平,并不低于普通混凝土。随着水灰比的增大,再生混凝土6h通电量增加,氯离子扩散系数增大,与普通混凝土具有类似规律;而再生骨料掺量对再生混凝土氯离子渗透性能的作用受水灰比的影响,影响规律并不单调。鉴于此,提出了再生混凝土双相复合渗透模型,当水灰比和再生骨料掺量发生变化时,模型中高低渗透性相随之发生相互转换,同时运用GEM理论对再生骨料渗透系数提出了相应的计算方法。
     基于再生混凝土碳化试验和氯离子渗透试验结果,对再生混凝土钢筋锈蚀性能进行进一步试验研究,共测定了15组再生混凝土钢筋锈蚀开始时间和钢筋锈蚀率。试验结果表明:再生混凝土中钢筋锈蚀开始时间受水灰比和再生骨料掺量双因素影响,当再生骨料掺量低于50%时,钢筋锈蚀随水灰比变化的规律和普通混凝土相似,但当再生骨料掺量高于50%时,再生混凝土中钢筋锈蚀的变化规律和普通混凝土截然相反,并且随着再生骨料掺量的增加,再生混凝土钢筋锈蚀开始时间呈推迟趋势;再生混凝土钢筋锈蚀率随水灰比的增大而增大,再生骨料掺量对钢筋锈蚀率的影响与水灰比有关,取决于再生骨料对渗透性影响的两面性。
     结合再生混凝土双相复合渗透模型和逾渗理论,本文提出了再生混凝土孔隙裂隙双重逾渗介质模型,并结合逾渗阀值进行计算分析,得出水灰比增大至0.55时,再生混凝土中发生键逾渗现象,再生骨料掺量增大到52.4%时,发生座逾渗现象的重要结论,并结合再生混凝土碳化、氯离子渗透和钢筋锈蚀的试验结果进行对比验证。在此基础上,就水灰比和再生骨料掺量双因素变化时,再生骨料对混凝土钢筋锈蚀影响机理进行阐明,建立了再生混凝土钢筋锈蚀物理模型,并通过拟合分析对再生混凝土钢筋锈蚀经验模型的建立进行分析,为再生混凝土钢筋锈蚀问题的深层次研究奠定理论基础。
For the requirement of the sustainable development and construction of civil engineering, as a green building material, recycled concrete feasible to civil engineering, particularly to structural engineering, becomes an inevitable trend. Therefore, inspected from a durability standpoint, carbonation performance, chloride ion penetration performance and steel bar corrosion performance of recycled concrete are tested in this paper. And the steel corrosion mechanism is studied based on the microstructure of recycled aggregate and recycled concrete.
     Firstly, this paper established the microstructure of recycled aggregate and recycled concrete in order to determine the micro factors that influence the macro structure properties,which are water-cement-ratio and recycled aggregate mix proportion. Carbonation performance, chloride ion penetration performance and steel bar corrosion performance of recycled concrete are studied by changing water-cement ratio and recycled aggregate content to obtain necessary experimental data for reinforcement corrosion mechanism of recycled concrete. Targeting at the situation of almost not considering recycled aggregate content and few carbonation performance and steel bar corrosion study on recycled concrete, compressive strength and carbonation model of recycled concrete are suggested considering recycled aggregate content as main segment parameter. Based on the former research, this paper emphasizes on the effect factors and mechanism of reinforcement recycled concrete by establishing penetration model and pore-fracture dual-percolation model. The main research contents and achievement are summarized as follows:
     Considering a "recycled aggregate effect layer" as recycled aggregate performance characterization, the micro-structure model of recycled aggregate is developed. The layer volume fraction is calculated and analyzed to establish a functional relationship between recycled aggregate water absorption ratio and the effect layer volume fraction. Then, a three-phase micro-structure model of recycled concrete is developed, which suggested that the recycled aggregate, the new interfacial transition zone and cement mortar shoule be considered in the model. Through the micro-structure and macro-performance correlation dependence analysis, the relationship that is K=C (W/C, M) between macro-performance and micro-structure of recycled concrete is established, as a theoretical basis to expand the durability of recycled concrete structures.
