玉米水分亏缺的生理生化响应及补偿效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分是影响作物生长的主要因子之一,水分亏缺条件下作物的生理生态特性发生了较大变化,体现了作物对水分因子的响应。本文以盆栽玉米为试材,对玉米水分亏缺的生理生化响应及补偿效应进行研究。主要研究内容包括:
     (1)研究玉米苗期和拔节期不同程度的水分亏缺对玉米株高、叶面积、蒸腾速率和光合速率、耗水规律及水分利用效率的影响及复水后的补偿效应;
     (2)探讨不同程度的水分亏缺对叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、丙二醛(MDA)、脯氨酸(Pro)及叶绿素等生理指标的影响及复水后的补偿作用;
     (3)研究不同程度的水分亏缺叶片和根系中脱落酸(ABA)含量的变化、H2O2的累积及复水后的变化,并利用扫描电子显微技术研究了不同水分处理时气孔结构及不定次生根根毛的变化特征。研究获得了以下主要结论:
     1、苗期和拔节期不同的水分亏缺抑制株高的增长、叶面积的扩展和干物质的累积,抑制程度与水分亏缺程度一致。复水后的株高、叶面积和干物质均表现出了不同程度的补偿效应,尤其以苗期亏缺的株高补偿最为明显,生育结束时轻度、中度和重度处理的株高均出现了超越补偿。苗期水分亏缺的根系活力和根冠比随亏缺程度的加重而增大,说明苗期水分亏缺对根的影响小于对冠的影响,复水后亏缺处理的根系活力仍然保持较高水平,而根冠比都低于对照,说明分配到冠的干物质比例增大,体现了地上部位的补偿作用。两个阶段的水分亏缺在生育后期的死叶个数均少于对照处理的,说明水分亏缺降低了叶片衰减速度,有利于后期的生长。
     2、苗期水分亏缺影响了光合特性的变化,水分亏缺下光合速率和蒸腾速率都下降,而叶片的水分利用效率相应有所提高。复水后短时间内(10天),除了轻度处理的光合速率略高于对照,其余受处理的光合速率和蒸腾速率均低于对照。在两个阶段进行水分亏缺均减少植株耗水量,水分亏缺复水后减少了蒸腾耗水量的同时提高了水分利用效率。
     3、水分亏缺对玉米抗氧化系统及渗透调节等产生了很大的影响,随着水分亏缺程度的加重,Pro含量、POD活性及MDA含量显著增加,SOD活性先升后降,叶绿素含量持续减少。复水后的Pro含量、POD活性与对照无显著差异,SOD活性的趋势与处理时一致,而MDA含量依然是重度处理最高,轻度和中度处理的MDA含量略低于对照,叶绿素含量受处理的到后期甚至高于对照。这说明水分亏缺条件下能诱导抗氧化防护酶活性,增强植物抗氧化的保护能力。
     4、玉米根系和叶片中ABA随水分亏缺程度加重含量增加,叶片保卫细胞中H2O2大量累积,说明H2O2在气孔运动中起着关键作用。复水后,玉米叶片中ABA含量有所降低,而根系中的ABA含量仍然保持较高浓度,叶片的H2O2的累积量均降低。新发现不同程度水分亏缺能诱导根尖不同组织累积H2O2,对照处理累积在根冠区,轻度处理累积在根冠和分生组织区,中度和重度处理积累在根冠,分生组织和伸长组织区,各种处理根毛区均没有H2O2累积。
     5、叶子表皮与根毛分布特点通过电子显微镜观察,表明水分亏缺导致叶片表皮形态结构发生变化,正常和轻度处理的表皮表面光滑,有两种类型的叶表皮毛,而中度和重度处理的叶表皮细胞表面两种类型的表皮毛消失,在表皮细胞表面重新形成大量的绒状物。次生根根毛随着水分亏缺程度的加重,根毛在数量上呈增多趋势,正常和轻度处理的根毛短而少,而中度和重度水分处理的根毛长而密,但水分亏缺诱导根毛增长有阈值。
Soil moisture is the main factor to affect the crops grows. The crops' physiological and ecology characteristic has changed obviously under water deficit. In this paper the effects of water deficit on physiological and biochemical response and compensation effect are studied by carrying out the potted experiments. The main research content includes:
     (1)Study the effects of seedling and jointing water deficit on plant height, leaf area, photosynthetic rate, transpiration rate, water consumption rule, WUE and compensation effect after rewatering.
