水稻根系与叶片光合生理特性关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为揭示水稻根系与叶片光合生理特性之间的联系,本研究以生产上大面积推广的水稻品种籼稻两优培九、粳稻豫粳六号和陆稻品种旱稻738为试验材料,在水培条件下,通过短时(30 min和150 min)水分胁迫处理及根系调节措施,从水稻的光合特性响应、气体交换、叶绿素荧光诱导动力学参数、光合机构关键酶活性、叶绿体类囊体膜蛋白表达、根叶渗透调节物质含量变化、根系呼吸代谢关键酶活性、根叶中激素(ABA、CTK、IAA、GA3)含量变化、H2O2含量变化、抗氧化酶活性变化等方面,研究短时水分胁迫条件下水稻光合荧光特性的响应机制;根系和叶片中渗透调节物质的调控效应;根系呼吸代谢对光合特性的影响;根系和叶片中激素含量变化对光合的调控及互作效应;根系和叶片之间的ABA化学信号传递及转导。试验结果如下:
     1.30 min短时水分胁迫下,光合特性变化幅度较小,净光合速率、蒸腾速率、羧化效率基本上在15 min后开始有下降趋势,气孔导度下降开始的较早在5-10 min便开始下降,水分利用效率变化幅度较小或基本不变,气孔限制值保持稳步上升的趋势;荧光诱导动力学参数短时间内变化较明显,Fo对干旱胁迫较敏感,不同基因型品种均有上升。150 min处理光合荧光特性指标下降更加明显,下降幅度更大,净光合速率和蒸腾速率表现出三段式的变化趋势,30 min内下降幅度较大,30-90 min下降趋势较平缓,90 min后下降幅度又较大,气孔导度下降幅度最大的时间在30-60 min;胞间CO2浓度在0-90 min基本表现下降的变化趋势,90 min后开始有所上升;水分利用效率在30-60 min表现出上升的变化过程;气孔限制值在120 min胁迫处理后期表现出下降的变化趋势。
     2.短时水分胁迫处理后,叶片水势变化明显,特别是在30%严重胁迫条件下;根系和叶片中细胞膜透性受到严重的影响,膜的选择质膜透性发生改变;短时水分胁迫过程中根系和叶片中渗透调节物质的改变,结果表明脯氨酸、可溶性糖含量短时间内变化较大,一般都是在20 min后上升幅度较大;比较根系和叶片中渗透调节物质的改变,发现根系中脯氨酸的改变的绝对量和上升幅度要大于叶片,而叶片中可溶性糖含量改变的绝对量和上升幅度要大于根系。
     3.不同的根系处理方式(全根、半根、剪去半根)对干旱胁迫后叶片的光合特性影响的结果表明,净光合速率、蒸腾速率、胞间CO_2浓度、羧化效率、水分利用效率在短时间内都有下降趋势,气孔限制值则表现为上升趋势,特别是在20 min以后变化更加明显,半根处理可以降低叶片光合特性变化的幅度。如果在处理20 min后剪去半根,明显看出,叶片的光合特性发生很快的改变,特别是气孔导度的变化最为敏感,上述指标都表现为不变或者开始有回升的趋势。不同根系处理方式叶片水势的试验也同样表明,剪去抑制半根处理可以降低叶片水势降低的幅度,甚至可以使叶片水势有上升的趋势。
     4.根系和叶片中CTR、IAA、GA3在短时间内都有下降的趋势,而ABA则表现出明显的上升趋势。同样,半根胁迫处理降低了这种改变的幅度,通过20 min剪去半根处理,发现可以明显改变叶片中激素含量的变化。通过试验设计全根、半根、20 min剪去半根处理,可以计算出不同根系胁迫处理在处理30 min后叶片中ABA和Zr的变化,30 min内根系ABA、Zr向叶片中输送ABA和Zr的平均速率分别为7.5 ng/g. FW.min-1、0.034 ng/g. FW.min-1。根系和叶片中ZR/ ABA、IAA/ABA、GA3 / ABA、(ZR+GA3) / ABA比值在干旱处理过程中都表现出下降的趋势。全根处理比值变化的幅度最大,剪去半根处理降低了这种变化的幅度。全根条件下(ZR+GA3) / ABA比值的变化幅度较大,这是水稻植株生长变缓的标志,是水稻对水分胁迫的一种保护性生理机制。
     5.通过抑制剂处理的方法研究根系呼吸代谢对叶片光合特性的影响,结果表明,正常条件下呼吸代谢抑制剂处理,叶片的光合特性在短时间内发生了一定程度的改变,特别是HgCl2处理后对光合特性影响最大,在30 min内光合速率就下降了35.8%;在光合各个指标中气孔导度下降的幅度最大,HgCl2处理后在30 min内就下降了75.1%;DNP处理后光合特性也有不同程度的下降;Na_3PO_4处理后,除了胞间CO_2有明显的下降趋势外,其它指标均变化不明显。
     短时干旱胁迫条件下对根系呼吸代谢不同途径关键酶活性也存在明显影响,结果表明,不同水分梯度都可以明显降低根系中ATP合酶、细胞色素氧化酶、琥珀酸脱氢酶的活性;不同处理间存在明显差异,且酶活性的降低一般都出现在胁迫处理10 min以后。
     6.不同基因型水稻胁迫处理后RuBP羧化酶活性有不同程度的下降,90 min后下降较明显。不同基因型品种间存在明显差异,两优培九在处理前期具有较高的RuBP羧化酶活性,处理后期下降幅度较大。通过SDS聚丙烯酰胺垂直板电泳方法,分析胁迫处理后叶片叶绿体类囊提膜蛋白的差异表达,结果表明胁迫处理150 min后,两优培九、738品种处理前后存在差异蛋白条带,不同品种间也存在差异蛋白条带;豫粳六号在处理前后没有出现差异。
     7.加入ABA合成抑制剂可以明显的改变半根胁迫中的光合特性,特别是气孔导度的改变;抑制剂处理后根系和叶片中ABA含量都有一定程度的下降,叶片中表现更加明显;ABA合成抑制剂也同时影响了根系和叶片中H_2O_2含量的变化,特别是叶片中的改变;通过运用剪去半根的方法,运用ABA运输速率的计算方法,计算根系中H_2O_2向叶片中运输的速率为0.051μmol.g-1.FW.min-1,结果说明根系向叶片中运输的H_2O_2还是非常少的,叶片中自身产生的H2O2是叶片中H_2O_2含量变化的主要原因。
In order to promulgate between the root system and the leaf photosynthesis characteristic contacts. In the present study, we use the rice varieties of Liangyoupeijiu, the japonica Rice Variety of Yujingliuhao and upland rice variety of 738 as test materials which be planted in large scale. Response of photosynthesis characteristics, gas exchange, chlorophyll fluorescence parameter, key enzymes activities of photosynthetic apparatus, chloroplast thylakoid membrane proteins expression, content of osmoregulation substance in roots and leaves, key enzymes activities of root respiratory metabolism, changes of hormone content(ABA、CTK、IAA、GA3), changes of H2O2 content, changes of anti-oxygen protective enzyme were detected as the main indexes when rice varieties were subjected to short water stress(30min and 150min). Study on response mechanism of photosynthesis characteristics, regulating effect of osmoregulation substance, the efforts of root respiratory metabolism on photosynthesis characteristics, regulating and interaction effect of changes of hormone content on photosynthesis characteristics, ABA chemical signals transfer and transduction between roots and leaves under short water stress. The main results of this study were as followings.
