重金属Pb、Cu单一及复合污染对玉米蛋白质与有机酸含量的影响及其富集特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜、铅是一类重要的金属污染物,对作物生长发育、生理代谢过程有重要影响。本文以玉米为实验材料,采用室内土壤培养法,研究了不同浓度(10 mg·L-1、50 mg·L-1、100 mg·L-1)重金属Cu2+、Pb2+对玉米幼苗体内草酸与蛋白含量、酶活性及重金属富集特性等方面的影响,主要研究结果如下:
     1、研究了不同浓度Cu2+、Pb2+单一及其复合污染在玉米幼苗体内各器官中富集与迁移的动态变化规律。结果表明,在单一污染条件下,Cu2+、Pb2+在玉米体内的积累量与重金属处理浓度和时间呈正相关,分布顺序为:根>茎>叶,积累量为Pb2+>Cu2+,根茎间迁移率随着处理浓度增高逐渐减小,茎叶间迁移率变化规律为先减小后增大。Cu2+、Pb2+复合污染后,随着处理浓度和时间的增加,Cu2+、Pb2+在玉米体内的积累量逐渐增大,其含量均大于单一处理,Cu2+、Pb2+在玉米各器官中的分布规律为:根>茎>叶,积累能力为:Pb2+>Cu2+。根茎间Cu2+、Pb2+的迁移率表现为处理10d-20d时随浓度增高逐渐上升,30d时逐渐下降,而茎叶间的迁移率则表现为随处理浓度的增加先升高后降低。复合处理对Cu2+、Pb2+在玉米体内的富集具有协同效应。
     2.研究了不同浓度的Cu2+、Pb2+单一及其复合污染对玉米体内草酸含量的影响,结果表明:与对照组相比,Cu2+、Pb2+单一处理后随着重金属处理浓度和处理时间的增大,草酸的含量逐渐增加,其中,100mg·L-1 Cu2+、Pb2+处理30d时玉米幼苗体内草酸含量达到最大值,分别比对照增加了83%和93%,差异显著(P<0.05)。两种重金属相比,Pb2+处理后玉米体内草酸分泌量普遍大于Cu2+处理组,在相同浓度及处理时间条件下,100 mg·L-1、Pb2+处理10d时草酸的含量为Cu2+处理的184%。Cu2++Pb2+复合处理后玉米体内草酸含量均高于单一处理,Cu2++Pb2+复合处理对草酸的分泌具有较强的刺激作用。
     3.研究了不同浓度的Cu2+、Pb2+单一及其复合污染对玉米体内可溶性蛋白含量的影响,结果表明:与对照相比,Cu2+、Pb2+单一污染后玉米根部和茎叶部可溶性蛋白的含量随重金属浓度的增大表现出先升后降和逐渐下降两种趋势。如玉米根部可溶性蛋白含量在低浓度(1-10mg·L-1)Cu2+、Pb2+处理至10d条件下均高于对照,其后随重金属浓度的增加逐渐降低。而玉米茎叶部可溶性蛋白含量除1 mg·L-1、10d Cu2+处理组外,其余均表现为随浓度及处理时间的增加而减小。与单一污染相比,Cu2++Pb2+复合污染后玉米体内可溶性蛋白含量与重金属处理浓度及时间呈负相关。在100+100mg·L-1处理至30d时,玉米根部可溶性蛋白含量比Cu2+、Pb2+单一污染时减少了15.41 mg·g-1及20.89 mg·g-1。表明Cu2++Pb2+复合污染对玉米体内可溶性蛋白合成的抑制效应大于单一处理。
     4.研究了不同浓度的Cu2+、Pb2+单一及其复合污染对玉米体内ATP酶及肽酶活性的影响,结果表明:单一污染条件下,Cu2+对玉米体内ATP酶活性的影响表现为低浓度下的促进和高浓度下的抑制作用,例如,根部及茎叶部的ATP酶活性分别在1mg·L-1、30d以及10 mg·L-1、20d处理条件下达到最大值。而Pb2+处理组在所有浓度范围内对玉米体内ATP酶活性的影响均表现出抑制作用。Cu2++Pb2+复合污染后,玉米体内ATP酶活性仍随重金属处理浓度的增加而减小,与单一处理时相比,茎叶部ATP酶活性均有明显降低(P<0.05)。单一污染条件下,玉米体内肽酶活性随Cu2+、Pb2+浓度的增加及时间的延长表现出两种不同的变化趋势。其中,单一Cu2+污染下玉米根部肽酶活性随Cu2+处理浓度的增加而减小,而玉米茎叶部肽酶活性则表现出先增大后减小的趋势。单一Pb2+处理条件下玉米体内肽酶活性随着Pb2+浓度的增大逐渐降低。Cu2++Pb2+复合污染后,随重金属浓度的增大,玉米体内肽酶活性逐渐降低,具体表现为,在低浓度时(1 mg·L-1时),茎叶部肽酶活性随处理时间的延长而增大,30d时可达最大的11.99 mmol·(g·h)-1,随着重金属浓度的增加,肽酶活性随随处理时间的延长而减小。与单一污染相比,复合污染时玉米茎叶部肽酶活性均有所减小,Cu2+、Pb2+复合污染对玉米茎叶部肽酶活性的影响具有更为明显的抑制作用(P<0.05)。
The elements Cu and Pb are two important heavy metal pollutants which have great toxicity effect on the growth,development and metabolism of crops.Zea mays is selected In this paper as the material in the experiment. Indoor earth-foster method is applied to study the effects of accumulation and distribution,oxalic acid and total soluble protein contents,ATPase and peptidase activities in Z mays under single or combined pollution of Cu2+ and Pb2+ with different concentrations(10 mg·L-1,50mg·L-1,100mg·L-1). The results are as follows:
     The dynamic changing rule of Cu2+,Pb2+ with different concentrations on accumulating and distributing in Z mays seedling. The results shows that under single or combined pollution of Cu2+ and Pb2+, the content of heavy metals in Z.mays seedlings enhances with the increasing of treatment concentration and treatment duration, and the accumulation amount in roots of Z.mays seedlings is the largest at 30d with 100 mg·L-1 of heavy metals.The content of Cu2+ or Pb2+ in different organs of Z. mays seedlings is characterized by roots> stems>leaves, and the accumulation amount in each organ is Pb2+>Cu2+.The accumulation amount of Cu2+, Pb2+ in Z. mays Seedlings under combined pollution was much more than that under single pollution, and it indicated that compared with the single pollution, the combined pollution by Cu2+ and Pb2+ displays some kind of synergistic effect. Meanwhile, the mobility of Cu2+,Pb2+ is basically dependent on Cu2+, Pb2+ concentration and treatment duration. The mobility between roots and stems under Cu2+ or Pb2+single pollution increased with heavy metal concentration, but the mobility between stems and leaves firstly declined, and then increased with increasing of Cu2+ or Pb2+ concentration.The mobility between stems and leaves under combined pollution was larger than that under single pollution.
     Effects on the contents of oxalic acid under single or combined pollution of Cu2+ and Pb2+ with different concentrations in Z. mays seedling are studied.The result indicated that the contents of oxalic acid enhances with the increasing of treatment concentration and treatment under single pollution of Cu2+,Pb2,and the oxalic acid amount in Z. mays seedlings is the largest at the duration of 30d.the oxalic acid amount under single Pb2+pollution is larger than that under single Cu2+ pollution.compared with Cu2+,Pb2 single pollution, the combined pollution by Cu2+ and Pb2+displays some kind of stimulation effect.
     Effects of Cu2+,Pb2+ on soluble protein with different concentrations in Z. mays seedling are researched. The result explained that the soluble protein in Z. mays seedling under Cu2+ single pollution firstly declined, and then increased with increasing of copper concentration.The amount of soluble protein under Pb2+ single pollution increases with the enhancing of treatment concentration except the condition of Pb2+ single pollution at 10d in root of Z. mays.soluble protein amount extremly reduces under combined pollution by Cu2+ and Pb2+.