     (2)Discuss the effects of water deficit in varying degrees on superoxide dismutase(SOD), peroxide(POD), malondialdehyde(MDA), proline(Pro) and chlorophyll and compensation effect after rewatering.
     (3)Study the ABA content, H2O2 accumulation on leaf and root system under different water deficit and rewatering, and use the scanning electron microscopy to research the stomatal and root hair’s change under different water deficit. The main results are as follows:
     1. Seedling and jointing water deficit obviously restricts the plant growth, leaf area expansion and dry matter accumulation, and the restriction degree is closely related to water deficit degree. After rewatering, the plant height, leaf area and dry matter accumulation are compensated on defferent degree. Especially the plant height compensation on seedling deficit is most obvious. The plant height of light treat, mild treat and severe treat is higher than the contrast at the end stage. With the increase of degree of water deficit, the root/crown ratio and root activity are increased, which explained that the influence on the root is smaller than the crown on seedling water deficit. The root activity is still maintained the high level, but the root/crown ratio is lower than the contrast. It showed that the crown’s dry material proportion has increased, which manifest the compensation on the ground spot. The number of dead leaf on water deficit of two stages is shorter than the contrast treat. It showed that the water deficit reduce the leaf weaken speed and it advantage to later period’s growth.
     2. The photosynthetic rate and transpiration rate are decreased under water deficit, but the water use efficiency is correspondingly improved. In a short time after rewatering(10days), other photosynthetic rate and transpiration rate are all lower than the contrast except for the photosynthetic of light treat is higher than the contrast. Tow stages’water deficit is decreased the plant water consumption, at the same time raised the water use efficiency.
     3. Water deficit has changed great influence on the oxidation resistance system and the osmotic regulation. With the increase of degree of water deficit, the proline content, peroxide activity and malondialdehyde content are significantly improved, the superoxide dismutase activity is increased at first, and then decreased, but the chlorophyll content is decreased continuously. After rewatering, the proline content and peroxide activity has no significant difference to the contrast, the trend of superoxide dismutase activity is consistent with the treatment, but the malondialdehyde content which the severe treat is maintained the highest level, the light treat and mild treat are slightly lower than the contrast, and the chlorophyll content which treated is even higher than the contrast to the later period. The results indicated that the water deficit can induce the activity of oxidation resistance protection enzyme, and enhance the protection capacity of plant antioxidant.
     4. With the increase of degree of deficit, the ABA content on leaf and root is raised. The H2O2 massive accumulated in the leaf guard cell show that H2O2 is playing the crucial role in the stomatal movement. After rewatering, the leaf’s ABA content has reduces, but the root’s ABA content still maintaines the high density, and the leaf’s H2O2 density has reduces. It is a recent discovery that varying degree content water deficit can induce the root different organization to accumulate H2O2. The contrast in the root cap area, the light treat accumulates in the root cap and the meristematic tissue area, and the mild and severe treat accumulates in the root cap, meristematic tissue area and the elongated structure area. Each kind of treat has not H2O2 to accumulate in the root hair area.
     5. Through the electron microscope to observe the distribution characteristic of leaf epidermis and root hair, which indicated that the shape of leaf’s epidermis structure is changed. The epidermis surface of contrast and light treat is luminous and has two types of epidermis hair. But the mild and severe treat has not two types of epidermis hair and forms the massive fabric shape in the epidermal cell surface. With the increase of degree of deficit, the tendency of secondary root hair is increased in quantity. The root of contrast and light treat is short and few, mild and severe treat is long and dense, but the water deficit inducing root hair growth has threshold value.
引文
[1]文明.浅谈我国水资源的可持续利用战略[J].资源与环境, 2007, 26: 147-148.
    [2]康绍忠,许迪.我国现代农业节水高新技术发展战略的思考[J].中国农村水利水电, 2001, 10: 25-29.
    [3]薛亦扬.节水灌溉—现代农田的必然选择[J].中国农业科学, 2007, 6: 30-31.
    [4]汪恕诚.资源水利—人与自然和谐相处[M].北京:中国水利水电出版社, 2003.
    [5]吴普特,冯浩,牛文全等.中国用水结构发展态势与节水对策分析[J].农业工程学报, 2003(19): 1-6.
    [6]康绍忠.农业节水与水资源领域的科技发展态势及重大热点问题[J].农业工程学报, 2003(19): 24-32.