     1. The change range of changes of photosynthesis characteristics is smaller in 30min short water stress, and the net photosynthetic rate, transpiration Rate and carboxylation efficiency begin to reduce after 15min stress treatment, while the stomatal conductance begin to reduce more early at about 5-10min stress treatment, and water use efficiency have less change or kept steady, and stomatal limitation value keep steady rising. The results of photosynthetic fluorescence characteristics after 150min water stress showed that index of which reduced more significantly and larger. The net photosynthetic rate and transpiration rate showed changing in three steps: changes larger in the first 30min and maintained stable during 30-90min and with larger reduced amplitude after 90min, while the changes larger amplitude of stomata conductance was from 30 to 60min. At the same time, intercellular CO_2 concentration reduced during 0-90min and begins to increase after 90min treatment, and water use efficiency showed raised during 30-60min, and the stomata limitation value exhibits a decreased trend at the late stress treatment.
     2. The Responses of Leaf Water Potential changed obviously after the short water stress, especially in serious stress. Cell membrane permeability in roots and leaves has been affected seriously, and membrane permeability will change. The result that changes of osmoregulation substance in roots and leaves during the short water stress showed the content of proline and soluble sugar change faster in short time, especially since 20min. Compared with the changes of osmoregulation substance in roots and leaves, the absolute value and change range of proline in roots are all greater than those in leaves, while the absolute value and change range of soluble sugar in leaves are all greater than those in roots.
     3.The result that the efforts of different roots treatment method (whole root, half-root, wipe out half-root) on photosynthetic characteristics after water stress showed that net photosynthetic rate, transpiration Rate, intercellular CO2 concentration, carboxylation efficiency and water use efficiency all showed a trend of decrease, while the stomatal limitation value also showed an ascending trend, and more significantly especially after 20min. Half-root treatment can reduced the range of leaf photosynthetic characteristics changes. Photosynthetic characteristics of leaf changes obviously especially the change of stomatal conductance if the half-root of stress treatment be wiped after 20min treated and other indexes all showed unchanged or some degree of improvement.The experiment of different roots treatment method on leaf water potential also showed that the treatment of wipe out half-root can reduced the range of leaf water potential changes, and even some degree of improvement.