     According to the theoretical basis of K*=C (W/C, M),15groups of recycled concrete specimens are disposed to test28d compressive strength and3d,7d,14d,28d,56d carbonation depth, which water-cement ratio is0.45,0.55,0.65and recycled aggregate content is0,30%,50%,70%,100%, And the influence of water-cement ratio and recycled aggregate content on compressive strength and carbonation performance is discussed. The results show that water-cement ratio has same effect on recycled concrete performance as ordinary concrete, that is compressive strength and carbonation depth increase with the increasement of water-cement ratio. But when water-cement ratio changes from0.45to0.65, the growth rate of recycled concrete carbonation depth is not as significant as normal concrete impacted by its high water absorption. On the other hand, recycled aggregate content has obvious affect on compressive strength and carbonation performance. The degree of influence depends on contrast of two conflicting factors:one is beneficial effect due to high water absorption; another is harmful effect caused by damage structure, which is related to water-cement ratio. Taking into account the interactive effect of water cement ratio and recycled content, compressive strength model and carbonation model are suggested on the condition of50%recycled aggregate content as a staging point. The reference values of the models agree well with the experimental data by error analysis.
     Around the reinforcement corrosion mechanism of recycled concrete,6h electric flux of15groups of recycled concrete specimens is tested, and their chloride ion permeability coefficients are calculated. Then the influence of water-cement ratio and recycled aggregate content on recycled concrete chloride ion permeability is analyzed. The results indicate that recycled concrete chloride ion permeability is medium in different proportions, which is not poorer than ordinary concrete. With the increase of water-cement ratio,6h electric flux and chloride ion permeability coefficient of recycled concrete increase, which has the same rule with ordinary concrete. And recycled aggregate content has some non-monotonic affect on recycled concrete chloride ion permeability that is related to water-cement ratio. A dual-phase composite of recycled concrete permeability model is proposed based on these. According to the model, high and low permeability phase transforms each other when a change of water-cement ratio and recycled aggregate content occurs, and the permeability coefficient of recycled concrete can be calculated by GEM theory.
     According to carbonization and chloride ion penetration test results, experiment on properties of recycled concrete reinforcement corrosion is carried on, and rust start time and reinforcing bar corrosion rate of15groups of recycled concrete are measured. It is shown that rust start time is impacted by water-cement ratio and recycled aggregate content in recycled concrete. When recycled aggregate content is less than50%, the effect of water-cement ratio in recycled concrete is similar to that of ordinary concrete, but the effect becomes different if recycled aggregate content is higher than50%. Besides these, with the increase of recycled aggregate quantity, reinforcement corrosion start time is postponed. Reinforcement corrosion rate increases with the increase of water-cement ratio, and the influence of recycled aggregate content on steel corrosion rate is related to water-cement ratio, depending on the two conflicting sides of recycled aggregate.
     Combined with dual-phase composite of recycled concrete permeability model and percolation theory, this paper presents Pore-fracture dual-percolation model of recycled concrete. Based on it, the important conclusions, that key percolation phenomenon occurs when water-cement ratio increases to0.55, while block percolation phenomenon happens when recycled aggregate content increases to52.4%, is drawn by calculating percolation threshold and verified by former test data. So steel bar corrosion mechanism of recycled concrete is clarified on condition that water-cement ratio and recycled aggregate content interactive change. And a physical model of recycled concrete reinforcement corrosion is established. On the other hand, some ideas for experience model of recycled concrete reinforcement corrosion are demonstrated in order to provide theoretical foundation for further recycled concrete steel bar corrosion research.
引文
[1]瞿尔仁,杨木旺,叶桂花等.再生混凝土技术及其应用[J].合肥工业大学学报,2003,26:1183-1187.
    [2]丁树谦.建筑垃圾的循环利用[J].城市问题,2009,9:20.
    [3]杜婷,李惠强,吴贤国.再生混凝土的研究现状和存在的问题[J].建筑技术,2003,34(2):133-134.
