再生混凝土氯离子渗透性试验研究及细观数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将废弃混凝土用作骨料、生产新的混凝土(即再生混凝土)可实现非再生资源天然砂、石等的循环再利用,具有出色的经济效益、环境效益以及社会效益,受到了人们密切的关注和研究。目前对再生混凝土研究较多,已有成果表明:通过再生骨料的强化以及合理的配合比设计等措施,再生混凝土能够满足建筑结构对混凝土工作性能和力学性能的基本要求。但再生混凝土耐久性较差,这常常成为制约其广泛应用于沿海、除冰盐等恶劣环境中结构混凝土的最大瓶颈。
     本文以试验为主要手段,系统地研究了再生混凝土氯离子渗透性以及改善措施。其次本文从细观的角度,将再生骨料混凝土视为三相复合材料,由再生骨料、砂浆以及骨料和砂浆之间的界面区三相组成,由于此三相自身结构以及各自性能都相差较大,它们在再生混凝土中的分布状况会影响混凝土的渗透性。本文通过试验及数值分析方法,系统地研究了此三相的性能对再生混凝土氯离子渗透性的影响。主要研究成果如下:
     (1)对现有的ASTMC1202加速氯离子渗透试验装置进行了改进,设计了多通道ACMT (Accelerated chloride Migration Test)加速氯离子渗透试验仪,研发了基于TM7709的数据自动采集系统;同时对NEL混凝土电导率法试验装置进行了改进。
     (2)利用改进的加速氯离子渗透试验仪和改进的NEL试验装置对再生混凝土氯离子渗透进行了试验研究。试验结果表明:加速氯离子渗透试验中,电通量与氯离子渗透系数存在着很好的线性相关性,可以通过电通量评价混凝土氯离子渗透性;两种试验方法所测氯离子渗透系数存在着很好的线性相关性,为省时省力可采用NEL法快速判定混凝土氯离子渗透性。
     (3)试验研究表明:随着再生骨料的替代率增加,混凝土氯离子渗透系数增加,抗渗透性降低,再生骨料替代率在25%以内时,对渗透性影响不是很大,但替代率为100%的全再生混凝土比天然骨料混凝土渗透系数增加的较多,约为2倍左右;随着水胶比的增加,混凝土氯离子渗透系数增加,抗渗透性降低,尤其是全再生混凝土随水胶比的增加抗氯离子渗透性降低越厉害。
     (4)在再生混凝土中掺入活性掺和料,可改善再生混凝土界面过渡区的微结构,增加混凝土的密实性,从而显著提高混凝土的抗氯子渗透性。本文在再生混凝土中以25%的活性掺和料等量替代水泥,试验结果表明:三种掺和料(硅灰、粉煤灰、矿渣微粉)均较明显的降低氯离子渗透系数,其中,对全再生混凝土而言,用25%的硅灰替代等量的水泥,可以将氯离子渗透系数降低至同水胶比的天然骨料混凝土。所以用活性掺和料替代水泥是提高其抗氯离子渗透性的一个重要手段。
     (5)本文从细观层次上试验研究了骨料和界面区分布以及活性掺和料粉煤灰对再生混凝土渗透性的影响同时与天然骨料混凝土渗透性进行对比。将粗骨料制作成规则的棱柱体形状,置入砂浆中,制作不同系列混凝土试块,使得这些试块具有不同的界面区含量。对试块进行氯离子渗透性试验,可得试块的渗透系数;假定试块中的粗骨料、砂浆及界面区均匀,各相渗透性保持一致,试验测出砂浆的渗透系数;同时试验测出基体混凝土的渗透系数作为再生粗骨料的渗透系数,从而可计算出界面区的渗透系数。试验结果表明:再生骨料混凝土的界面区的氯离子渗透系数比天然骨料混凝土的氯离子渗透系数大的多,约为天然骨料混凝土的7.7倍;活性掺和料粉煤灰的掺入使得界面区的渗透系数迅速降低至接近天然骨料混凝土。为分析骨料含量对再生混凝土氯离子渗透性的影响,本文设计不同粗骨料含量的各系列混凝土试块,并对试块进行氯离子渗透性试验,试验结果表明,天然骨料混凝土的氯离子渗透性随着天然骨料含量的增加而呈现出不断减小的趋势;可对于再生骨料混凝土,随着再生骨料含量的增加,混凝土的氯离子渗透性却呈现出增大的趋势;对于掺有粉煤灰的再生骨料混凝土,随着再生骨料含量的增加,混凝土的渗透性的趋势与天然骨料混凝土类似,但变化趋势不如天然骨料混凝土显著。
     (6)本文利用数值模拟的方法研究了细观结构对再生混凝土氯离子渗透性的影响。首先,本文基于物理引擎PhysX. net建立了混凝土细观结构模型,编写了根据骨料分布特征输入相关参数、无骨料重叠、高骨料体积比的三维椭球体和凸多面体骨料的随机模型自动投放程序。在再生混凝土细观结构模型形成的基础上,采用有限元,对混凝土氯离子渗透进行了细观数值模拟,与试验结果相符。
Using of waste concrete as aggregate of new concrete (recycled concrete) can be realized the recycle of the nonrenewable resources—natural sand, stone, etc. It has attracted widely attention due to its distinguished environmental benefits, economic advantage and social returns. Current research on recycled aggregate concrete (RAC) suggests that It can meet the basic requirements of the concrete that building structures asked, such as, workability of flesh concrete and physic mechanics property of the harden concrete. Relatively low durability of RAC, however, often limit the extensive application to structural occasions in coast, de-icing salt and other harsh environments.