     4. The content of CTR, IAA and GA3 in roots and leaves decreased in short times, and the content of ABA increased obviously. The half-root treatment can reduced the range of changes, and the content of hormone in leaves decreased obviously by wiping the half-root after 20min treatment. Designing the treatment of whole root, half-root and wipe out half-root, we can calculate the changes of content of ABA and Zr in leaves after 30min different roots treatment, and then calculate out the average rate of ABA and Zr which respectively reach 7.5 ng/g.W.min-1 and 0.034 ng/g.W.min-1 that transport from roots to leaves within the 30 min. Ratios of ZR/ ABA, IAA/ABA, GA3 / ABA and (ZR+GA3) / ABA in roots and leaves exhibit a downward trend during the drought process. The change of the ratio of whole root is the largest, and the wipe out half-root treatment reduced the range of this change. The change of the ratio of (ZR+GA3) / ABA is also bigger, and maybe it is a sign that growth of rice becomes very slow, and it also a protective physiological mechanism.
     5. The result that the effects of Inhibitor of root respiratory metabolism treatment on leaves photosynthetic characteristics showed that the photosynthetic characteristics of leaves will change by different Inhibitors in normal conditions, especially the treatment of HgCl2, of which the change of net photosynthetic rate reached 35.8%. The change of stomatal conductance is largest in the indexes of photosynthetic characteristics, which reduced by 75.1% within 30min under HgCl2 treatment. DNP treatment also has different degree of variation, however, the photosynthetic characteristics indexes of Na3PO4 treatment basically has no change except intercellular CO2 concentration。
     The results indicate that the short water stress have significant influence on key enzyme of root respiratory metabolism. Different water gradient can reduce the ATP synthase, cytochrome oxida and sesuccinate dehydrogenises of root, and existing obvious difference between those treatments, and the enzyme activity decrease occurred since 10min drought stress generally.
     6. The enzyme activity has different degree while in all different rice varieties, especially since 90min later. There are difference existing different rice varieties, for example, Liangyoupeijiu has high enzyme activity of RuBP carboxylase, however, it decreased with large range in the later treatment. Using the method of SDS polyacrylamide vertical slab electrophoresis, the results of difference of chloroplast thylakoid membrane proteins expression under water stress indicate that Liangyoupeijiu and 738 all have a new difference protein band, and different rice varieties also have various protein band, and Yujingliuhao have no protein variation during the drought process.
     7. Synthesis inhibitor of ABA can change the photosynthetic characteristics of half-root water stress, especially for the change of stomatal conductance. After the synthesis inhibitor of ABA treatment, the content of ABA have somewhat decrease, especially for the change in leaves. The content of H2O2 in root and leaves can also be affected by the synthesis inhibitor of ABA, particularly for the change of content of H2O2 in leaves. Using the method of wiping out half-root, we can also calculate out the average rate of H2O2 which reach 0.051μmol.g-1.FW.min-1 that transport from roots to leaves. It is reveals that it is little content of H2O2 which transport from roots to leaves, and the chief result of the change of H2O2 content in leaves should be the self produced H2O2.
引文
[1]许大全,李德耀,邱国雄.毛竹叶片光合作用的气孔限制研究.植物生理学报,1987,13: 154
    [2]康宗利,杨玉红,张立军.植物响应干旱胁迫的分子机制.玉米科学, 2006,(14): 96-100
    [3]蒯本科,顾红雅.渗透胁迫诱导的植物体内信号及相关基因克隆研究-国家重点基础研究发展规划项目建议依据、背景与思路.资源科学, 1999,21(5): 42-45
    [4]陈晓远,高志红,罗远培.植物根冠关系.植物生理学通讯, 2005,41(5): 555-562
    [5]娄成后.高等植物对环境变化的整体反应.院士论坛, 21(1)
    [6]潘瑞炽.植物生理学(第5版)[M].北京:高等教育出版社, 2004: 56-57; 84-86
    [7]许大全.光合作用效率[M].上海:上海科学技术出版社, 2002
    [8]关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯, 1995,31(4): 293-297
    [9] LAWLOR D W,CORNIC G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants [J].Plant Cell Environ, 2002, 25: 275-294
    [10]卢从明,张其德,匡延云.水分胁迫对小麦光系统Ⅱ的影响.植物学报, 1994, 36(2): 93-98
    [11]胡继超,姜东,曹卫星等.短期干旱对水稻叶水势、光合作用及干物质分配的影响.应用生态学报, 2004,15(1): 63-67
    [12]张文丽,张岁歧,山仑等.土壤逐渐干旱下玉米幼苗光合速率与蒸腾速率变化的研究.中国生态农业学报,2006,14(2):72-75
    [13]袁永慧,邓西平.干旱和复水对小麦光合和产量的影响.西北植物学报, 2004, 24(7): 1250-1254
    [14]郭相平,刘展鹏,王青梅等.采用PEG模拟干旱胁迫及复水玉米光合补偿效应.河海大学学报, 2007,35(3): 286-290
    [15]王磊,张彤,丁圣彦.干旱和复水对大豆光合生理生态特征的影响.生态学报,2006,26(7): 2073-2078
    [16]曾广文,蒋德安.植物生理学.中国农业出版社.