    [4]孙跃东,周德源.我国再生混凝土的研究现状和需解决的问题[J].混凝土,2006,4:27-30.
    [5]Rasheeduzzafar. Recycled aggregate-a source for new aggregate[J]. Cement, Concrete and aggregate,1984, (6):17-27.
    [6]尚建丽等.再生粗骨料特征性能试验研究[J].建筑技术,2003,134(1):52-53.
    [7]徐亦冬,周士琼等.再生混凝土骨料试验研究[J].建筑材料学报,2004,7(4):447-450.
    [8]Winter, M.Gand Henderson. Estimates of the quantities of recycled aggregates in Scotland[J]. Engineering Geology,2003,70(3-4):205-215.
    [9]Ilker Bekir Topcu, Selim Sengel. Properties of concretes produced with waste concrete aggregate[J]. Cement and Concrete Research,2004,34:1307-1312.
    [10]Sagoe-Crentsil, K.K., Brown. Performance of concrete made with commercially produced coarse recycled concrete aggregate[J]. Cement and Concrete Research,2001, 31(5):707-712.
    [11]Marta Sanehez de Juan, Pilar Alaejos Gutierrez. Influence of attached mortar content on the properties of recycled concrete aggregate [J]. Proc Int RILEM Conf on theUse of Recycled. Materials in Buildings and Structures, Barcelona, SPain,2004:19.
    [12]全洪珠,丁杰东,朱亚光.不同品质再生粗骨料对混凝土强度及耐久性影响的实验研究[C].上海:首届全国再生混凝土研究与应用学术交流会,2008:283-289.
    [13]张九峰.再生骨料混凝土力学性能特征及其影响因素[D].北京交通大学硕士论文,2010.
    [14]Farid Debieb, Luc Courard, Said Kenai. Mechanical and durability properties of concrete using contaminated recycled aggregates [J]. Cement and Concrete Composites,2010,32: 421-426.
    [15]石建光.再生骨料对混凝土性能影响的试验研究和计算分析[D].上海大学博士论文,2011.
    [16]杨青.再生骨料的吸水率对再生混凝土物理力学性能的影响研究[D].浙江大学硕士学位论文,2011.
    [17]秦廉,张雄,赵明等.再生骨料的吸水特性及其对再生混凝土性能的影响[C].江苏 无锡:2011年混凝土与水泥制品学术讨论会论文集,2011.
    [18]BCSJ. Proposed standard for the "Use of recycled aggregate and recycled aggregate concrete" [J]. Building Contractors Society of Japan Committee on disposal and reuse of construction waste, May 1977(English version published in June 1981).
    [19]Rasheeduzafar, Khan. Recycled concrete——a source of new aggregate [J]. Cement, Concrete and Aggregates (ASTM),1984,69(1):17-27.
    [20]Saroj Mandal, Arundeb GUPTA. Strength and durability of recycled aggregate concrete[J]. labse symposium melbourne, Australia,2002.
    [21]Limbachiya M C, Leelawat T, Dhir R K. Use of recycled concrete aggregate in high-strength concrete [J]. Materials and Structures,2000,33(10):574-580.
    [22]Olorunsogo F. T., Padayachee N. Performance of recycled aggregate concrete monitored by durability indexes [J]. Cement and Concrete Research,2002,32(2):179-185.
    [23]Wai Hoe Kwan, Mahyuddin Ramli, Kenn Jhun Kam, etal. Influence of the amount of recycled coarse aggregate in concrete design and durability properties[J]. Construction and Building Materials,2012,26:565-573.
    [24]Otsuki N., Miyazato S., Yodsudjai W. Influence of Recycled aggregate on Interfacial Transition Zone, Strength, Chloride Penetration and Carbonation of Concrete[J]. Journal of Materials in Civil Engineering,2003,15(5):443-451.
    [25]吴红利,宋少民.再生骨料混凝土耐久性试验研究[J].商品混凝土,2006,(4):25-30.