     The influence upon the activities of ATPase and peptidase with Cu2+, Pb2+ stress in Z. mays seedling are studied.the result showed that the activities of ATPase firstly increased, and then declined with increasing of copper concentration with Cu2+ single pollution. Under Pb2+ single pollution,the activities of ATPase declined with enhancing of lead concentration.On the condition of Cu2+ and Pb2+ combined pollution, the activities of ATPase also reduced,and the tendency of reduction was faster than that under Cu2+,Pb2+ single pollution.The change rules of the activities of peptidase are different between roots and leaves in Z.mays under Cu2+ single pollution,which declined in roots and firstly increased, and then reduced in leaves.With Cu2+ and Pb2+ combined pollution, the activities of peptidase declined,especialy in leaves, the tendency of reduction of peptidase is extremely faster than that of Cu2+,Pb2+ single pollution.compared with the single pollution, the combined pollution by Cu2+ and Pb2+ displays some stronger Inhibitory action.
引文
[1]王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报,25(3):596-602.
    [2]周以富,董亚英.几种重金属土壤污染及其防治的研究进展[J].环境科学动态,2003,1(1):15-18.
    [3]金艳,何德文,柴立元.重金属污染评价研究进展[J].有色金属,2007,59(2):100-104.
    [4]史贵涛,陈振楼,李海雯等.城市土壤重金属污染研究现状与趋势[J].环境监测管理与技术,2006,18(2):9-15.
    [5]马旺海,曹斌,杨进峰等.城市重金属污染特征[J].中央民族大学学报(自然科学版),2008,17(1):67-72.
    [6]潘如圭,宋佩扬.汽车尾气中铅对蔬菜污染的研究[J].江苏环境科技,199811(3):9-11.
    [7]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996.
    [8]孔令超.植物对金属元素的吸收积累及忍耐、变异[J].环境科学,1983,4(1):65-68.
    [9]中国地理学会自然地理专业委员会.生物地球化学与植物—土壤元素交换[M].北京:科学出版社,1965.
    [10]侯学煜.中国150种植物的化学成分及其分析方法[M].北京:高等教育出版社,1959.
    [11]吴燕玉,王新,梁仁禄等Cd,Pb,Cu,Zn,As复合污染在农田生态系统的迁移动态研究[J].环境科学学报,1998,18(4):407-414.
    [12]廖自基编著.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社,1992,377-378.
    [13]王新,吴燕玉.不同作物对重金属复合污染物吸收特性的研究[J].农业环境保护,1998,17(5):193-196.
    [14]李海华,刘建武,李树人等.土壤—植物系统中重金属污染及作物富集研究进展[J].河南农业大学学报,2000,34(1):30-34.
    [15]赵振纪,黄细花,刘永厚,等.铜对土壤—植物系统的影响及其临界值指标的研究 [J].环境与开发,1993,8(1):4-9.
    [16]陈燕,刘晚苟,郑小林等.玉米植株对重金属的富集与分布[J].玉米科学2006,14(6):93-95.
    [17]康立娟,赵明宪,赵成爱.铜对水稻的影响及迁移积累规律的研究[J].广东微量元素科学,1999,6(4):43-44.
    [18]Penelope A R, Hileni C H.Identification of differential responses of cabbage cultivars to copper toxicity in solution culture[J].Amer Soc Hort,1987,12(6):928-931.
    [19]涂丛,青长乐.紫色土壤中铜对莴苣生长的影响及其临界值指标的研究[J].农业环境保护,1986,9(4):13-17.
    [20]于海彬,蔡葆,松丽英.甜菜对铜和锰营养的吸收及积累动态的初步分析[J].环境与开发,1993,8(1):4-9.
    [21]匡少平.玉米对铅的吸收及阴离子影响效应[J].青岛化工学院学报,2003,23(3),222-224.