     Firstly, in this paper, the chloride diffusivity of recycled aggregate concrete was systematically investigated by experiment. Secondly, concrete including recycled concrete, was analyzed as a composite consisting of coarse aggregate, mortar and interfacial transition zone (ITZ). Because permeability and mechanical properties of each phase are not the same, their distribution in concrete will affect the permeability of concrete. The effect of mortar, aggregate content and the distribution of ITZ in concrete were studied by experiment and numerical simulation. The main research results are as follows.
     (1) There are several defects in the ASTM C1202accelerated chloride. A multi-channels chloride ion migration apparatus and an automatic data collection system based on TM7709were developed in this study to improve it. Some improvements are also put forward to NEL chloride ion migration apparatus.
     (2) By the improved test apparatus and NEL test, the chloride diffusivity of recycled aggregate concrete (RAC) was investigated. The experiment result shows that there is excellent linear relationship between charge passed and chloride diffusion coefficient from ACMT, so we can evaluate the chloride diffusivity of concrete through charge passed from specimen. It also shows that the chloride diffusion coefficients have excellent linear relationship from ACMT and NEL methods, so we can save time and labor by using of NEL method.
     (3) The experiment result shows that the chloride diffusion coefficients are large with the increment of the replacement rate of recycled coarse aggregate. The replacement rate of recycled coarse aggregate being not surpass25%, has a little influence on permeability of concrete, but if the replacement rate is100%, the chloride diffusion coefficient of recycled concrete is about twice as that of natural concrete. It is also found that, the water-binder ratio is higher; the chloride diffusion coefficient of concrete is larger, irrespective of binder and aggregate type.
     (4) An addition of activated admixture to the recycled aggregate concrete can improve property of interfacial transition zone and pore structure, concrete is compacter than ordinary concrete, and thus it can enhance the resistance to the chloride ion diffusion of the concrete. In this paper, the partial replacement with activated admixture such as fly ash, slag and silica fume is dramatically effective in decrease in the chloride diffusion coefficient. The usage of25%silica fume as partial cement substitution in the recycled aggregate concrete, the chloride diffusions of them are approximate to those of natural coarse concrete. So the partial replacement with activated admixture is effective way to enhance the resistance to the chloride ion diffusion of the recycled aggregate concrete.
