不同阴离子形态锌化合物胁迫下玉米的生理生态特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,因污水灌溉、农用化肥等带来的农田土壤污染越来越严重,农田土壤质量日趋下降,而土壤质量与食品安全密切相关,因此土壤污染的研究与治理成为大家广泛关注的焦点。
     伴随着土壤重金属污染和盐分积累的加重,进行不同阴离子形态重金属化合物胁迫下作物的生理生态特征研究,有助于了解重金属与阴离子之间的关系以及它们与植物之间的关系,可为更好地了解重金属与阴离子的相互作用提供理论依据,为食品安全策略提供参考资料,有重要的理论和现实意义。
     本研究设计三种锌化合物ZnSO_4、zn(NO_3)_2和ZnCl_2的三种浓度梯度—低浓度(0.1gkg~(-1))、中浓度(0.3gkg~(-1))和高浓度(0.5gkg~(-1))以及空白对照,选择北方重要农作物玉米(Zea Mays L.)为研究对象,进行人工模拟重金属胁迫实验,通过测定形态学特征,拔节期、开花期和蜡熟期三个生长期的光合生理特征和叶绿素荧光特征以及各器官的锌含量,探讨不同阴离子形态锌化合物胁迫下玉米的生理生态特征。结果如下:
     (1)形态学特征
     锌对玉米的作用效果明显。浓度梯度间差异显著,低浓度锌促进生长,高浓度抑制生长,中浓度处于过渡态,不同化合物对玉米作用不同。不同浓度锌对玉米各器官的影响也不同。同浓度条件下,不同阴离子化合物对玉米生长的作用存在差异性。低浓度时,ZnSO_4处理长势最好:中浓度时,Zn(NO_3)_2长势最好;高浓度时,Zn(NO_3)_2对玉米的毒害作用最弱,而ZnCl_2对玉米的毒害作用最强。另外,各浓度处理的株高和叶面积的变化呈现生长期的波动性。
     (2)光合生理特征
     各处理的光合速率和蒸腾速率的日变化曲线均为单峰型,光合速率因生长期的不同呈现不同的变化趋势。同浓度水平的不同化合物间呈现光合能力的差异性,S1、N1和N2光合速率高于对照,表现促进生长的作用。拔节期时,气孔因素可能是光合速率下降的主要原因;开花期和蜡熟期,非气孔因素可能是光合速率下降的主要原因,也并不排除气孔因素的影响,但与叶绿素含量变化无明显关系。
     (3)叶绿素荧光特征
     各处理的光系统Ⅱ的有效量子产量(ΦPSⅡ)和电子传递速率(ETR)的日变化趋势均为单峰型,原初光能转化效率F_v/F_m均在0.8左右,光系统Ⅱ都具有较高的光合活性,ΦPSⅡ和ETR因生长期的不同呈现不同的变化趋势。同浓度水平不同化合物处理呈现光能利用的差异性。S1、N1、N2和N3的ΦPSⅡ和ETR始终高于对照,利于玉米高效利用光能。
     (4)对锌的吸收特性
     玉米植株各部位的Zn含量随着Zn投放浓度的增加呈递增趋势,各器官对Zn的积累量存在差异性,根和茎在减轻Zn毒害效应方面发挥了重要作用。Zn转移能力随胁迫浓度的变化而变化,不同化合物的变化趋势有所不同。中、低浓度时,SO_4~(2-)更利于锌的吸收,高浓度时,Cl~-对锌吸收的促进作用最强。在一定范围内,三种阴离子对锌转移的促进作用顺序:SO_4~(2-)>NO_3~->Cl~-。
With the development of economy, soil pollution has been increasingly serious as a result of sewage irrigation, agricultural fertilizers and so on. Soil quality is getting worse. Soil quality and food safety are closely related, so the study of soil pollution and disposal become the focus of widespread attention.
     Because the heavy metal contamination and the accumulation of salt are more and more serious, the eco-physiological study of crop has important theoretical and practical meaning, which is helpful to know about the relationship between the heavy metal and anions and that between them and plants, is theoretical basis to understand the interaction of heavy metal and anions better and provides reference for the food security strategy.