    [17]薛崧,汪沛洪,许大全,等.水分胁迫对冬小麦CO2同化作用的影响.植物生理学报, 1991,18(1): 1-7
    [18]曲东,王保莉,山仑,等.水分胁迫下磷对玉米叶片光合色素的影响.西北农业大学学报,24(4): 94-97
    [19]魏孝荣,郝明德,邱莉萍,等.干旱条件下锌肥对玉米生长和光合色素的影响.西北农林科技大学学报(自然科学版), 2004,32(9):111-114
    [20]张丽军,赵领军,赵善仓.水分胁迫对苹果光合特性的影响.河北果树(试验研究), 2007(4): 115-117
    [21]詹妍妮,郁松林,陈培琴.果树水分胁迫反应研究进展.中国农学通报,2006,22(4): 239-243
    [22]朱新广,王强,张其德,等.冬小麦光合功能对盐胁迫的响应.植物营养与肥料学报, 2002,8(2): 177-180
    [23]赵丽英,邓西平,山仑.渗透胁迫对小麦幼苗叶绿素荧光参数的影响.应用生态学报, 2005, 16(7): 1261-1264
    [24]张永强,毛学森等.干旱胁迫对冬小麦叶绿素荧光的影响.中国农业生态学报.2002, 10(4): 13-15
    [25]赵丽英,邓西平,山仑.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究.中国生态农业学报, 2007,15(1): 63-66
    [26]曹慧,兰彦平,刘会超.水分胁迫下短枝型苹果幼树活性氧代谢失调对光合作用的影响.内蒙古农业大学学报, 2000,21(3): 22-25
    [27]陈立松,刘星辉.高温胁迫对桃和柚细胞膜透性和光合色素的影响.武汉植物学研究, 1997, 15(3): 64-67
    [28]陈培元.作物干旱逆境的适应性和反应.山西农业科学, 1990,(9):29-32
    [29]王泽港、梁建生、曹显祖.半根干旱胁迫处理对水稻叶片光合特性和糖代谢的影响.江苏农业研究, 1999, 20(3): 21-26
    [30]张放,唐晓蕴.低温胁迫对处于不同水分状态柑桔光合作用的影响.浙江大学学报, 2001,27(4): 393-397
    [31]魏爱丽,王志敏,陈斌等.土壤干旱对小麦绿色器官光合电子传递和光合磷酸化活力的影响,2004,30(5): 487-490
    [32]魏小平,王根轩,吴冬秀.干旱和CO2浓度升高对不同春小麦光合作用和气孔阻力及水分蒸腾效率的影响.兰州大学学报(自然科学版), 2005, 41(6): 42-46
    [33]杨慧敏,王根轩.干旱和CO2浓度升高对干旱区春小麦气孔密度及其分布的影响.植物生态学报, 2001, 25(3): 312-316
    [34]任红旭,陈雄,吴冬秀.CO2浓度升高对干旱胁迫下蚕豆光合作用和抗氧化能力的影响.作物学报, 2001, 27(6): 729-736
    [35] Lou C-H(娄成后),Wang X-C(王学臣).Physiological Basis of Crop Yield—Water Stress and Photosynthesis(作物产量形成的生理学基础一干早胁迫与光合作用).Beijing: China Agriculture Press, 2001. 39-5l
    [36] KECKR W, BOYER J S. Chloroplast response to low leaf water potentials.Ⅱ. Differing inhibition of electron transport and photophosphorylation [J].Plant Physio1, 1974, 53:474-479
    [37] CONIC G. Drought stress and high light effects on leaf photosynthesis [A].Baker N R,Bowyer J R, eds. Photo inhibition of photosynthesis[c].Oxford; Bios Scientific Publishers, 1994: 297-313
    [38] TOURNEUXC, PEI TIER G. Effects of water deficit on photosynthetic oxygen exchange measured using O2 and mass spectroscopy in Solano tuberous leaf discs[J].Plantar,1995, 195: 570-577
    [39] BIEI HER K.FOCK H. Evidence for the contribution of the Mahler—peroxides reaction in dissipating excess electrons in drought-stressed wheat [J].Plant Physio1, 1996, 112:265-272
    [40]卢从明,张其德,匡延云.水分胁迫抑制水稻光合作用的机理.作物学报, 1994,20(5): 601-606
    [41]卢从明,张其德,匡延云.水分胁迫对小麦光系统Ⅱ的影响.植物学报,1994,36(2): 93-98
    [42] ZHANG Q D(张其德).Effects of drought stress on photosynthesis[J].Plant Magazine(植物杂志).1997, 3: 30-32(in Chinese).