    [22]罗春玲,沈振国.植物对重金属的吸收和分布[J].植物学通报,2003.20(1):59-66.
    [23]孙贤斌,李玉成,王宁.铅在小麦和玉米中活性形态和分布的比较研究[J].农业环境科学学报,2005,24(4):666-669.
    [24]纪玉琨,李广贺.作物对重金属吸收能力的研究[J].农业环境科学学报2006,25(增刊):104-108.
    [25]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].2001,7(1):92-99.
    [26]王志香,周光益,吴仲民等.植物重金属毒害及其抗性机理研究进展[J].河南林业科技,27(2):26-28.
    [27]王玉凤.铅对玉米种子萌发的影响[J].安徽农业科学,2005,33(11):2110-2111.
    [28]郑春霞,王文全,骆建敏,等.重金属pb2+对玉米苗生长的影响[J].光谱学与光谱分析,2005,25(8):1361-1365
    [29]曹莹,黄瑞冬,曹志强.铅胁迫对玉米生理生化特性的影响[J].玉米科学,2005,33(11):2110-2111.
    [30]苗明升,朱圆圆,曹明霞,等.重金属铅对玉米萌发和早期生长发育的影响[J]山东师范大学学报(自然科学版),2003,18(1):82-84.
    [31]胡筑兵,陈亚华,王桂萍,等.铜胁迫对玉米幼苗生长、叶绿素荧光参数和抗氧化性 酶活性的影响[J].植物学通报,2006,23(2):129-137.
    [32]齐雪梅,李培军,刘宛.Cu胁迫对大麦和玉米幼苗生长及DNA损伤的影响[J].毒理学杂志,2005,19(3):305-306.
    [33]陈满怀,土壤—植物系统中的重金属污染[M].北京:中国科学技术出版社,1996.
    [34]王友保,刘登义.Cu、As及其复合污染对小麦生理生态指标的影响[J].应用生态学报,2001,12(5):773-776.
    [35]刘登义,谢延春,杨世勇,等.铜尾矿对小麦生长发育和生理功能的影响[J].应用生态学报,2001,12(5):126-128.
    [36]刘春生,史延玺,马丽.过量Cu对苹果树及代谢的影响[J].植物营养与肥料学报,2000,6(4):451-456.
    [37]宋玉芳,许华夏,任丽萍等.重金属对土壤中萝卜种子发芽与根生长抑制的生态毒性[J].生态学杂志,2001,20(3):4-8.
    [38]王焕校,污染生态学[M].北京:高等教育出版社,1999,44-68
    [39]张义贤.三价和六价对大麦毒害效应的比较[J].中国环境科学,1997,17(6):565-568.
    [40]张义贤.重金属对大麦(Hordeumvulgare)毒性的研究[J].环境科学学报,1997,17(2):199-203.
    [41]陈桂珠.重金属对黄瓜幼苗影响的研究[J].植物学通报,1990,7(1);240-243.
    [42]李元,王焕校,吴玉树.Cd、Fe及其复合污染对烟草叶片几项生理指标的影响[J].生态学报,1992,12(2):147-153
    [43]金进,叶亚新,李丹,韩乐.重金属铜对玉米的影响[J].玉米科学,2006,14(3),83-86.
    [44]Ouzonidou G M,ousbakas M,karataglis S.Responses of maize(zea mays.L.) plants to copper stress:growth.mineral content and ultrastructure of roots[J]. Environ Experi Bot,1995,35(2):167-176.
    [45]毛学文,王戈博.2001.氯化铅对豌豆根尖细胞微核和异常分裂的作用[J].植物生理学通讯,37(5):406-408.
    [46]李荣春.2000.Pb2Cd及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响[J].植物生态学报,22(4):238-242.
    [47]黄玉山,邱国华.紫茅抗铜和敏感品种在发育早期对铜离子反应的理差异[J].应用与环境生物学报,1998,4(2):126-131.
    [48]Gupta A,Singhal C.Inhibition of PSIIactivity by copper and its effect on spectral properties on intact cells in Anacystisnidulans[J].EnvironExperBotany,1995,35:435-439.