     We used 0.1 g kg~(-1),0.3 g kg~(-1) and 0.5 g kg~(-1) of zinc concentration with three zinc compounds which are ZnSO_4、Zn(NO_3)_2 and ZnCl_2, marked as low concentration, middle concentration and high concentration respectively, and the control, chose maize, the important crop in the north, as the object of study to simulate the heavy metal stress artificially. Morphological features, photosynthesis and chlorophyll fluorescence at the jointing , flowering and dough stage, and the zinc content in various organs were measured in order to examine the eco-physiological characteristics of maize under stress of zinc compounds with different anions. The results are as follows:
     (1) Morphological characteristics
     Zinc had obvious effects on maize. There was significant difference among different concentration treatments. The growth of maize was promoted under low level and was inhibited under high level. The maize under middle level was in the excessive stage, and grew differently due to the compounds. The organs of maize grew differently under zinc stress. Under the same concentration condition, there are differences among the effect on maize of zinc compounds with different anions. Under the condition of low concentration the maize under ZnSO_4 stress grew best, and under the condition of middle concentration the maize under Zn(NO_3)_2 stress grew best. Under the condition of high concentration ZnCl_2 poisoned the maize strongest, and Zn(NO_3)_2 weakest. The plant height and leaf area of all treatments fluctuated with the growing period.
     (2) Photosynthesis
     The diurnal change of photosynthetic rate (Pn) and transpiration rate (Tr) presented a single-peak curve. The trends of Pn varied with the growing period. Under the same concentration condition, photosynthetic capacity was different according to the zinc compounds with different anions. The Pn of maize under the S1, N1 and N2 was larger than the control, so S1, N1 and N2 were helpful to the growth of maize. The stomatal limitation might cause the decliner of Pn at jointing stage and the non-stomatal limitation might be the main reason of low Pn at flowering and dough stage. The low Pn might be due to the stomatal limitation also but had nothing to do with the change of chlorophyll content significantly.
     (3) Chlorophyll fluorescence
     The diurnal change of PSⅡquantum efficiency (ΦPSⅡ) and electron transport rate (ETR) presented a single-peak curve. The maximal quantum yield of PSⅡ(F_v/F_m) was around 0.8, which meant that the maize of all treatments had high photosynthetic activity. The trends ofΦPSⅡand ETR varied with the growing period. Under the same concentration condition, the capacity of using solar energy was difference according to the compounds with different anions. S1, N1, N2 and N3, whoseΦPSⅡand ETR were higher than the control, were beneficial to use solar energy efficiently for maize.
     (4) The absorption of zinc
     Zinc content in different position of maize increased with stress level, and was different between organs. Root and stem played an important role in lightening the poison of zinc. Zinc transfer capacity of maize varied with stress level, and different compounds were in different trends. Under the low and middle concentration condition, SO_4~(2-) was more helpful to the absorption of zinc than others, but under the high concentration condition Cl~- was the best one to simulate zinc absorption. The order of anions in promoting zinc transferring was SO_4~(2-), NO_3~- and Cl~-.
引文
Barker D H,Marszalek J,Zimpfer J F,et al.Changes in photosynthetic pigment composition and absorbed energy allocation during salt stress and CAM induction in Mesembryanthemum crystallinmum.Funct Plant Biol,2004,31:781-787.
    Bilger W,BjOrkman O.Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbency changes,fluorescence and photosynthesis in leaves of Hedera canariensis.Photosynth Res,1990,25:173-185.
    Bingham F T,Garrison S,Strong J E.The effect of sulfate on the availability of cadmium.Soil Sci,1986,141:172-177.
    Bingham F T,Sposito G,Strong J E.Influence of chloride on Cd availability.J Environ Qual,1984,13:71-74.
    Biorkman O.High-irradiance stress in higher plants and interaction with other stress factors.Prog Photosyn,1987,4:11-18.