    [43] JACK A J,EVANS D E.Instant notes in plant biology[M].北京:科学出版社, 2002: 140-141
    [44]卢从明,高煜珠,张其德等.水分胁迫对叶绿体能量转换的影响.植物学报, 1993, 35(9): 693-697
    [45] GIMENEZ C, MITCHEI V J, AWORDW. Regulation of photosynthetic rate of two sunflower hybrids under water stress [J].Plant Physiol.1992, 98: 516-524
    [46] TEZARA W, M T TCHE V J,DRISCOI S P,LAWOR D W. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP [J].Nature, 1999, 401: 914-917
    [47] LAW1 OR D W,CORNIC G.Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J].Plant Cell Environ,2002, 25:275—294:
    [48] GUNASEKERA D, BERKOW G A. Use of transgenic plants with ribulose 1,5-bisphosphate carboxylic oxygenize antisepses DNA to evaluate the rate limitation of photosynthesis under water stress[J].Plant Physio1,1993, 103: 629-635
    [49]王仁雷,华春,刘友良.盐胁迫对水稻光合作用的影响.南京农业大学学报, 2002, 25(4): 11-14
    [50]姜伟,孙萍. CO2浓度增加对黄瓜叶片气孔和Rubisco活性的影响.莱阳农学院学报, 1998, 15(2): 132-134
    [51]姚庆森,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制.热带农业科学, 2005, 25(4): 80-85
    [52]朱维琴,吴良欢,陶勤南,等.干旱逆境下不同品种水稻叶片有机渗透调节物质变化研究.土壤学报, 2003,34(1): 25-28
    [53]朱维琴,吴良欢.干旱逆境对不同品种水稻生长、渗透调节物质含量及保护酶活性的影响.科技通报, 2006,22(2): 176-181
    [54]李永华,王玮,邹琦.干旱胁迫下抗旱高产小麦新品系旱丰9703的渗透调节与光合特性.作物学报, 2003,29(5): 759-764
    [55]邵艳军,山仑,李广敏,等.干旱胁迫与复水条件下高粱、玉米苗期渗透调节及抗氧化比较研究.中国生态农业学报, 2006,14(1): 68-70
    [56]赵军营,王利军.半根交替干旱对‘大久保’桃叶片中几种有机渗透调解物质的影响.园艺学报, 2006,33(4): 801-804
    [57]孙骏威,杨勇,黄宗安.聚乙二醇诱导水分胁迫引起水稻光合下降的原因探讨.中国水稻科学, 2004,18(6): 539-543
    [58] Smirnoff N. Antioxidant systems and plant response to the environment .In: Smirnoff N E. Environment and Plant Metabolism: flexibility and ac2climation.Oxford: BIOS Scientific Publishers, 1995. 217-243
    [59]王志琴,杨建昌,朱庆森等.水分胁迫下外源多胺对水稻叶片光合速率与籽粒充实的影响.中国水稻科学, 1998,12(3): 185-188
    [60]王娟,李德全.水分胁迫对玉米根系ASA-GSH循环及H2O2含量德影响.中国生态农业学报, 2002, 10(2): 94-96
    [61]陈少裕.膜脂过氧化对植物的伤害.植物生理学通讯,1991, 27 (2): 84-91
    [62]钟鹏,朱占林,李志刚等.干旱和低磷胁迫对大豆叶保护酶活性的影响.中国农学通报,2005, 21(2): 153-154
    [63]戴高兴,彭克勤,萧浪涛等.聚乙二醇模拟干旱对耐低钾水稻幼苗丙二醛、脯氨酸含量和超氧化岐化酶活性的影响.中国水稻科学,2006, 20(5): 557-559
    [64]曾广文,蒋德安.植物生理学.中国农业出版社.
    [65]萧浪涛,王少龙,彭克勤.自然干旱胁迫下配方肥增效剂对水稻内源激素的影响.中国水稻科学, 2005,19(5): 417-421
    [66]李岩,潘海春,李德全.土壤干旱条件下玉米叶片内源激素含量及光合作用的变化.植物生理学报,2000, 26(4): 301-305
    [67]汪宝卿,李召虎.干旱胁迫下冠菌素对玉米幼苗光合参数和内源激素含量的影响.植物生理学通讯, 2007,43(2): 269-272
    [68]赵领军,赵善仓.干旱胁迫下苹果根系内源激素含量的变化.山东农业科学, 2007,2: 48-49
    [69] Wolfram Hartung, Angela Saunter and Eleonore Hose. Abscisic acid in the xylem: Where does it comes form, where does it go to? Journal of Experimental Botany, Vol. 53, No. 366, 27-32, January 2002
    [70] Angela Saunter, W.J. Davies, Wolfram Hartung. The Long-distance abscisic acid in thedrought plant: the fate of the hormone on its way form root to shoot. Journal of Experimental Botany, Vol.52, No.363, Plants under stress Special issue, pp.1991-1997, October 2001