    [49]彭鸣,王焕校,吴玉树.镉、铅诱导的玉米(Zea mays L.)幼苗细胞超微结构的变化[J].中国环境科学,1991,11(6):426-431.
    [50]李博文,郝晋珉.土壤镉、铅、锌污染的植物效应研究进展[J].河北农业大学学报,2002,25(增刊):74-80。
    [51]周青,黄晓华,施国新,等.锡对5种常绿树木若干生理生化特性的影响[J].环境科学研究,2001,14(3):9-11.
    [52]常红岩,孙百晔,刘春生.植物铜素毒害研究进展[J].山东农业大学学报,2000,31(2):227-230.
    [53]Kahle H. Response of roots of trees to heavy metals[J].Environ Experi Botany, 1993,33:99-119.
    [54]Fernando.Role of rice shoot vacuoles in copper toxicity regulation[J].Environ Experi Botany,1998,39(3):197-201.
    [55]聂湘平,蓝崇钰,张志权,等.铜对大叶相思-根瘤共生固氮体系的影响[J].应用生态学报,2002,13(2):137-140.
    [56]张红利,李雪梅,陈强,等.铅对不同玉米幼苗抗氧化活性及根系活力的影响[J].吉林农业大学学报,2006,28(2):119-122.
    [57]王玉凤.铅对玉米种子萌发的影响[J].安徽农业科学,2005,33(11):2110-2111.
    [58]刘洋,曹莹,王绍斌等.Pb、Cd胁迫下作物耐性的研究进展[J].安徽农业科学,2007,35(17):5082-5084,
    [59]鲁伟,王艳红,赵畅等.重金属对基因表达的影响[J].生物学通报,2003,28(9):18-20。
    [60]Doncheva S,Nikolov B,Ogheva V.Effect of Copper Excess on the Morphology the Nucleus in Maize Root Meristem Cells[J].Plant Physiology,1996,96:118-112.
    [61]张义贤,李向科.Cr6+污染致大麦幼苗基因组DNA损伤效应的研究[J].农业环境科学学报,2008,27(2):430-434.
    [62]孟玲,王焕校,谭得勇.重金属铅、镉、锌对小麦DNA构象的影响[J].云南环境科学,1998,17(4):9-10.
    [63]葛才林,杨小勇,孙锦荷,等.重金属胁迫引起的水稻和小麦幼苗DNA损伤[J].植物生理与分子生物学学报,2002,28(6):419-424.
    [64]张国军.Cu对柑桔(Citrus L.)的毒害研究[D].福州:福建农林大学硕士学位论文,2005.33-34.
    [65]刘素纯,萧浪涛,廖柏寒等.铅胁迫对黄瓜幼苗叶片蛋白质的影响[J].湖南农业大学学报(自然科学版),2006,32(2):141-143.
    [66]王学东,周鸿菊,华洛.植物对重金属的抗性机理及植物修复研究进展[J].南水北调与水利科技,2006,4(2):43-46.
    [67]缪绅裕,陈桂株.模拟秋茄湿地系统中Pb的分配与迁移[J].中国环境科学,1998,18(1):48-51
    [68]严小龙,张福锁.植物营养遗传学[M].北京:中国农业出版社,1997.
    [69]杨红玉,王焕校.绿藻的Cd结合蛋白及其耐性机制初探[J].植物生理学报,1985,11(4):357-365.
    [70]Grill E.Phytochelatins,a class of heavy-metal bindingpeptides of from plants are functionarly analogous to metallothioneins[J].Proc.Natl.Acad.Sci.USA.198(4): 439-443.
    [71]Steffens J C.The heavy metal-binding peptides of plants[J].Annual Review of Plant Physiology and Plant Molecular Biology,1990,41,533-575.
    [72]曾晓敏,施新国,徐勤松,等.Hg, Cu胁迫下茶菱保护酶系统的防御作用[J].应用与环境生物学报,2002,8(3):250-254.