    Brown S L,Chancy R L,Angle J S,et al.Zinc and Cadmium uptake by hyperaceumulator Thlaspi caerulescens grown in nutriment solution.Soil Sol Am J,1995,59:127-133.
    Calenl M G,Thomley J H M.Temperature and CO_2 responses of leaf and canopy Photosynthesis:a Clarification using the non-rectangular hyperbola model of photosynthesis.Ann Bot-London,1998,82:883-892.
    Campbell W H.Higher plant nitrate reductase:Arriving at molecular view.Plant Biochem Physiol,1998,7:1-15.
    Collins J C.Zinc in effect of heavy metal pollution on plants(ed.Lepp NW).London:Applied Science Publishers,1981.
    Fayiga A O,Ma L Q,Cao X D,et al.Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L..Environ Pollut,2004,132(2):289-296.
    Garland T.Zinc.Veterinary Toxicology,2007:470-472.
    Genty B,Briantais J M,Baker N R.The relationship between quantum yield of photosynthetic electron transport and quenching chlorophyll fluorescence.Biochim Biophys Acta,1989,990:87-92.
    Gobindjee.Sixty-three years since Kautsky:Chlorophyll a fluorescence.Plant Physiol,1995,22:131-160.
    Greogory R P G,Bradshaw A D.Heavy metal tolerance in population of Agrostis tenuis Sibth and other grasses.New phytol,1964,64:131-143.
    Herren T,Feller U.Influence of increased zinc levels on phloem transport in wheat shoots.Plant Physiol,1997,150:228-231.
    Keiller D R,Slocombe S P,Cockburn W.Analysis of chlorophyll a fluorescence in C3and CAM forms of Mesembryanthemum crystallinmum.J Exp Bot,1994,45:325-334.
    Kitajima M,Butler W L.Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromathymoquinone.Biochim Biophys Acta,1975,376(1):105-115.
    Larcher W.Physiological plant ecology:ecophysiology and stress physiology of functional groups,3~(rd)ed.Berlin,Heideberg,New York:Spring-Verlag,1995,175-230.
    Long S P,Baker N K.Saline terrestrial environment in photosynthesis in contrasting environment.Elsevier Science Publishers B V(Biomedial division),1986:63-102.
    Long S P,Baker N R,Rains C A.Analyzing the responses of photosynthetic CO_2assimilation to long-term elevation of atmospheric CO_2 concentration.Vegetation,1993,104:33-45.
    Matos A T,Uhlig C,Hansen E,Magel E.Eeophysiological responses of Empetrum nigrum to heavy metal pollution.Environ Pollut,2001,112:121-129.
    Mc Naughton S J,Folson T C.Heavy metal tolerant in Typha latifolia without the evolution of tolerant races.Ecology,1974,55:1163-1165.
    McLaughiin,et al.Speciation of cadmium in soil solution of saline/sodic solis and re lationship with cadmium concentration in potato tubers(solanum tuberosum L.),Aust Soil Res,1997,35:183-198.
    MeLaughlin,et al.Increased soil salinity causes elevated cadmium concentration in field-grown potat tubers.Environ.Qual,1994,23:1013-1018.
    Monnet F,Vaillant N,Vemay P,et al.Relationship between PSII activity,CO_2 fixation,and Zn,Mn and Mg contents of Lolium perenne under zinc stress.J Plant Physiol,2001,158:1137-1144.
    Narong C C,Vetivefia A.Quaterly newsletter of the Pacific rim.Vetiver Network,1997,1:2-3.
    Nishizono H,Ichikawa H,Suziki S,et al.The role of root cell wall in the heavy metal tolerance of Athyrium yokoscenae.Plant Soil,1987,101:15-20.
    OECD(Organization for Economic Cooperation and Development).OECD guidelines for testing of chemicals.Pads.France:European committee,1984:208-209.
    Plesnicar M,Kastori R,Sakac Z,et al.Boron as limiting factor in photosynthesis and growth of sunflower plants in relation to phosphate supply.Agrochimical,1997,41(3-4):144-154.