     (5) The effect of aggregate content and the distribution of ITZ in concrete were investigated in this paper. Shaped aggregates were put into the mortar in order that the chloride diffusion coefficient of each component was obtained by using the improved accelerated chloride migration test. The result show that, the diffusion coefficient of ITZ of RAC is about7.7times as that of natural aggregate concrete, the activated admixture, fly ash, can sharply decrease the chloride diffusion coefficient of ITZ in the recycled aggregate concrete. In order to investigate the effect of coarse aggregate content on the chloride diffusion coefficient of concrete, three series concrete specimen with different coarse aggregate volume fractions were tested by ACMT. The result indicate that:to natural aggregate concrete, the aggregate content is higher, the concrete chloride diffusion coefficient is smaller and there is same phenomenon to RAC concrete with fly ash, but to RCA concrete, the aggregate content is higher, the concrete chloride diffusion coefficient is larger.
     (6) The effect of mesoscopic structure to the chloride diffusivity of recycled aggregate concrete was investigated by numerical simulation. Firstly based on physical engineer (PhysX.net), the mesoscopic structure models of concrete were established. The program of the model were developed where the3-D ellipsoid and spatial convex polyhedral aggregates can be random distributed and automatic generated. Based on the3-D aggregate distribution model, the chloride diffusion numerical model was established which contain mortar, aggregate and ITZ. The concrete models of chloride penetration with different coarse aggregate volume fractions, different type of binder and different distribution of ITZ were simulated utilizing the finite element method. The results are consistent with the experimental results.
引文
[1]Gluzhge P.J.. The work of scientific research institute [J]. Gidrotekhnicheskoye Stroitel'stvo,1946(4):27-28.
    [2]Graf O.. Uber Ziegelsplittbeton, Sandsteinbeton and truemmerschutbeton[J], Die Bauwirtschaft,1948,No.2-No.4. (in German).
    [3]阿部道彦.建筑副产品的有效利用[J].土木施工(日),1995,36(13).
    [4]高桥泰一,阿部道彦.废混凝土骨料适用现状与未来[J].混凝土工程(日),1995,33(2).
    [5]笠井芳夫.日本再生骨料混凝土发展趋势与有待解决的问题[R].生态与混凝土技术国际学术研讨会,2000,16-24.
    [6]Kawano H.. The state of using by-Products in concrete in Japan and outline of JIS/TR on recycled concrete using recycled aggregate[R]. Proceedings of the 1st FIB Congresson recycling,2003:245-253.
    [7]Guntran Zanker. Recycled materials in concrete construction fields of application, development tendencies and quality assurance [J]. Concrete Precasting Plant and Technology,1999,65(4):38-43.
    [8]张金喜.道路工程材料资源循环利用技术[M].北京:科学出版社,2008.
    [9]Topcu I.B.. Physical and mechanical properties of concretes produced with waste concrete[J]. Cement and Concrete Research,1997,27(12):1817-1823.
    [10]Nagataki S., Gokce A., Saeki T., et al. Assessment of recycling process induced damage sensitivity of recycling concrete aggregates[J]. Cement and Concrete Research,2004, 34(6):965-971.
    [11]Barra de Oliveira M., Vazquez E.. The influence of retained moisture in aggregates from recycling on the properties of new hardened concrete[J]. Waste Management,1996,16(3): 113-117.
    [12]Morel A., Gallias J.L.. Practical guideline for the use of recycled aggregates in concrete in France and Spain[R]. In:Proceedings of the Third International Symposium on Demolition and Reuse of Concrete and Masonry. London,1993,71-82.
    [14]陈莹,严捍东,林建华,等.再生骨料基本性质及对混凝土性能影响的研究[J].再生资源研究,2003,(6):34-37.
    [15]高桥泰一,阿部道彦.废混凝土骨料的适应现状与未来[J].混凝土工程(日),1995,33(2):41-44.
    [16]李云霞,李秋义,赵铁军.再生骨料与再生混凝土的研究进展[J].青岛理工大学学报,2005,(05):16-19.
    [17]Shigeyo S, Nagata K, Kazuhi K. A critical review on the use of recycled aggregate for concrete [R].第五届水泥与混凝土国际会议论文集.上海,同济大学出版社,2002.
    [18]Shima H, Matsuhashi R, Yoshida Y, et al. Life cycle analysis of high quality recycled aggregate produced by heating and rubbing method[J]. In:IEEJ Transactions on Electronics Information and Systems. Japan,2003:1680-1687.