    [71]娄成后,华宝光.植物信号系统-它在功能整合与适应环境中的作用.生命科学, 2000, 12(2): 49-52
    [72] Z.Starck. Role of conducting systems in the transduction of long-distance stress signals. Acta physiologies plantarum, 2006, 289-301
    [73] You-Cai Xiong,Feng-Min Li, Bing-Cheng Xu.Hydraulic and non-hydraulicRoot-sourced Signals in old andModern Spring Wheat Cultivarsin a Semiarid Area.(J) Plant Growth Regul (2006)25: 120-136
    [74]娄成后.植物水分平衡中根-冠间信号传递与整体行为.植物学通报, 2000,17(5): 475-477
    [75]兰平,娄成后.乙酰胆碱对黄化玉米幼苗中胚轴通透性与物质运转的调控效应.植物学报,2001,43(12):1229-1232
    [76]苗雨晨,宋春鹏,董发才.ABA诱导蚕豆气孔保卫细胞H2O2的产生.植物生理学报, 2000,26(1): 53-58
    [77] Chao-Wen Chen, Yun-Wei Yang, Hur-Sheng Lur. A novel functions of Abscisic Acid in the Regulation of Rice Root Growth and Development. Plant Cell physiol, 2006, 47(1): 1-13
    [78] Gary Tallman. Are diurnal pattions of stomatal movement the result of alternating metablism of endogenous guard cell ABA and accumlation of ABA delivered to the apoplast around guard cells by transpiration? Jourmal of Experimental Botany, 2004, 55, No, 405: 1963-1976
    [79] Xueyuan Cao, Liliana M, Costa, Corinne Biderre-Petit. Abscisic Acid and stress Signals Induce Viciparous1 Expression in seed and Vegetative Tissues of Maize. Plant physiology; 2007, 143, 2, pg, 720
    [80]王学臣,袁明.气孔导性对渗透胁迫的快速效应和气孔的振荡作用(简报).北京农业大学学报, 1992,18(3): 256-273
    [81]王学臣,任海云.干旱胁迫下植物与地上部间的信息传递.植物生理学通讯,1992,28(6): 397-402
    [82]娄成后.高等植物对环境变化的整体反应.院士论坛
    [83]娄成后,冷强.乙酰胆碱在调节植物行为中的作用.生命科学, 1996,8(2):
    [84] Nonami H, Boyer J S. Primary events regulating stemgrowth at lowwater potentials [J ]. Plant Physiol, 1990, 93:1610
    [85] Davies WJ, Jones HG. Abscisic acid physiology and biochemistry. Bios scbentilbe publisher timlted (UK), 1991:l37-166
    [86]张蜀秋,贾文锁.用胶体免疫电镜技术研究水分胁迫对蚕豆根中ABA分布与含量的影响.植物学报:英文版, 1996,38(1): 857-860
    [87] Larque-saavedra a, wain R L. Studies on plant growth-regulating substance XLTI. Absicsic acid as a genetic character related to drought tolerance [J]. Ann,Biol,1976,83:291-297.
    [88] Heaton T, Lee A, Tallman G. 1987.Stomata in senescing leaves: guard cell viability and regulation of stomatal function in Nicotiana glauca. In: Thomson W, Nothnagel E, Huffaker R, eds. Plant senescence: its biochemistry and physiology. Rockville, MD: AMercian Society of Plant Physiologists, 198-214
    [89] Davies WJ,Zhang J.Root signals and the regulation of growth and development of plant in drying soil[J].Annu Rev Plant Physio1.Plant Mol Biol, 1991, 42:55-76
    [90] Kaiser H, Kappen L. 2001. Stomatal osciallation at small apertures: indications for a fundamental insufficiency of stomatal feedback control inherent in the stomatal turgor mechanism. Journal of Experimental Botany 52, 1303-1313
    [91] Davies WJ, Zhang J H. Chemical regulation of growth and physiology in during soil: the case for abscisic acid [J]. Cur Top in Plant Biochem and Physiol, 1989, 8:100.