    [73]王新,梁仁禄,周启星.Cd-Pb复合污染在土壤-水稻系统中生态效应的研究[J].农村生态环境.2001,17:41-441
    [74]Nishizono H.The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense[J].Plant and Soil,1987,101:15-20.
    [75]秦天才,吴玉树,王焕校等.镉、铅及其相互作用对小白菜根系生理生态效应的研 究[J].生态学报.1998,18:320-325.
    [76]叶海波.东南景天(Sedum alfredii Hance)对锌、镉、铅复合污染的响应与金属积累特性[D].浙江大学硕士论文,2003.
    [77]Sharma S S,Schat H, Voous R. Combination toxicology of copper, Zinc, and cadmium in binarymixtures concentrationdependent antagonistic, non-additive, and synergistic effects on root growth in Silene vulgaris[J].Environ ToxicolChem.1999, 18:348-3551.
    [78]任安芝,高玉葆.铅,镉,单一和复合污染对青菜种子萌发的生物学效应[J].生态学杂志.2000,19:19-22.
    [79]Posthuma L, Baerselman R, Veen R P. Single and joint toxic effects sorp tion ofmetals in soils[J].Ecotoxicol Environ Safe.1997,38:108-1211.
    [80]Chang C C, Huang P C.Semi-empirical simulation of Zn/Cd binding site reference in metal binding domains of mammalian metallothionein[J].Protein Engineering. 1996,9:1165-1172.
    [81]Maitani T. The composition of metals bound to Class Ⅲ metallothionein (phytochelation and itsdesglycyl pep tide) induced by variousmetals in root cultures of Rubia tinctorum[J].Plant Physiol,1996:110:1145-1150.
    [82]Makowski G S,L in S-M, Bernnan SM etal.Detection of two Zn-finger proteins of Xenopus laevis, TFIIIA and p43,by probingWestern blots of ovary cytosolwith Zn, Ni, or Cd[J].Biol Trance Elem Res.1991,29:93-109.
    [83]Sundermann FW, Barg J M. Finger-loops, on congenes and metals[J].Ann Clin Lab Sci.1988,18:267-288.
    [84]Zawia N H, Harry G J. Developmental exposure to Pb(Ⅱ) interfereswith glial and neuronal differential gene expressionin the rat cerebellum[J]. ToxicolAppl Pharmacol.1996,138:43-47.
    [85]L i T Q, Yang X E, Jin X F etal.Root responses and metal accumulation in two contrasting ecotypes of Sedum alfrediiHance under lead and zinc toxic stress[J].J Environ Sci Health,2005,40:1081-96.
    [86]周启星,高振民.作物籽实中Cd与Zn的交互作用及其机理的研究[J].农业环境保 护,1994,13:148-151.
    [87]Jiang L Y, Yang X E,He Z L.Growth response and phytoextratction of copper at different levels in soils by Elsholtziasplendens[J].Chemophere,2004,55:1179-1187.
    [88]周启星,孔繁翔,朱琳.生态毒理学[M].北京,科学出版社,2004,316-322.
    [89]林凡华,陈海博,白军.土壤环境中重金属污染危害的研究[J].环境科学与管理,2007,32(7):74-76.
    [90]苗明升,朱圆圆,曹明霞等.重金属铅对玉米萌发和早期生长发育的影响[J].山东师范大学学报,2003,18(1):82-84.
    [91]张义贤,张丽萍.重金属对大麦幼苗膜脂过氧化及脯氨酸和可溶性糖含量的影响[J].农业环境科学学报,2006,25(4):857-860.
    [92]张义贤,李晓科.镉、铅及其复合污染对大麦幼苗部分生理指标的影响[J].植物研究,2008,28(1):43-46.
    [93]De Vos C H R, SchatH,VooijsR,etal.Copper-induceddamagetopermeabilitybarrier in roots of silene cucubabus [J].Plant Physiol,1989,135:164-169.
    [94]Scandalios S G. Oxygen stress and superoxide dismattoses[J].Plant Physiol,1993, 101:7-13.