    [26]胡波,柳炳康,张李黎.再生混凝土氯离子渗透性能测试与分析[J].合肥工业大学学报(自然科学版),2009,32(8):1240-1244.
    [27]顾荣军,耿欧,卢刚等.再生混凝土抗氯离子渗透性能研究[J].混凝土,2011,8:39-41.
    [28]Shi Cong Kou, Chi Sun Poon Dixon Chan. Influence of Fly Ash as Cement RePlacement on the properties of Recyeled Aggregate Concrete[J]. Journal of Materials in Civil Engineering,2007,709-717.
    [29]Yury Andres Villagran-Zaccardi, Claudio Javier Zega,etal.Chloride Penetration and Binding in Recycled Conerete[J]. Journal of Materials in Civil Engineering,2008,449-455.
    [30]R. Zaharieva, Francois Buyle-Bodin, Frederic Skoczylas, etal. Assessment of the surface permeation properties of recycled aggregate concrete [J]. Cement and Concrete Composites, 2003, (25):223-232.
    [31]Nobuaki Otsuki M. ASCE, Shin-ichi Miyazato, Wanchai Yodsudjai. Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete [J]. Journal of Materials in Civil Engineering,2003, (9-10):443-451.
    [32]S.M. Levy, P. Helene. Durability of recycled aggregates concrete:a safe way to sustainable development[J]. Cement and Concrete Research,2004, (34):1975-1980.
    [33]孙浩,王培铭,孙家瑛.再生混凝土抗气渗性及抗碳化性能研究[J].建筑材料学报, 2006,9(1):86-91.
    [34]肖建庄,雷斌.再生混凝土碳化模型与结构耐久性设计[J].建筑科学与工程学报,2008,25(3):66-72.
    [35]潘丽云,盖占方,陈爱玖等.再生混凝土碳化性能试验研究[C].广东深圳:3rd International Conference on Power Electronics and Intelligent Transportation System,2010: 287-291.
    [36]张珍,闫宏生.再生混凝土的碳化[J].混凝土,2009,11:34-36.
    [37]Pinghua ZHU, Xin jie, WANG Xin, etal. Research on carbonation resistance of Recycled Concrete using coarse and fine recycled aggregates[C]. ShangHai.-2nd International Conference on Waste Engineering and Management,2010:437-442.
    [38]孙亚丽.再生混凝土抗碳化能力与钢筋锈蚀的试验研究[D].浙江工业大学硕士论文,2009.
    [39]元成方,罗峥,丁铁锋等.再生骨料混凝土碳化性能正交试验研究[J].武汉理工大学学报,2010,32(21):10-14.
    [40]刘星伟,李秋义,李艳美.再生细骨料混凝土碳化性能的试验研究[J].青岛理工大学学报,2009,30(4):159-163.
    [41]Abdelgadir Abbas, Gholamreza Fathifazl, O. Burkan Isgor, etal. Durability of recycled aggregate concrete designed with equivalent mortar volume method[J]. Cement and Concrete Composites,2009,31:555-563.
    [42]Hongzhu Quan, Hideo Kasami, Takayuki Tamai. Experimental study of effects of adhered mortar content on quality of recycled coarse aggregate and properties of concrete[C]. ShangHai:2nd International Conference on Waste Engineering and Management,2010:491-500.
    [43]J.A. Larbi, P.D. Steijaert. Microstructure of concretes containing artificial and recycled aggregates[C]. Proceeding of the International Conference on Environmental Implications of Construction Materials and Technology Developments,1994,60:877-888.
    [44]Jose M.V Gomez-Soberon. Porosity of recycled concrete with substitution of recycled concrete aggregate:An experimental study[J]. Cement and Concrete Research,2002,32(8): 1301-1311.
    [45]水中和,潘智生,朱文琪.再生集料混凝土的微观结构特征[J].武汉理工大学学报,2003,25(12):99-103.
    [46]万惠文,徐金龙,水中和.再生混凝土ITZ结构与性质的研究[J].武汉理工大学学报,2004,26(11):29-32.