    [92] Michael B.Hurley, Jacqueline S.Rowarth. Resistance to root growth and changes in the concentrations of ABA within the root and xylem sap during root-restriction stress.Journal of Experimental Botany, Vol.50, No.335, pp.799-804, June 1999
    [93] Wagdy Y. Sobeih, LAN C. Dodd. Long-dance signals regulating stomata conductance and leaf growth in tomato plants subjected to partial root-zone drying. Journal of Experimental Botany, Vol.55, No. 407, Water-saving Agriculture Special issue, pp. 2353-2363, November 2004
    [94] Wensuo Jia William John Davies.Modification of leaf Apoplastic PH in Raelation to stomatal sensitivity to Root-Sources Abscisic Acid signals.Plant physiology;Jan 2007;143,1;68-77
    [95]贾文锁,王学臣,张蜀秋,等.水分胁迫下ABA由蚕豆根向地上部的运输及其在叶片组织中的分布.植物生理学报, 1996,22(4): 363-367
    [96] Jean Colcombet, Francoise Lelievre, Sebastien Thomine.Distinct PH regulation of slow and rapid anion channels at the plasma membrane of Arabidopsis thaliana hypocotyls cells.Journal of Experimental Botany, Vol.56, No.417, 99.1897-1903, July 2005
    [97] Anderson B E, Ward JM, Schroeder JI. 1994. Evidence for an extra cellular reception site for abscisic acid in Commelina guard cells. Plant Physiol, 104: 1177-1183
    [98] Pei ZM, Kuchitsu K, Ward JM, et al. 1997. Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis Wild-type and abil an abi2 mutant. Plant cell, 9:409-423
    [99]陈玉玲、肖玉梅、王学臣.保卫细胞钙信号的研究进展.植物学通报,2003,20(2):144-151
    [100] Bush DS Ca Loum regu Lation in plant cells and its role insignaling.Annu Rev Plant PhysiolMol Biol, 1995, 46:95-122
    [101] Davies WJ,Jones HG.Abscisic acid physiology and biochemistry.Bios scbentilbe publisher timlted (UK), 1991:l37-166
    [102] Pei ZM., Murata Y,Benning G,et al. 2000.Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature, 406:731-734
    [103] Ush D S. Calcium regulated in plant cells and its role in signaling. Annu. Rev. Plant Physiol. Plant Mol.Biol, 1995, 46: 95-112
    [104] Grill E, Himmelbach A. 1998. ABA signal transduction. Curr Opin Plant Biol, :412-418
    [105] Schwartz.A, Wu, WH, Tucher, EB, and Assmann, S.M (1994)Inhibition of inward K+ channels and stomatal response by abscisic acids: an intracellularlocus of phytohormone action. Proc. Natl.Acad. Sci. USA 9 1, 4019-4023.
    [106] Mimi Hashimoto, Juntaro Negi, Jared Young.Arabidopsis HT1 kinase controls stomatal movements in response to CO2.nature,Cell biology,10.1038:391-397,March 2006.
    [107] Fulai Liu,Ali Shahnazari,Mathias N.Andersen.Physiological responses of potato(Solanum tuberosumL.) to partial root-zone drying:ABA signaling,leaf gas exchage,and water use efficiency.Lournal of Experimental Botany,Vol.57,No.14,pp.3727-3735,2006
    [108]张伟,杨洪强,接玉玲.脱落酸、水杨酸和草酸诱导苹果叶片脯氨酸积累的效应.园艺学报.2006, 33 (6): 1175-1178
    [109]姚满生,杨小环,郭平毅脱落酸与水分胁迫下棉花幼苗水分关系及保护酶活性的影响.棉花学报.2005, 17 (3):141-145
    [110]许树成,范迪辉.ABA与Ca2+CaM对草莓叶片抗氧化防护酶系统影响阜阳师范学院学报(自然科学版).2007, 24(2):30-33
    [111]张云霞,石勇,王瑞刚.初始盐胁迫下ABA与CaM对胡杨叶片气体交换的调控.林业科学.2008, 44(1):57-64
    [112]韩燕,佘小平.NO, H2O2介导根系渗透胁迫和脱落酸诱导的气孔关闭陕西师范大学学报(自然科学版)2007,35(4):83-87
    [113] Xueyuan Cao,Liliana M.Costa.Abscisic Acid and stress signals induce viviparous1 Expression in seed and vegetative tissues of maize.Plant;Feb 2007;143,2:720-730