    [7]康绍忠,胡笑涛,蔡焕杰等.现代农业与生态节水的理论创新及研究重点[J].水利学报, 2004, (12): 1-7.
    [8]赵丽英等.水分亏缺下作物补偿效应类型及机制研究概述[J]. 2004, 15(3): 532-526.
    [9] Michelena V A, Boyer J S. Complete turgor maintenance at low water potentials in the elongating region of maize leaves[J], Plant Physiol, 1982, 69: 1145-1149.
    [10] Subramanian VB etal. Compensatory growth response during reproductive phase of cowpea after stress[J]. Agon and crop sci, 1992, 168: 85-90.
    [11]王密侠,康绍忠,蔡焕杰等.调亏对玉米生态特性及产量的影响[J].西北农业大学学报, 2000, 28(1): 31-36.
    [12]郝树荣,郭相平,王为木等.胁迫后复水对水稻叶面积的补偿效应[J].灌溉排水学报, 2005, 24(4): 18-21.
    [13] Garder FP, Peare RB, Mitcheu RL. Physiology of crop plants[M]. Zowa State University Press, Ames, 1985, P.76.
    [14]刘殿英,黄炳茹,董庆裕.土壤水分对冬小麦根系的影响[J].山东农业大学学报, 1991, 23(2):22-26.
    [15]杨建设,许育彬.论冬小麦抗旱丰产的根区调控问题[J].干旱地区农业研究, 1997, 15(1): 50-57.
    [16]郭相平,康绍忠,索丽生.苗期调亏处理对玉米根系生长影响的试验研究[J].灌溉排水, 2001, 20(1): 25-27.
    [17]梁银丽,扬翠玲,不同类型小麦品种对渗透胁迫的反应[J].西北农学报, 1995, (4): 21-25.
    [18]马瑞昆,蹇家丽,贾秀领等.供水深度与冬小麦根系发育的关系[J].干旱地区农业研究, 1991, (3): 1-9.
    [19]杨恩琼,袁玲,何腾兵等.干旱胁迫对高油玉米根系生长发育和籽粒产量与品质的影响[J].土壤通报, 2009(40): 85-88.
    [20] Ribaut J M. Identification of quantitative trait loci under drought conditions in tropical maize flowing parameters and the anthesis-silking interval[J]. Theor AppL Genet, 1996, (92): 905-914.
    [21]魏虹,林魁,李凤民等.有限灌溉对半干旱区春小麦根系发育的影响[J].植物生态学报, 2000, 24(1): 106-110.
    [22]云建英,杨甲定,赵哈林.干旱和高温对植物光合作用的影响机制研究进展[J].西北植物学报, 2006, 26(3): 641-648.
    [23]魏良明等.玉米抗旱性生理生化研究进展[J].干旱地区农业研究, 1997, 15(4): 66-71.
    [24]魏孝荣,郝明德,张春霞.土壤干早条件下外源锌、锰对夏玉米光合特性的影响[J].作物学报,2005, (8): 1101-1104.
    [25]张维强,沈秀瑛.水分胁迫和复水对玉米叶片光合速率的影响[J].华北农学报, 1994, 9(3): 44-47.
    [26]张寄阳,刘祖贵,段爱旺等.棉花对水分胁迫及复水的生理生态响应[J].棉花学报, 2006, 18(6): 398-399.
    [27]张英普,何武权,韩健.水分胁迫对玉米生理生态特性的影响[J].西北水资源与水工程, 1999, 10(3): 18-21.
    [28]康绍忠,史文娟,胡笑涛.调亏灌溉对于玉米生理指标及水分利用效率的影响[J].农业工程学报, 1998, 14(4): 83-88.
    [29]徐世昌,戴俊英,沈秀瑛等.水分胁迫对玉米光合性能及产量的影响[J].作物学报, 1995, 21(3): 356-363.
    [30]关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯, 1995, 31(4): 293-297.
    [31]王畅,林秋萍等.夏玉米的干旱适应性及其生理机制的研究[J].华北农学报, 1990, 5(4): 54-60.
    [32]王邦锡,何军贤等.水分胁迫导致小麦叶片光合作用下降的非气孔因素[J].植物生理学报, 1992, 18(1): 77-84.
    [33]董永华,史吉平等.干旱对玉米幼苗梭化酶活性的影响[J].玉米科学, 1995, 3(2): 54-57.