    [47]C.S Poon, Z.H Shui, L Lam. Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates Original Research Article[J]. Construction and Building Materials,2004,18, (6):461-468.
    [48]陈云钢,孙振平,肖建庄.再生混凝土界面结构特点及其改善措施[J].混凝土, 2004,2:10-14.
    [49]陈云钢.再生混凝土界面强化试验的微观机理研究[J].混凝土,2007,11:53-58.
    [50]张金喜,张建华,邬长森.再生混凝土性能和孔结构的研究[J].建筑材料学报,2006,9(2):142-148.
    [51]李福海,叶跃忠,赵人达.再生集料混凝土微观结构分析[J].混凝土,2008,5:30-34.
    [52]肖建庄,刘琼,李文贵.再生混凝土细微观结构和破坏机理研究[J].青岛理工大学学报,2009,30(4):24-31.
    [53]魏鸿,凌天清,卿明建.再生水泥混凝土界面过渡区的结构特性分析[J].重庆交通大学学报(自然科学版),2008,27(5):709-713.
    [54]Shi-Cong Kou, Chi-Sun Poon, Miren Etxeberria. Influence of recycled aggregates on long term mechanical properties and pore size distribution of concrete [J]. Cement and Concrete Composites,2011,33:286-291.
    [55]C. Medina, M. Frias b, M.I. Sanchez de Rojas. Microstructure and properties of recycled concretes using ceramic sanitary ware industry waste as coarse aggregate[J]. Construction and Building Materials,2012,31:112-118.
    [56]Ishill K. Flexible characteristic of RC beam with recycled coarse aggregate [C]. Proceeding of the 25th JSCE Annual Meeting,1998:886-887.
    [57]Ippei Maruyama, Masaru Sogo, Takahisa Sogabe, etal. Flexural properties of reinforced recycled concrete beams[C]. Barcelona, Spain:Proceedings of the International RILEM Conference On the'Use of Recycled Materials in Building and Structures',2004:525-535.
    [58]肖建庄,兰阳.再生混凝土梁抗剪性能试验研究[J].结构工程师,2004,20(6):54-58.
    [59]高策.再生粗骨料混凝土梁受弯性能试验研究[D].西南交通大学硕士论文,2007.
    [60]林俊.再生混凝土抗压和梁受弯性能试验研究[D].广西大学硕士论文,2007.
    [61]邓志恒,杨海峰,罗延明.再生混凝土有腹筋简支梁斜截面抗剪试验研究[J].工业建筑,2010,40(12):47-50.
    [62]Papadakis V.G, Vayens C.G, Fardis M.N. Experimental investigation and mathematical modeling of the concrete carbonation problem[J]. Chemical Engineering Science,1991, 46(5-6):1333-1338.
    [63]柳俊哲.混凝土碳化研究与进展(1)——碳化机理及碳化程度评价[J].混凝土,2005,193(11):10.
    [64]Houst Y.F, Folker H. Wittmann.Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste[J]. Cement and Concrete Research,1994, 24(6):1165-1176.
    [65]何智海,刘运化,白轲.混凝土碳化研究进展[J].材料导报,2008,22:353-357.
    [66]杨林德,潘洪科,祝彦知.多因素作用下混凝土抗碳化性能的试验研究[J].建筑材料学报,2008,11(3):345-348.
    [67]杨军.混凝土的碳化性能与气渗性能研究[D].山东科技大学硕士论文,2004.
    [68]蒋利学.混凝土碳化深度的计算模型及实验研究[D].同济大学硕士论文,1996.
    [69]刘亚芹.混凝土碳化引起的钢筋锈蚀实用计算模式[D].同济大学硕士论文,1997.
    [70]肖佳,勾成福.混凝土碳化研究综述[J].混凝土,2010,243:40-52.
    [71]施锦杰,孙伟.混凝土中钢筋锈蚀研究现状与热点问题分析[J].硅酸盐学报,2010,3(9):1753-1765.
    [72]Pillai R G, Trejo D. Surface condition effects on critical chloride threshold of steel reinforcement[J].ACI Materials Journal,2005,102(2):103-109.