    [19]水中和,玄东兴,曹蓓蓓.热-机械力分离制备高品质再生骨料的研究.混凝土2006,(12):60-62
    [20]邢振贤,周曰农.再生混凝土的基本性能研究[J].华北水利水电学院学报,1998,19(2):30-32
    [21]Hansen T.C.. Recycled aggregate and recycled aggregate concrete. Second state of art report, development from 1945-1985[J]. RILEM Technical Committee 37 DRC. Material and Structures,1986,19 (5):201-246.
    [22]Nixon P.J. Recycled concrete as an aggregate for concrete-a review[J]. Materials and structures,1978, 11(6):371-378.
    [23]Shuaib H., Ahmad, Danial G, Fisher&Kim W. Properties of concrete made with north Carolina recycled coarse and fine aggregates[R]. Department of civil engineering north Carolina state university 1996.6 (technical report).
    [24]肖建庄,李佳彬等.再生混凝土的抗压强度研究[J].同济大学学报(自然科学版),2004(12):1558-1561.
    [25]Dipl-Ing, Frank Roos. Verification of the dimensioning values for concrete with recycled concrete aggregates, "Sustainable construction:use of recycled concrete aggregate"[R], University of Dundee, Concrete Technology Unit, London (UK),11-12 November 1998.
    [26]余金梅.再生骨料混凝土应用技术研究[D].[硕士学位论文],安微:合肥工业大学,2009.
    [27]侯景鹏,史魏,宋玉普.再生混凝土技术的研究开发与应用推广[J].建筑技术2002(1):15-17.
    [28]张李黎.再生混凝土材料性能实验研究[D].[硕士学位论文],安微:合肥工业大学,2009.
    [29]Ravindrarajah R., Tarn C.T.. Recycled concrete as fine and coarse aggregates in concrete[J]. Magazine of concrete research.1987,39(141):214-220.
    [30]Mandal S., Gupta A.. Strength and durability of recycled aggregate concrete[R]. IABSE Symposium Melbourne, Melbourne, Australia,2002.
    [31]Bairagi, N.K et al. Behavior of concrete with different proportions of natural and recycled aggregates[J]. Resources, Conservation and Recycling,1993(9):109-126.
    [32]Kakizaki M., Harada M., Strength and elastic modulus of recycled aggregate concrete[J]. Proceedings of the Second International RILEM Symposium on Demolition and Reuse of Concrete and Masonry. Tokyo, Japan,1988:565-574.
    [33]Cairns, R.et al. The Use of recycled aggregate concrete in prefabrication[R]. In: Proceedings of conference on use of recycled concrete aggregate, Thomas Thlford, Nov 1998.
    [34]Nagaoka S.. Equipments for recycled aggregate manufacturing [J]. Concrete journal, Vol.35, No.7,1997 (in Japanese).
    [35]Rasheeduzzafar, Khan. Recycled concrete:a source of new aggregate[J]. Journal of Cement, Concrete and Aggregates,1984,6(1):17-27.
    [36]兰阳.再生混凝土梁受力性能研究[D],[硕士学位论文],上海:同济大学土木工程学院,2005.
    [37]朱晓辉.再生混凝土框架节点抗震性能研究[D].[硕士学位论文],上海:同济大学土木工程学院,2005.
    [38]Limbachiya M.C., Leelawat T. and Dhir R.K.. Use of recycled concrete aggregate in high-strength concrete[J]. Materials and Structures,2000(12):574-580.
    [39]Ritual.A.R.M et al. The influence of recycled aggregate concrete on the early compressive strength and drying shrinkage of concrete[J]. Proceedings of the international conference on structural engineering, Mechanics and Computation. Cape Town, South Africa,2001:1415-1421.
    [40]柯国军,张育霖等.再生混凝土的实用性研究[J].混凝土,2002(4):47-55.
    [41]黄显智.再生粗骨料混凝土的研究[R].北京建材工业学校研究报告,2003.