    [95]李向科,张义贤.重金属Cd2+、pb2+、Cu2+在大麦幼苗体内积累和分布的研究[J].农业环境科学报,2007,26(增刊):484-488.
    [96]李静,依艳丽,李亮亮等.几种重金属(Cb、Pb、Cu、Zn)在玉米植株不同器官中的分布特征[J].植物生理科学,2006,22(4):244-247.
    [97]代全林,袁剑刚,方炜.玉米各器官积累Pb能力的品种间差异[J].植物生态学报,2005,29(6):992-996.
    [98]王征帆。铜在玉米体内的累积规律研究[J].安徽农业科学,2008,36(14):6056-6057.
    [99]孟紫强主编.环境毒理学[M].北京:中国环境科学出版社,2000,119-121.
    [100]郭平,刘畅,张海博等.向日葵幼苗对Pb、Cu富集能力与耐受性研究[J]水土保持学报,2007,21(6):92-95.
    [101]田华,王兰,段美洋.植物草酸代谢及调控研究进展[J].现代农业科技,2009,8(1):212-215.
    [102]张宗申,利容千,王建波.草酸处理对热胁迫下辣椒叶片膜透性和钙分布的影响[J].植物生理学报,2001,27(2):109-113.
    [103]李宝盛,彭新湘,李明启.植物中草酸积累与光呼吸乙醇酸代谢的关系[J].植物生理学报,2000,26(2):148-152.
    [104]张伟丽,郭振飞,何华玄.水杨酸和草酸诱导柱花草对炭疽病的抗性[J].中国草地学报.2006,28(4):53-58.
    [105]王树起,韩晓增,严君等.低分子量有机酸对大豆磷积累和土壤无机磷形态转化的影响[J].生态学杂志,2009,28(8):1550-1554.
    [106]徐锐,彭新湘.草酸在提高大豆磷吸收利用及抗铝性中的作用[J].西北植物学报,2002,22(2):291-295.
    [107]孙瑞莲,周启星,王新.镉超积累植物龙葵叶片中镉的积累与有机酸含量的关系[J].环境科学,2006,27(4):765-780.
    [108]Tolra R P,Posehenrieder C,Barcelo J.Zinc hyperaecumulatlon in Thlaspi caerulescens II Influence on organic acids[J].Plant Nutr,1996,19:1541-1550.
    [109]李晓科.Cd、Pb及其复合污染对大麦(Hordeum vulgare)毒性效应的研究[D].山西大学:山西大学研究生院,2007:30-31.
    [110]潘瑞炽,懂愈得.植物生理学.第3版[M].北京.高等教育出版社,1995.35.
    [111]常红岩,孙百晔,刘春生.植物铜素毒害研究进展[J].山东农业大学学报,2000,31(2):227-230.
    [112]张红萍,铅对植物的毒害及植物对铅的抗性机制[J]。农业装备技术,2007,33(3):128-130.
    [113]齐雪梅,李培军,刘宛等。Cu对大麦和玉米的毒性效应[J]农业环境科学学报,2006,25(2):286-290.
    [114]侯文华,宋关铃,汪群慧等。3种重金属对青萍毒害的研究[J].环境科学研究,17(增刊):40-44.
    [115]汤章城.现代植物生理学实验指南[M].上海,科学出版社,149-151.
    [116]李向科.重金属污染在大麦体内积累、迁移及遗传毒性效应的研究[D].山西大学:山西大学研究生院,2008:21-22.
    [117]马新明,李春明,刘海涛,Cd Pb污染对烤烟ATP酶活性及烟叶品质的影响[J]. 农业环境科学学报:2006,26(2):708-712.
    [118]王志香,周光益,吴仲民等.植物重金属毒害及其抗性机理研究进展[J].河南林业科技,2007,27(2):26-30.
    [119]洪法水,王玲,吴康等.pb2+对胰蛋白酶活性影响的作用机理研究[J].无机化学学报,2003,19(2),129-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700