    [73]庄其昌,金祖权,李凤梅.钢筋在混凝土模拟孔溶液中的腐蚀研究[J].青岛理工大学学报,2010,31(3):12-16.
    [74]蒋建华,袁迎曙,李富民.混凝土中不同等级钢筋锈蚀行为的比较[J].建筑材料学报,2009,12(5):523-527.
    [75]张倩倩,孙伟,施锦杰.矿物掺合料的对钢筋锈蚀临界氯离子含量的影响[J].硅酸盐学报,2010,38(4):633-637.
    [76]Baccay M.A, Otsuki N, Nishida T, etal. Influence of cement type and temperature on the rate of corrosion of steel in concrete[J]. Corrosion,2006,62(9):811-821.
    [77]耿欧.混凝土构件中钢筋锈蚀率预计模型研究[D].中国矿业大学博士论文,2008.
    [78]高全全,张虎元.大气二氧化碳浓度升高对混凝土碳化的影响[J].混凝土,2007,210:17-19.
    [79]顾荣军,耿欧,袁江等.再生混凝土内钢筋腐蚀速率的初步试验研究[J].徐州建筑职业技术学院学报,2010,10(1):19-21.
    [80]李翔宇,赵霄龙,郭向勇.泡沫混凝土导热系数模型研究[J].建筑科学,2010,26(9):83-86.
    [81]罗健林.碳纳米管水泥基复合材料制备及功能性能研究[D].哈尔滨工业大学博士论文,2009.
    [82]范晓明.机敏混凝土的压敏性及钢筋腐蚀与防护机理研究[D].武汉理工大学博士论文,2009.
    [83]孙国文,孙伟,张云升.预测氯离子在水泥基复合材料中有效扩散系数[J].东南大学学报(自然科学版),2011,41(2):376—381.
    [84]南策文.非均质材料物理——显微结构——性能关联[M].北京:科学出版社,2005.
    [85]杜婷.高性能再生混凝土微观结构及性能试验研究[D].华中科技大学博士论文,2006.
    [86]李爽.再生水泥混凝土粗骨料性能及其分级方法的研究[D].北京工业大学硕士论文,2009.
    [87]王涛.再生骨料强化及再生混凝土基本力学性能试验研究[D].山东科技大学硕士论文,2009.
    [88]陈露一,郑志河,邵慧权等.混凝土界面过渡区不均匀特性研究[J].武汉理工大学学 报,2007,29(9):111-115.
    [89]何小芳,缪昌文,张云升等.水泥基材料界面过渡区结构及其性能的分析方法综述[J].混凝土,2009,240:19-24.
    [90]陈惠苏,孙伟,Stroeven Piet.水泥基复合材料界面过渡区体积分数的定量计算[J].复合材料学报,2006,23(2):133-142.
    [91]Agioutantis Z, Chatzopoulou E, Stavroulaki M. A numerical investigation of the effect of the interfacial zone in concrete mixtures under uniaxial compression:the case of the dilute limit[J]. Cement and Concrete Research,2000,30(5):715-723.
    [92]LIAO Kuo-yu, CHANG Ping-ku, Peng Yaw-nan, etal. A study on characteristics of interfacial transition zone in concrete[J]. Cement and Concrete Research,2004(34):977-989.
    [93]LEEMANN A, MUNCH B, GASSER P, etal. Influence of compaction on the interfacial transition zone and the permeability of concrete[J]. Cement and Concrete Research,2006: 1425-1433.
    [94]于庆磊,杨天鸿,唐春安.界面强度对混凝土拉伸断裂影响的数值模拟[J].建筑材料学报,2009,12(6):643-649.
    [95]Luciano J, Miltenberger M. Predicting chloride diffusion coefficients from concrete Mixture proportions[J]. ACI Structural Journal,1999,96(6):698-702.
    [96]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [97]宋晓冰.钢筋混凝土结构中的钢筋腐蚀[D].清华大学博士论文,1999.