    [34]邹承鲁,当代生物学[M].北京:中国致公出版社, 2000: 399-400.
    [35]梁银丽,陈培元.水分胁迫和氮素营养对小麦根苗生长及的效应[J].西北植物学报, 1995, 15(1): 21-25.
    [36]梁宗锁,康绍忠,李新有.有限供水对玉米产量及其水分利用效率的影响[J].西北植物学报, 1995, 15(1): 26-31.
    [37]胡笑涛,梁宗锁,康绍忠等.模拟调亏灌溉对玉米根系生长及水分利用效率的影响[J].灌溉排水, 1998, 17(2): 11-15.
    [38]李德全,李岩,束怀瑞.果树对水分逆境的反应和适应性.作物栽培生理研究[M].北京:中国农业科技出版社, 1998.
    [39]汤章城.植物对干旱胁迫的反应性和适应性:抗逆性的而一般概念和植物的抗涝性[J].植物生理学通讯, 1983, 4: 1-7.
    [40]时忠杰,胡哲森,李荣生.水分胁迫与活性氧代谢[J].贵州大学学报, 2002, 21(2): 140-145.
    [41]葛体达,隋方功,白莉萍等.长期水分胁迫对夏玉米根叶保护酶活性及膜脂过氧化作用的影响[J].干旱地区农业研究, 2005, 23(3): 18-23.
    [42] Manning W J, Agrawa S B, Agrawa, M E. Environmental pollution and plant responses[J]. Lewis Publishers, Boca Raton, FL, 2000: 247-251.
    [43] Lee E H, Upadhyaya A, Agrawal M, etal. Mechanisms ofethylenediurea (EDU) induced ozone protection: Reexamination of free radical scaven-ger systems in snap bean exposed to O2-[J]. Environ Exp Bot, 1997, 38(2): 199-209.
    [44] MxCord J M, Fridovich L. Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein)[J]. Biol Chem, 1969, 244: 6049-6055.
    [45] Scandalios J G. Oxygen stress and superoxide distases[J]. Plant Physiol, 1993, 101: 7-12.
    [46] Seel W E, et al. The combined effects desiccation and irradiance on mosses from xeric and hydrichabitats[J]. J Exp Bot, 1992, 43: 103-106.
    [47]李广敏,唐连顺,商振清等.渗透胁迫对玉米幼苗保护酶系统的影响及其与抗旱性的关系[J].河北农业大学学报, 1994, 17(2): 1-5.
    [48]吴志华,曾富华,马生健.水分胁迫下植物活性氧代谢研究进展[J].亚热带植物科学, 2004, 33(3): 77-80.
    [49]蒲光兰,胡学华,周兰英.水分胁迫下乌桕离体叶片的生理生化特性经济林研究[J].经济林研究, 2004, 22(2): 20-23.
    [50]周瑞莲,王刚.水分胁迫下豌豆保护酶活力变化及脯氨酸积累在其抗旱中的作用[J].草业学报, 1997, 6(4): 39-43.
    [51]杨暹,关佩聪.干旱胁迫与菜心叶片活性氧代谢的研究[J].华南农业大学学报, 1998, 19(2): 81-85.
    [52]徐莲珍,蔡靖,姜在民等.水分胁迫对3种苗木叶片渗透调节物质与保护酶活性的影响[J].西北林学院学报, 2008, 23(2): 12-16.
    [53]王宝山.生物自由基与生物膜的伤害[J].植物生理学通讯, 1988, (2): 12-16.
    [54]王振槛,郭蔼光,罗淑平.干旱胁迫对玉米SOD和POD及同工酶的影响[J].西北农业大学学报, 1989, 17(1): 45-39.
    [55]王茅雁,邵世勤,张建花等.水分胁迫对玉米保护酶系活力及膜系统结构的影响[J].华北农学报, 1995, 10(2): 43-49.
    [56]孙彩霞,沈秀瑛,刘志刚.作物抗旱性生理生化机制的研究现状和进展[J].杂粮作物, 2002, 22(5): 285-288.
    [57]刘国琴,樊卫国.果树对水分胁迫的生理响应[J].西南农业学报, 2000, 13(1): 101-106.
    [58]房江育,张仁陟.无机营养和水分胁迫对春小麦叶绿素丙二醛含量等的影响及其相关性[J].甘肃农业大学学报, 2001, 36(1): 89-94.