    [114]赵全志,高尔明,黄王生,等.源库质量与作物超高产栽培及育种[J].河南农业大学学报, 1999, 33(3): 226-230.
    [115]柴世伟,刘文兆,李秧秧.伤根对玉米光合作用和水分利用效率的影响,应用生态学报,2002,13(12): 1716-1718
    [116]柴世伟,刘文兆,李秧秧.伤根对谷子叶片光合速率及其产量的影响.西北植物学报, 2004, 24(12): 2215-2220
    [117]武永军,刘红侠,梁宗锁,等.分根区干湿交替对玉米光合速率及蒸腾速率的影响,西北植物学报, 1999,19(4):605-611
    [118]杨文钰,樊高琼,任万军,等.烯效唑干拌种对小麦根叶生理功能的影响,中国农业科学,2005,38(7): 1339-134
    [119]王少先,彭克勤,萧浪涛,等.双氰胺对水稻根系及光合特性和经济性状的影响,湖南农业大学学报(自然科学版),2003, 29(1): 18-21
    [120]董学会,何钟佩,关彩虹.根系导入生长素和玉米素对玉米光合产物输出及分配的影响,中国农业大学学报,2001,6(3):21-25
    [121]李青苗,杨文钰.烯效唑浸种对玉米壮苗的生理效应,玉米科学,2003,11(4): 74-75
    [122]陶世蓉,韩广清,王福青.ABT生根粉对花生根系活力及叶片光合性能的影响,中国油料作物学报,2000,22(2): 45-47
    [123]王志芬,陈学留,余美炎,等.冬小麦群体根系32P吸收活力与群体光合速率关系的研究.作物学报.1999, 25(4): 458-465
    [124]王法宏,王旭清,李松坚,等.小麦根系扩展深度对旗叶衰老及光合产物分配的影响.麦类作物学报, 2003,23(1): 53-57
    [125]潘庆民,于振文,王月福,等.小麦开花后iPA和ABA含量的变化及与旗叶光合、根系活力和籽粒灌浆的关系,西北植物学报,2000,20(5): 733-738
    [126]叶宝兴,毛达超,刘学春.超级小麦生育后期根系活力与净光合速率相关性的研究.山东农业科学, 2005,4:15-18
    [127]赵广才,刘利华,杨玉双,等.施肥及光合调节剂对小麦根系及籽粒产量和蛋白质含量的影响,作物学报,2004,37(7): 708-713
    [128]王志芬,范仲学,张凤云,等.鸡粪对高产冬小麦根系活力和光合性能的影响,核农学报,2003,17(5): 379-38
    [129]曾翔,李阳生,谢小立,等.不同灌溉模式对杂交水稻生育后期根系生理特性和剑叶光合特性的影响,中国水稻科学,2003,17(4): 355-359
    [130]马瑞昆,贾秀领,蹇家利,等.前期控水条件下冬小麦的根系和群体光合作用特点,麦类作物学报,2001,21(2):88-91
    [131]蔡永萍,杨其光,黄义德.水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活性的影响,中国水稻科学, 2000,14(4): 219-224
    [132]曾翔,张玉烛,屠乃美,等.强化栽培条件下水稻不同群体生育后期的根叶特性研究,中国农学通报,2005,21(5):193-195
    [133]赵全志,熊淑萍,吕强,等.水稻根系与群体光合速率的关系研究,河南农业大学学报,2005,39(2): 127-130
    [134] Hu X L, Jiang M Y,ZhangA Y,et al.A bscisic acid-induced apop lastic H2O2 accumulationup-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves[J].Planta,2005,223-230
    [135]娄成后,花宝光.植物信号系统-它在功能整合与适应环境中的作用.生命科学,2000,12(2):49-52
    [136]杨洪强,张连忠.植物对土壤干旱的识别与逆境信使的产生和传输,水土保持学报,2001,8(3):72-77
    [137]许大全.光合作用效率[M].上海:上海科学技术出版社,2002
    [138]孙骏威,杨勇,黄宗安.聚乙二醇诱导水分胁迫引起水稻光合下降的原因探讨.中国水稻科学( Chinese J Rice Sci),2004,18(6):539~543
    [139]接玉玲,杨洪强,崔明刚,等.土壤含水量与苹果叶片水分利用效率的关系.应用生态学报, 2001,12(3):387-390
    [140]董晓颖,李培环,王永章,等.水分胁迫对不同生长类型桃叶片水分利用效率和羧化效率的影响.灌溉排水学报, 2005, 24(5):67-69
    [141]陈悦,王学华,许大全.水稻剑叶取向对其光合功能的影响.植物生理与分子生物学学报.Journal of Plant Physiology and Molecular Biology 2002, 28(5):396-398
    [142]许大全.光合作用气孔限制分析中的一些问题.植物生理学通讯,plant physiology Commonications,1997,33(4):241-244
    [143]李莉,田士林.酶联免疫(ELISA)分析晋麦叶片中脱落酸的含量,安徽农业科学,Journal of Anhui Agri. Sci. 2007, 35(23):7098- 7099
    [144] Bewley J D ,1978 Physiology and biochemistry of speed.Springer-Verlag Berlin,Heidelberg, New York, 148-152
    [145] [苏]B.H.奥列霍维奇现代生物化学方法[M],人民教育出版社,39-42
    [146]夏涛.玉米雄性不育细胞质细胞色素氧化酶活性及ATP含量的研究华北农学报1994, 9(4)33-37
    [147]朱广廉.植物生理学实验[M].北京大学出版社,1990
    [148]高俊凤.植物生理学试验技术[M].西安:世界图书出版社,2000 .
    [149]西北农业大学植物生理生化教研室.植物生理实验指导[M].西安:陕西科学技术出版社.
    [150]张伟,杨洪强,接玉玲等.脱落酸、水杨酸和草酸诱导苹果叶片脯氨酸积累的效应.园艺学报, 2006,33(6):1175-1178
    [151]卢从明,张其德,匡延云.水分胁迫对小麦叶绿体激发能分配的光系统Ⅱ原初光能转化效率的影响.生物物理学报,1995,11(1): 82-86
    [152]武维华.植物生理学[M],科学出版社, 2005
    [153]赵风云,王元秀.植物体内重要的信号分子-H2O2.西北植物学报,2006,26(2):0427-0434
    [154]韩燕,佘小平.NO,H2O2介导根系渗透胁迫和脱落酸诱导的气孔关闭陕西师范大学学报(自然科学版)2007,35(4):83-87
    [155]江静. MAP激酶调节蚕豆保卫细胞中ABA诱导的H2O2产生,科学通报,2003,48: 1256-1263
    [156]江静.MAP激酶在蚕豆保卫细胞中的信号转导研究.河南农业大学博士学位论文[M].2003.9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700