    [98]张剑波,吴勇生,孙可伟.再生骨料混凝土孔隙结构的试验研究[J].硅酸盐通报,2011,30(1):239-244.
    [99]张金喜,张建华,邬长森.再生混凝土性能和孔结构的研究[J].建筑材料学报,2006,9(2):142-147.
    [100]李叶.再生骨料混凝土性能的试验研究[D].重庆大学硕士论文,2009.
    [101]毛高峰,李艳美,万盈盈.颗粒整形对再生粗骨料混凝土工作性的影响[J].混凝土,2008,7:66-69.
    [102]朱亚光,韩纪权,李秋义.颗粒整形再生骨料混凝土力学性能的试验研究[J].青岛理工大学学报,2009,30(4):115-119.
    [103]沈建生,徐亦冬,周士琼.再生混凝土配合比试验研究[J].新型建筑材料,2007,8:18-20.
    [104]白文辉,张金龙.基于自由水灰比的再生混凝土配合比设计研究[J].绍兴文理学院学报,2007,27(9):52-55.
    [105]史巍,侯景鹏.再生混凝土技术及其配合比设计方法[J].建筑技术开发,2001,28(8):18-20.
    [106]常彦铮.再生混凝土抗压试验的数值模拟与等效抗压强度折减系数研究[D].西安建筑科技大学硕士论文,2011.
    [107]赵铁军.混凝土渗透性[M].北京:科学出版社,2006.
    [108]A.J.Katz, A.H.Thompson. Quantitative prediction of permeability in porous rock[J]. Phys.Rev.B,1986,34(11):8179-8181.
    [109]D.S.McLanchlan. An equation for the conductivity of binary mixtures with anisoteopic grain strctures[J]. J.Phys.C:Solid State Phys.,1987,20:865-877.
    [110]D.S.McLanchlan. Measurement and analysis of a model dual-conductivity medium using a generalized effective-medium theory[J]. J. Phys. C:Solid State Phys.,1988,21: 1521-1532.
    [111]朱岳明.裂隙岩体渗透研究述评[J].河海科技进展,1991,11(2):17-25.
    [112]王俊光.裂隙岩体渗流模型及数值模拟研究[J].辽宁工程技术大学硕士论文,2006.
    [113]羊压平,华金龙.逾渗现象[J].工科物理,1996,1:6-9.
    [114]刘生丽,冯辉霞,张建强等.逾渗理论的研究及应用进展[J].应用化工,2010,39(7):1074-1079.
    [115]吕兆兴.孔隙裂隙双重介质逾渗理论及应用研究[D].太原理工大学博士论文,2008.
    [116]郑委,鲁晓兵,刘庆杰等.基于双重逾渗模型的裂隙多孔介质连通性研究[J].岩石力学与工程学报,2011,30(6):1289-1297.
    [117]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [118]T. C. Powers. Structure and physical properties of harden portland cement paste[J]. J. AM. Ceram. Soc.1985.
    [119]何俊辉.道路水泥混凝土微观结构与性能研究[D].长安大学硕士论文,2009.
    [120]K. K. Schiller. Strength of porous materials[J]. Cement and Concrete Research,1971, 1(4):419-422.
    [121]T.C.Powers. The properties of fresh concrete[C]. John Wiley and Sons Ins, N. Y,1968.
    [122]T.C.Powers and T.C.Brownyard. Studies of physical Properties of hardened Cement Pasts[J]. Journal of American Concrete Institute,1964,18.
    [123]唐明.混凝土孔隙分形特征的研究[J].混凝土,2000,130:3-5.
    [124]唐明,李晓.多种因素对混凝土孔结构分析特征的影响研究[J].沈阳建筑大学学报(自然科学版),2005,21(3):232-237.
    [125]许艳,胡小芳.混凝土界面过渡区表面形貌的分形维数表征[J].硅酸盐通报,2009,28(5):869-874.
    [126]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [127]潘振华,牛荻涛,王庆霖.钢筋锈蚀开裂条件的试验研究[J].工业建筑,1999,29(5):46-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700