    [59]郝玉兰,潘金豹,张秋芝等.不同生育期水分胁迫对玉米叶片CAT和MDA的影响[J].北京农学院学报, 2003, 18(3): 178-180.
    [60]山仑,陈培元.旱地农业生理生态基础[M].北京:科学出版社, 1998.
    [61] Acevedo E, Hsiao T C, Henderson DW. Immediate and subsequent growth responses of maize leaves to changes in water status[J]. Plant Physiol, 1971, 48: 631-636.
    [62] Wenkert W, Lemon W E , Sinclair T R. Leaf elongation and turgor pressure in field-grown soybean[J]. A gron J, 1978, 70: 761-764.
    [63]陈晓远,罗远培.土壤水分变动对冬小麦生长动态的影响[J].中国农业科学, 2001, 34(4): 403-409.
    [64]郭贤仕.谷子早后的补偿效应研究[J].应用生态学报, 1999, 10(5): 563-566.
    [65]关义新,戴俊英,徐世昌等.玉米花期干旱及复水对植株补偿生长及产量的影响[J].作物学报, 1997, 23(6): 740-745.
    [66] Bielorai H, Hopmans PAM. Recovery of leaf water potential, transpiration, and hotosynthesis of cotton during irrigation cycles[J]. A gron J, 1975, 67: 629-632.
    [67] Kramer, Paul J. Water relations of plant[M]. London: Academic Press, 1983.
    [68]山仑,张岁歧.节水农业及其生物学基础[J].水土保持研究, 1999, 6(1): 2-13.
    [69]刘庚山等.夏玉米苗期有限水分胁迫拔节期复水的补偿效应[J].生态学杂志, 2004, 23(3): 24-29.
    [70]赵天宏,沈秀瑛,杨德光等.水分胁迫及复水对玉米叶片叶绿素含量和光合作用的影响[J].杂粮作物, 2003, 23(1): 33-35.
    [71]郭相平,王琴,刘展鹏等.旱后复水对玉米后继新生叶片生理特性的影响[J].农业科学研究, 2006, 27(2): 20-27.
    [72]张红萍,牛俊义,轩春香等.干旱胁迫及复水对豌豆叶片脯氨酸和丙二醛含量的影响[J].甘肃农业大学学报, 2008, 43(5): 50-54.
    [73]严美玲,李向东,林英杰等.苗期干旱胁迫对不同抗旱花生品种生理特性、产量和品质的影响[J].作物学报, 2007, 33(1): 113-119.
    [74]周雪英,邓西平.旱后复水对不同倍性小麦光合及抗氧化特性的影响[J].西北植物学报, 2007, 27(2): 0278-0285.
    [75]山仑.节水农业与作物高效用水[J].河南大学学报(自然科学版), 2003, 33(1): 1-5.
    [76] Turner NC. Plant water relation and irrigation management[J]. A gric Water, 1990, 17 (5): 973-978.
    [77]陈晓远,罗远培,李韵珠.拔节期复水对苗期受旱冬小麦的激发效应[J].中国农业大学学报, 1999, 4(3): 23-28.
    [78]荆家海,肖庆德.水分胁迫和胁迫后复水对玉米叶片生长速率的影响[J].植物生理学报, 1987, 13(1): 51-57.
    [79]裴冬,张喜英,亢茹.调亏灌溉对棉花生长、生理及产量的影响[J].生态农业研究, 2000, 8(4): 52-55.
    [80]李跃强,盛承发.植物的超越补偿反应[J].植物生理学通讯, 1996, 32(6): 457-464.
    [81] Brix H. The effects of response to water stress on the rates of photosynthesis and respiration in tomato plants and Loblolly Pine seedlings[J]. Physiol plant, 1962, 5: 10-20.
    [82]刘友良.植物水分逆境生理[M].北京:农业出版, 1991.
    [83] Blackman PG, Davies WJ. Root-to-shoot communication in maize plants of the effects of soil drying[J]. J Exp Bot, 1985, 36: 39-48.
    [84]黄占斌.干湿变化与作物补偿效应规律研究生态农业研究[J].生态农业研究, 2000, 8(1): 30-33.
    [85] Anne-Maree, Boland. The effect of regulated deficit irrigation on tree use and growth of peach[J]. Journal of Horticultural Science, 1993, 68(2): 261-264.