    Rieman D S,Jones G B.Distribution of zinc in subterranean clover(Trifolium subterraneurn L.)grown to maturity in a culture solution containing zinc labeled with the radioactive isotope Zn-65.Aust Agric Res,1958,9:730-744.
    Roy J,Saugier B,Mooney H A.Terrestrial global productivity.San Diego,California:Academic Press,2001.
    Schindler C,Reith P,Lichtenthaler H K.Differential levels of carotenoids and decrease of zeaxanthin cycle performance during leaf development in a green and in shade aurea variety of tobacco.J Plant Physiol,1994,143(5):500-507.
    Schrebier U,Hormann H,Neubauer C,et al.Assessment of photosystem Ⅱphotochemical quantum yield by chlorophyll fluorescence quenching analysis.Aust J Plant Physiol,1995,22(2):209-220.
    Sotomayor A M,Weiss A,Paparozzi E T,et al.Stability of leaf anatomy and light response curves of field grown maize as a function of age and nitrogen status.J Plant Physiol,2002,159:819-826.
    Srivastava A K.Relationship between chloride accumulation in leaf and cation -exchange capacity of root species.Indian J Agr Sci,1998,68(1):39-41.
    Stobart A K,Griffiths W T,Ameen-Bukhari I,et al.The effect of Cd~(2+)on the biosynthesis chlorophyll in leaves of barley.Plant Physiol,1985,63:293-298.
    Stoltz E,Greger M.Accumulation properties of As,Cd,Cu,Pb and Zn By four wetland plant species growing on submerged mine tailings.Environ Exp Bot,2002,47:271-280.
    Sugar D,Righetti T L,Sanchez E E,et al.Management of nitrogen and calcium in pear trees for enhancement of fruit resistance to postharvest decay.Hort Technology,1992,2(3):382-387.
    Willekens H,Camp W V,Monmtagu M V,et al.Ozone,sulfur dioxide and ultraviolet-B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L..Plant Physiol,1994,106:1007-1014.
    Woolhouse H W.Longevity and senescence in plants.Sci Prog,1974,61:123-147.
    Zhao Z Q,Zhu Y G,Li H Y,et al.Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat(Triticumaestivum L.).Environ Int,2003,29:973-978.
    陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社,1996.
    陈玲,田霄鸿,李峰等.碳酸钙和锌对五种基因型小麦生长、锌吸收及营养液中HCO_3~-含量和pH的影响.植物营养与肥料学报,2006,12(4):523-529.
    崔岩山.硫杆和元素硫在治理重金属污染中的应用研究进展.土壤通报,2007,38(2):404-408.
    董树亭,胡昌浩,高荣岐等.夏玉米高产群体呼吸速率与光合特性关系的研究.玉米科学,1994,2(3):63-67.
    冯致,郁继华,领建明.锌对青花菜幼苗生长的影响.甘肃农业大学学报,2005.40(4):471-474.
    关义新,林葆,凌碧莹.光氮互作对玉米叶片光合色素及其荧光特性与能力转换的影响.植物营养与肥料学报,2000,6(2):152-158.
    郭书奎,赵可夫.NaCl胁迫抑制玉米幼苗光合作用的可能机理.植物生理学报,2001,27(6):461-466.
    韩志国,雷腊梅,韩博平.利用调制荧光仪在线监测叶绿素荧光.生态科学,2005,23(3):246-249.
    何维明,马风云.水分梯度对沙地柏幼苗荧光特征和气体交换的影响.植物生态学报,2000,24:630-634.
    何忠俊,洪常青,梁社往.氮锌复合作用对黑麦草生长和生理生化特性影响的研究.土壤通报,2005,36(5):726-730.
    何忠俊,华珞,梁社往等.氮锌符合作用对白三叶草生长、氮锌吸收和生理生化特性的影响.土壤通报,2006,37(2):318-322.
    何忠俊,华珞.氮锌交互作用对白三叶草叶片活性氧代谢和叶绿体超微结构的影响.农业环境科学学报,2005,24(6):1048-1053.