    [42]张亚梅,秦鸿根.再生混凝土配合比设计初探[J].混凝土与水泥制品,2002(1):7-9.
    [43]Sagoe-Crentsil K.K., Brown T, Taylor. Performance of concrete made with commercially produced coarse recycled concrete aggregate[J]. Cement and concrete research,2001(31):707-712.
    [44]Gupta S.M. Strength Characteristics of concrete made with demolition waste as coarse aggregate [J]. Proceedings of the international conference on recent development in structural engineering,2001:364-373.
    [45]Ahmad Shayan and Aimin Xu. Performance and properties of structure concrete made with recycled concrete aggregate [J]. ACI Materials Jounnal,2003(1):371-380.
    [46]Rohi M.S., Edwin G.B., Mike J.. Resistance to freezing and thawing of recycled aggregate concrete [J]. Material Journal,2003(3):216-221.
    [47]Rohi M.S., Edwin G.B.. Role of chemical and mineral admixture on the physical and frost-resistance of recycled aggregate concrete [J], Materials Journal,1998(9):558-653.
    [48]Yamasaki J., Tatematsu K.. Strength and freeze-thaw resistance properties of concrete using high-quality recycled aggregate [J]. Transactions of the Japan Concrete Institute, 1998(20):45-52.
    [49]王武祥,刘立等.再生混凝土集料的研究[J].混凝土与水泥制品,2001(4):9-12.
    [50]Mandal S., Chakraborty S., GuPta A.. Some studies on durability of recycled aggregate concrete[J]. Indian Concrete Journal,2002,76(6):385-388.
    [51]Otsuki N., Miyazato S., Yodsudjai W.. Influence of recycled aggregate on interfacial transition zone, strength, chloride, penetration and carbonation[J]. Journal of Materials in Civil Engineering,2003,15(5):443-451.
    [52]肖开涛.再生混凝土的性能及改性研究[D].[硕士学位论文],武汉:武汉理工大学,2004.
    [53]Kou S C, Poon C S, Chan D. Properties of steam cured recycled aggregate fly ash concrete [C]//Proceedings of the International Conference on Sustainable waste management and recycling:Construction and demolition waste.2004, http://congress.cimne.upc.es/rilem04/admin/Files/FilePaper/p200.pdf.
    [54]Arlindo G, Ana E., Manuel V. Influence of recycled concrete aggregate on concrete durability[C]//Proceedings of the International Conference on Sustainable waste management and recycling:Construction and demolition waste.2004, http://congress.cimne.upc.es/rilem04/admin/Files/FilePaper/p279.pdf.
    [55]Olorunsogoa F.T., Padayachee N.. Performance of recycled aggregate concrete monitored by durability indexes[J]. Cement and Concrete Research,2002,(32):179-185.
    [56]肖开涛等.再生混凝土氯离子渗透性研究[J].山东建材,2004,25(1):31-33.
    [57]胡波,柳炳康,张李黎.再生混凝土氯离子渗透性能测试与分析[J].合肥工业大学学报(自然科学版),2009(8):1240-1243.
    [58]范小平,徐银芳.再生骨料的强化试验[J].上海建材,2005(4):22-23.
    [59]邱怀中,何雄伟,万惠文等.改善再生混凝土工作性能的研究[J].武汉理工大学学报,2003,25(12):34-37.
    [60]Katz A. Treatments for the improvement of recycled aggregate [J]. Journal of Materials in Civil Engineering,2004,16(6):597-603.
    [61]杜婷,李惠强,吴贤国.混凝土再生骨料强化试验研究[J].新型建筑材料,2002,(03):6-8.
    [62]杜婷,李惠强.强化再生骨料混凝土的力学性能研究[J].混凝土与水泥制品,2003(2):19-20.
    [63]邢振贤,王晓蕾等.正交设计选择粉煤灰再生混凝土最佳配合比[J].低温建筑技术,2004(1):4-6.
    [64]胡玉珊,邢振贤.粉煤灰掺入方式对再生混凝土强度的影响[J].新型建筑材料,2003(5):26-27.