    [86]张林刚,邓西平.小麦抗旱性生理生化研究进展[J].干旱地区农业研究, 2000, 18(3): 87-92.
    [87]王泽港,梁建生,曹显祖等.半根干旱胁迫处理对水稻叶片光合特性和糖代谢的影响[J].江苏农业研究, 1999, 20(3): 21-26.
    [88] Shang guan Z P, Shan M A, Jens Dyckmans. Interaction of osmotic adjustment and photosynthesis in winter wheat under soil drought[J]. Plant Physiol, 1999, 154(6): 753-758.
    [89]周晓阳,赵楠,张辉.水分胁迫下中东杨气孔运动与保卫细胞离子含量变化的关系[J].林业科学研究, 2000, 13(1): 71-74.
    [90]于海秋,武志海,沈秀瑛等.水分胁迫下玉米叶片气孔密度、大小及显微结构的变化[J].吉林农业大学学报, 2003, 25(3): 239-242.
    [91] Rock CD, Ng PPF. Dominant Wilty mutants of zea mays (poaceae ) are not impaired in abscisic acid perception or metabolism[J]. Am J Bot, 1999, 86: 1796-1800.
    [92] Schroeder J I, Allen G J, Hugouvieux V, et al. Guard cell signal transduction[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 627-658.
    [93]粱建生,张建华.根系逆境信号ABA的产生和运输及其生理作用[J].植物生理学通讯, 1998, 34(5): 329-338.
    [94] Franks P J, Farquhar G D. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana[J]. Plant Physiol, 2001, 125: 935-94.
    [95] Wang X Q, Wu W H, Assmann S M. Differential responses of abaxial and adaxial guard cells of broad bean to abscisic acid and calcium[J]. Plant Physiol, 1998, 118: 1421-1429.
    [96] Allan A C, Fricker M D, Ward JL, etal. Tow transduction pathways mediate rapid effects of abscisic acid in Commedlina guard cells[J]. Plant Cell, 1994, 6: 1319-1328.
    [97] Schwartz A, Wu W H, Tucken E B etal. Inhibition of inward K+ channels and stomatal response by abscisic acid: An intracellalor locus of phytohormone action[J]. Proc Natl Acad Sci USA, 1994, 91: 4019-4023.
    [98]贾文锁,王学臣,张蜀秋等.水分胁迫下ABA由蚕豆根向地上部的运输及其在叶片组织中的分布[J].植物生理学报, 1996, 22(4): 363-367.
    [99] Lee S, Choi H, Suh S, et al. Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis[J]. Plant Physiol, 1999, 121(1):147-152
    [100] Pei Z M, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J]. Nature, 2000, 406(6797): 731-734.
    [101] Salin M L. Toxic oxygen species and protective systems of the chloroplast[J]. Physiol Plant, 1987, 72: 681-689.
    [102] Gunz D W, Hoffmann M R. Atmospheric chemistry of peroxides: a review[J]. Atomos Environ, 1990, 24: 1601-1633.
    [103]张骁,张霖,安国勇等.共聚焦显微技术研究ABA诱导蚕豆气孔保卫细胞H2O2的产生简报[J].实验生物学报, 2001, 34(1):71-76.
    [104]苗雨晨,宋纯鹏,董发才. ABA诱导的蚕豆气孔保卫细胞H2O2的产生[J].植物生理学通讯, 2000, 26(1):53-58.
    [105] Steven N, Radhika D, John H. Hydrogen peroxide signaling[J]. Current Opinion in Plant Biol, 2002, 5: 388-395.
    [106]刘志明,张柏.土壤水分与干旱遥感的研究的进展与趋势[J].地球科学进展, 2003, 18(4): 577-583.
    [107]王琴.玉米水分胁迫下补偿效应初步研究[D].南京:河海大学.
    [108]郑盛华.水分胁迫对玉米生理生态特性影响的研究[D].北京:中国农业科学院.
    [109]谢田玲,沈禹颖,邵新庆等.黄土高原种豆科植物的净光合速率和蒸腾速率日动态变化[J].生态学, 2004(24), 1680-1686.
    [110]郭相平,刘才良,邵孝侯等.调亏对玉米需水规律和水分生产效率的影响[J].干旱地区农业研究, 1999, 17(3): 92-96.
    [111]罗远培,李韵珠.根土系统与作物水氮资源利用效率[M].北京:中国农业科技出版社, 1996.