    胡思龙主编.硫、镁和微量元素在作物营养平衡中的作用国际学术讨论会论文集.成都科技大学出版社,1993.
    华珞,白铃玉,韦东普等.镉锌复合污染对小麦籽粒锅累积的影响和有机肥调控作用.农业环境保护,2002,21(5):393-398.
    华珞,陈承慈,刘全义.土壤污染的治理方法研究.农业工程学报,1992,8(增刊):90-99.
    黄艺,陶澍等.污染条件下VAMt米元素积累和分布与根际重金属形态变化的关系.应用生态学报,2002,13(7):859-862.
    计汪栋,施国新,杨海燕等.铜胁迫对竹叶眼子菜叶片生理指标和超微结构的影响.应用生态学报,2007,18(12):2727-2732.
    蹇洪英,邹寿青.地毯草的光合特性研究.广西植物,2003,23(2):181-184.
    蒋高明,何维明.一种在野外自然光照条件下快速测定光合作用.光响应曲线的新方法.植物学通报,1999,16(6):712-718.
    蒋高明.当前植物生理生态学研究的几个热点问题.植物生态学报,2001,2(5):514-519.
    蒋高明.植物生理生态学的学科起源与发展史.植物生态学报,2004,28(2):278-284.
    蒋玉根.农艺措施对降低污染土壤重金属活性的影响.土壤,2002,3:145-148.
    孔令韶.青海锡矿山矿区铅锌的植物地球化学特征及其与矿的关系.植物生态学与地植物学报,1988,12(1):40-50.
    孔向瑞,曲东,周莉娜.硫营养对重金属胁迫下玉米和小麦根系导水率的影响.西北植物学报,2007,27(11):2257-2262.
    李伶俐,马宗斌,王文亮等.苗期喷施氮、锌肥对麦套夏棉某些生理特性及产量的影响.河南农业大学学报,2004,38(1):33-35.
    李铮铮,伍钧,唐亚等.铅、锌及其交互作用对鱼腥草(Houttuynia cordata)叶绿素含量及抗氧化酶系统的影响.生态学报,2007,27(12):5443-5446.
    李志刚,叶正钱,方云英等.供锌水平对水稻生长和锌积累和分配的影响.中国水稻科学,2003,17(1):61-66.
    刘秀梅,聂俊华,王庆仁.6种植物对Pb的吸收与耐性研究.植物生态学报,2002,26(5):533-537.
    鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
    陆景陵.植物营养学.北京:北京出版社.1994.
    陆佩玲,罗毅,刘建栋等.华北地区冬小麦光合作用光响应曲线的特征参数.应用气象学报,2000,11(2):236-241.
    陆佩玲,于强,罗毅等.冬小麦光合作用的光响应曲线的拟合.中国农业气息,2001,22(2):12-14.
    马新明,王志强,王小纯等.氮素形态对不同专用型小麦根系及氮素利用率影响的研究.应用生态学报,2004,15(4):655-658.
    蒙格尔K等著,张宜春等译.植物营养原理.北京:农业出版社,1987.
    任继凯,陈清朗,陈灵芝.土壤镉污染与作物.植物生态学与地植物学丛刊,1982,6(2):131-134.
    施木田,陈如凯.锌硼营养对苦瓜叶片碳氮代谢的影响.植物营养与肥料学报,2004,10(2):198-201.
    时忠杰,胡哲森,李荣生.铅、锌胁迫对蕹菜光合色素及活性氧代谢的影响.江西农业大学学报(自然科学版),2002,24(2):208-212.
    隋方功,王运华,长友诚等.施肥对大棚甜椒品质的影响.应用生态学报,2002,13(1):63-66.
    孙巧玲.不同盐分在不同浓度条件下对玉米幼苗基础生理效应的研究.山东师大学报(自然科学版),2000,15(1):77-82.
    汤华,严件兵,黄益勤等.玉米5个农艺性状的QTL定位.遗传学报,2005,32(2):203-209.
    田胜尼,刘登义,彭少麟等.香根草和鹅关草对Cu、Pb、Zn及符合重金属的耐性研究.生物学杂志,2004,21(3):15-19.