    [65]雷庭.再生骨料混凝土界面强化及抗氯离子渗透性研究[D].[硕士学位论文],杭州:浙江工业大学,2007.
    [66]Collepardi M., Marcialis A.,Turriziani R.. The kinetics of chloride ions penetration in concrete.1970(67):157-164.
    [67]Mangat P.S., Limbachiya M.C.. Effect of initial curing on chloride diffusion in concrete repair materials [J]. Cement and Concrete Research,1999,29(9):1475-1485.
    [68]Thomas M.D.A., Bamforth P.B.. Modeling chloride diffusion in concrete effect of fly ash and slag[J]. Cement and Concrete Research,1999(29):487-495.
    [69]Funahashi M. Predicting corrosion-free service life of a concrete structure in chloride environment [J]. ACI Materials Journal,1990,87(6):581-587.
    [70]Shin C.B., Kim E.K.. Modeling of chloride ion ingress in coastal concrete [J]. Cement and Concrete Research,2002(32):757-762.
    [71]Abbas A., Fathifazl C., Isgor O B,etc. Durability of recycled aggregate concrete designed with equivalent mortar volume method[J]. Cement and Concrete Composites, 2009(31):555-563.
    [72]Sidney Diamond, Jingdong Huang. The ITZ in concrete-a different view based on image analysis and SEM observations [J]. Cement and Concrete Composites,2001, 23(2-3):179-188.
    [73]王稷良,李勇,宁琰.集料对混凝土强度与界面特性影响的研究[J].混凝土2006(11):39-41.
    [74]陈露一,郑志河,邵慧权.混凝土界面过渡区不均匀特性研究[J].武汉理工大学学报,2007,29(9):111-114.
    [75]王瑶,周继凯,沈德建.混凝土中骨料-浆体界面过渡区的力学性能研究综述[J].水利水电科技进展,2008,28(2):89-94.
    [76]Nadau J.C. A multiscale model for effective moduliconcrete incorporating ITZ water-cement ratio gradient aggregate size distributions, and entrapped voids[J]. Cement and Concrete Research,2003,33(1):103-113.
    [77]Delagrave A., Bigas J.P., Ollivier J.P., etc. Influence of the Interfacial Zone on the Chloride Diffusivity of Mortars[J], Advn Cem Bas Mat,1997(5):86-92.
    [78]Yang C.C.. Effect of the percolated interfacial transition zone on the chloride migration coefficient of cement-based materials[J]. Materials Chemistry and Physics, 2005(91):538-544.
    [79]Larbi J.A. The cement Paste-aggregate interface zone in conerete[D]. Delft:Delft University Press,1991.
    [80]Struble L. Microstructure and fracture at the cement Paste-aggregate interface[A]. In:Mindness S, Shah S P,eds. Bonding in Cementitious Composite. MRS, Pittsburgh:Materials Research Society,1988.
    [81]Scrivener K.L., Bentur A., Pratt P.L. Quantitative characterization of the transition zone in high strength concretes[J]. Advance in Cement Research,1988,1(4):230-237.
    [82]Etxeberria M., Vazquez E., Mari A.R.. Microstructure analysis of hardened recycled aggregate conecrete[J]. Magazine of Concrete Research,2006,58(10):683-690.
    [83]Poon C. S., Shui Z. H., Lam L.. Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates [J]. Construction and Building Materials, 2004,18(6):461-468.
    [84]水中和,潘智生,朱文琪,詹必浩.再生集料混凝土的微观结构特征[J].武汉理工大学学报,2003,25(12):99-102.
    [85]万惠文,徐金龙,水中和,姜舰.再生混凝土ITZ结构与性质的研究[J].武汉理工大学学报,2004,26(11):29-32.
    [86]De Juan M S, Gutierrez P A. Study on the influence of attached mortar contenton the properties of recycled concrete aggregate[J]. Construction and Building Materials,2009, 23(2):872-877.
    [87]许岳周,石建光.再生骨料及再生骨料混凝土的性能分析与评价[J].混凝土 2006(07):41-45.
    [88]肖建庄.再生混凝土[M].北京:中国建筑工业出版社,2008.