    [112]陈晓远,高志红,罗远培.植物根冠关系[J].植物生理学通讯, 2005, 41(5):5 55-562.
    [113] Brouwer R. Functional equilibrium: sence or nonsence. Netherland[J]. Journal of Agricultural Science, 1983, 31: 335-348.
    [114]李凤英,黄占斌,山仑.夏玉米水分利用效率的时空变化规律研究[J].西北植物学报, 2000, 20(6): 1010-1015.
    [115] Fridovich I. Superoxide dismutase [J]. Ann Rev Biochem, 1975, 44: 147-159.
    [116] Willeken H, Van Camp W, Van Montagu M, et al. Ozone, sulfur dioxide and ultraviolet B have similar effects on mRNA accumulation of antioxidant gene in nicotiana plugbaginifolia[J]. Plant Physiol, 1994, 106: 1007-1014.
    [117]高俊凤.植物生理学实验指导[M].北京:高等教育出版社, 2005.
    [118]刘涛,李柱,安沙舟等.干旱胁迫对木地肤幼苗生理生化特性地影响[J].干旱区研究, 2008, 25(2): 231-235.
    [119]仵小南,深曾佑.水分胁迫对植物线粒体结构和脯氨酸氧化酶活性的影响[J].植物生理学报, 1986, 12(4): 388-395.
    [120]戴高兴,彭克勤,萧浪涛等.聚乙二醇模拟干旱对耐低钾水稻幼苗丙二醛、脯氨酸含量和超氧化物歧化酶活性的影响[J].中国水稻科学, 2006, 20(5): 557-559.
    [121]王茂良.植物抗渗透胁迫及其与脯氨酸的关系[J].北京园林, 2006, 22(76): 21-24.
    [122]冯锋,张福锁,杨新泉.植物营养研究进展与展望[M].北京:中国农业大学出版社, 2000: 12-21.
    [123]李智念,王光明,曾之文.植物干旱胁迫中的ABA研究[J].干旱地区农业研究, 2003, 21(22): 99-103.
    [124] Wright S T C, Hiron R W P. Abscisic acid, the growth inhibitor induced in detached leaves by a period of wilting[J]. Natrue, 1969, 224: 719-720.
    [125] Jackson M B. Are plant homones involved in the root to shoot communication?[J]. Adv Bot Res, 1993, 19: 103-187.
    [126]高新起,王康满. Ca2+在H2O2促进蚕豆气孔关闭过程中的作用[J].曲阜师范大学学报, 2003, 29(2): 84-85.
    [127]董发才,周云,杨叶等. ABA和H2O2在NaCl诱导的气孔关闭中的作用[J].河南大学学报(自然科学版), 2002, 32(3): 29-32.
    [128]胡田田,康绍忠,原丽娜等.不同灌溉方式对玉米根毛生长发育的影响[J].应用生态学报, 2008, 19(6): 1289-1295.
    [129] Assmann S M, Shimazaki K I. The multisensory guard cell, stomatal responses to blue light and abscisic acid[J]. Plant Physiol, 1999, 119: 809-815.
    [130] McAinsh M R, Clayton H, Hetherington A M, etal. Changes in stomatal behavior and cytosolic free calcium in response to oxidative stress[J]. Plant Physiol, 1996, 111: 1031-1042.
    [131]丁端锋,蔡焕杰,王健等.玉米苗期调亏灌溉的复水补偿效应[J].干旱地区农业研究, 2006, 24(3): 64-67.
    [132]武维华.植物生理学[M].北京:科学出版社, 2003: 47-49.
    [133] Ovecka M, Lang I, Baluska F, etal. Endocytosis and vesicle trafficking during tip growth of root hairs[J]. Protoplasma, 2005, 226: 39-54.
    [134] Li M, Qin C, Welti R, etal. Double knockouts of phospholipases D1 and D2 in Arabidop sis affect rootelongation during phosphate limited growth but do not affect root hair patterning[J]. Plant Physiol, 2006, 140: 761-770.
    [135] Muller M, Schmidt W. Environmentally induced plasticity of root hair development in Arabidopsis[J]. Plant Physiology, 2004, 134: 409-419.
    [136] Mackay A D, Barber S A. Effect of cyclic wetting and drying of a soil on root hair growth of maize roots[J]. Plant and Soil, 1987, 104: 291-293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700