    佟屏亚.玉米高产是一个永恒的课题.玉米科学,2003,11(3):102.
    汪洪,金继运,周卫.不同水分状况下施锌对玉米生长和锌吸收的影响.植物营养与肥料学报,2003,9(1):91-97.
    汪洪,金继运,周卫.不同水分状况下施锌对玉米水分代谢的影响.植物营养与肥料学报,2004,10(4):367-373.
    王爱军,刘东臣,张风华.土壤环境中的锌对春小麦的影响.农业环境科学学报,1988,7(3):13-15.
    王宝山.植物生理学.北京:科学出版社,2003.
    王强,温晓刚,张其德。光合作用光抑制的研究进展.植物学通报,2003,20(5):539-548.
    王庆成,刘开昌,张秀清等.玉米的群体光合作用.玉米科学,2001,9(4):58-62.
    王庆成,王忠效,牛玉贞等.不同株型高产玉米蒸腾作用的研究.玉米科学,1994,2(2):60-62.
    王仁卿,周光裕.山东植被.济南:山东科学技术出版社,2000.
    王山杉,刘永定,金传荫等.Zn~(2+)浓度对固氮鱼腥藻光能转化特性的影响.湖泊科学,2002,14(4):351-356.
    王遵亲,祝寿泉,俞仁培.中国盐渍土.北京:科学出版社,1993.
    项长兴,陈章龙.南京栖霞山铅锌矿区土壤环境质量评价.土壤,1993,25(6):319-323.
    徐胜光,周建民,刘艳丽等.硝态氮对小白菜污染毒性的调控作用.生态学杂志,2007,26(12):2051-2056.
    徐卫红,熊治庭,王宏信等.锌胁迫对重金属富集植物黑麦草养分吸收和锌积累的影响.水土保持学报,2005,4(8):32-35.
    薛菘,汪沛洪,许大全等.水分胁迫对冬小麦CO_2同化作用的影响.植物生理学报,1992,18(1):1-7.
    严小龙,张福琐.植物营养遗传学.北京:农业出版社,1997.
    杨居荣,鲍子平,张素芹.Cd、Pb在植物细胞内的分布及其可溶性.中国环境科学,1993,13(4):263-268.
    杨亚提,张平.离子强度对恒电荷土壤胶体吸附Cu~(2+)和Pb~(2+)的影响.环境化学,2001,20(6):566-571.
    杨亚提,张一平.陪伴离子对土壤胶体吸附Cu~(2+)和Pb~(2+)的影晌.土壤通报,2003,40(2):208-223.
    姚冬而.水稻田的锌毒害及其防治措施.浙江农业科学,1997,3:127-128.
    于强,王天铎,刘建栋.玉米株型与冠层光合作用的数学模拟研究Ⅰ.模型与验证.作物学报,1998,24(1):7-15.
    余文书,汤章城.植物生理与分子生物学.北京:科学出版社,2000:269.
    原海燕,黄苏珍,郭智等.锌对镉胁迫下马蔺生长、镉积累及生理抗性的影响.应用生态学报,2007,19(9):2111-2116.
    张磊,宋凤斌,崔良.不同陪伴阴离子条件下Zn对玉米吸收积累Cd的影响.农业环境科学学报,2006,25(4):852-856.
    张其德,张世平,张启峰.2,3-环氧丙酸对水稻光合功能的改善.植物学报,1988,30(1):54-61.
    张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444-448.
    张治安,张美善,蔚荣海.植物生理学实验指导.北京:中国农业科学技术出版社,2004.
    赵明,王美云,李少昆等.玉米不同基因型气孔阻力的变化及其与光合、蒸腾作.用的关系.华北农学报,1997,12(4):69-73.
    郑盛华,严昌荣.水分胁迫对玉米苗期生理和形态特性的影响.生态学报,2006,26(4):1138-1143.
    朱新广,王强,张其德等.冬小麦光合功能对盐胁迫的响应.植物营养与肥料科学.2002,(2):177-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700