    [89]Barra M. Estudio de la durabilidad del hormigon de arido reciclado en suaplicacion como hormigon estructural[D]. [博士学位论研究],巴塞罗那:加泰罗尼亚理工大学,1996.
    [90]李九苏.基于活性粉末增强的混凝土再生利用技术研究[D].[博士学位论文],长沙:湖南大学,2009.
    [91]GB 175-2007.通用硅酸盐水泥.中国标准出版社.2007.
    [92]施韬,叶青.活性粉末混凝土的研究和应用中存在的问题[J].新型建筑材料,2003,(5):23-25.
    [93]赵铁军.混凝土渗透性[M].北京:科学出版社,2005.
    [94]蒲心诚.高强与高性能混凝土火山灰效应的数值分析[J].混凝土,1998(6):13-23.
    [95]GB/T1596-2005.用于水泥和混凝土中的粉煤灰.中国标准出版社,2005.
    [96]GB/T 18046-2008.用于水泥和混凝土中的粒化高炉矿渣粉.中国标准出版社,2008.
    [97]李翠玲,路新流,张海霞.确定氯离子在水泥基材料中渗透系数的快速试验方法[J].工业建筑,1998,28(6):41-43.
    [98]屠柳青,张国志,夏卫华,刘秉京.抗氯盐污染高性能混凝土及评价方法研究[J].混凝土,2004,172(2):33-35.
    [99]张奕.火灾后混凝土结构耐久性研究[D].[硕士学位论文],浙江大学,2005.
    [100]Whiting D.. Rapid measurement of the chloride permeability of concretet[J]. Public Roads,1981,45(12):101-112.
    [101]Yang C. C., Cho S. W.. The relationship between chloride migration rate for concrete and electrical current in steady state using the aceelerated chloride migration test[J]. Materials and Strueture,2004,37(7):456-463.
    [102]路新瀛,王晓睿,张华新ASTM C1202实验方法浅析[J].工业建筑,2004,34(4):89-91.
    [103]赵铁军.如何评定高性能混凝土的渗透性[J].混凝土,1995,65(3):19-21.
    [104]王晓冬,张鹏,赵铁军.混凝土氯离子渗透性试验方法综述[J].工业建筑,2005,37(5):25-29.
    [105]易成.混凝土抗渗性能研究的现状与进展[J].混凝土,2003,16(2):7-12.
    [106]杜攀峰.混凝土防腐涂料抗氯离子侵蚀性能的研究[D].浙江大学,2007.
    [107]路新瀛,李翠玲,陈美霞等.混凝土渗透性的电学评价[J].混凝土与水泥制品,1999,26(5):12-14.
    [108]中国工程院土木水利与建筑学部结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[M].北京:中国建筑工业出版社,2004.
    [109]孙振平,谭国强,王新友.再生混凝土技术[J].混凝土,1998(5):36-40.
    [110]侯景鹏,宋玉普,史巍.再生混凝土技术研究与应用开发[J].低温建筑技术,2001(2):9-10,62.
    [111]史巍,侯景鹏.再生混凝土技术及其配合比设计方法[J].建筑技术开发,2001,28(8):18-20.
    [112]张亚梅,秦鸿根,孙伟,等.再生混凝土配合比设计初探[J].混凝土与水泥制品,2002,(1):7-9.
    [113]张学兵.再生混凝土配合比及拉压强度的实验研究[D].[硕士学位论文],长沙:湘潭大学,2009.
    [114]蒋业浩.再生混凝土抗压强度及配合比设计研究[D].[硕士学位论文],南京:南京航空航天大学,2006.
    [115]Chiang C.T, Yang C.C., Relation between the diffusion characteristic of concrete from salt ponding test and accelerated chloride migration test[J]. Materials Chemistry and Physics,2007,106(2-3):240-246.
    [116]冯乃谦,邢锋.高性能混凝土技术[M].北京:原子能出版社,2000.
    [117]冷发光,冯乃谦.高性能混凝土渗透性和耐久性及评价方法研究[J],低温建筑技术,2000(4):14-16.
    [118]冯乃谦,邢锋.高性能混凝土的氯离子渗透性和导电量[J].混凝土,2001(11):3-7.
    [119]赵铁军,朱金铨,冯乃谦.高性能混凝土的渗透性[J].混凝土与水泥制品,1997(1):16-19.
    [120]肖建庄,卢福海,孙振平.淡化海砂高性能混凝土氯离子渗透性研究[J].工业建筑,2004,34(5):4-6,14.
    [121]Yang C.C., Weng T.L.. Using charge passed to determine the chloride diffusion coefficient in mortar from accelerated chloride migration test[J]. Construction and Building Materials,2003 (17):231-238.
    [122]Xinying Lu. Application of the Nernst-Einstein equation to concrete[J]. Cement end Concrete Research,1997,27(2):293-302.
    [123]谢友均,马昆林.矿物掺合料对混凝土中氯离子渗透性的影响[J].硅酸盐学报,2006,34(11):1345-1350.
    [124]Stanish K., Hooton R.D., Thomas M.D.A.. A novel method for describing chloride ion transport due to an electrical gradient in concrete:Part 1. Theoretical description[J]. Cement and Concrete Research,2004(34):43-49.
    [125]Stanish K., Hooton R.D., Thomas M.D.A.. A novel method for describing chloride ion transport due to an electrical gradient in concrete:Part 2. Experimental study[J]. Cement and Concrete Research,2004(34):51-57.
    [126]曹礼群.材料物性的多尺度关联与数值模拟[J].世界科技与进展,2002,24(6):23-30.
    [127]Xi Y P, Bazant Z. P. Modeling chloride Penetration in saturated concrete[J]. Joural of Materials in Civil Engineering,1999,11(1):58-65.
    [128]Yang C C, SU J K. Approximate migration coefficient of interfacial transition zone and the effect of the aggregate content on the migration coefficient of mortar[J].Cement and Concrete Research,2002,32(10):1559-1565.
    [129]Mora C.F., Kwan A.K.H., Chan H.C.. Particle size distribution analysis of coarse aggregate using digital image proeessing. Cement and Concrete Research[J], 1998,28(6):921-932.
    [130]Kwan A.K.H., Mora C.F., Chan H.C.. Particle shape analysis of coarse aggregate using digital image proeessing[J]. Cement and Concrete Research[J],1999,29(9):1403-1410.
    [131]Mora C.F., Kwan A.K.H.. Sphericity shape factor and convexity measurement of coarse aggregate for concrete using digital image proeessing[J]. Cement and Conerete Research,2000,30(3):351-358.
    [132]孙立国.三级配(全级配)混凝土骨料形状数值模拟及其应用[D].[硕士学位论文].南京:河海大学,2005.
    [133]Garboczi E.J. Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics:Application to aggregates used in concrete[J]. Cement and Concrete Researeh,2002,32(10):1621-1638.
    [134]郑建军,周欣竹,邢鸿燕.二维圆形骨料分布的边界效应及简单应用[J].浙江工业大学学报,2003,31(1):7-11.
    [135]赵良颖,郑建军.二维骨料密度分布的边界效应[J].四川建筑科学研究,2002,28(2):57-60.
    [136]Wittmann F.H., Roelfstra P.E., Sadouki H.. Simulation and analysis of composite struetures[J]. Mater. Sci. Engng.,1984,68:239-248.
    [137]王宗敏,邱志章.混凝土细观随机骨料结构与有限元剖分[J].计算力学学报,2005,22(6):728-732.
    [138]Wang Z.M., Kwan A.K.H., Chan H.C.. Mesoscopic study of concrete I, Generation of random aggregate structure and finite element mesh[J]. Computers and structures, 1999,70:533-544.
    [139]高政国,刘光廷.二维混凝土随机骨料模型研究[J].清华大学学报(自然科学版),2003,43(5):710-714.
    [140]刘光廷,高政国.三维凸型混凝土骨料随机投放算法[J].清华大学学报,2003,43(8):1120-1123.
    [141]杜成斌,孙立国.任意形状混凝土骨料的数值模拟及应用[J].水利学报,2006,37(6):662-667.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700