驯化大肠杆对镍离子的去除及三种细对染料脱色行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境中重金属离子的污染较为隐蔽,不能被降解;而印染废水由于可生化性差、成分复杂、色度大、COD高,是目前对人类威胁最大的两大污染物。传统物理化学治理方法费用高、能耗大、易造成二次污染。目前,利用死体的生物吸附已成功处理了多种金属,但对Ni~(2+)吸附率普遍较低,而活细能将吸附在表面的金属或染料运送至胞内或释放降解酶,对其进行蓄积转化和降解。
     论文以环境中常见细埃希氏大肠杆为对象,研究了培养基中Ni~(2+)浓度对大肠杆的生长周期及吸附行为的影响。在Ni~(2+)的培养基中对大肠杆进行三代驯化,通过分析驯化前后大肠杆的质粒DNA图谱,并采用红外光谱,透射电子显微镜、X射线光电子能谱、光学显微镜等仪器,对驯化过程中大肠杆的形貌及表面性质进行表征,探讨了驯化的初步机理。选择驯化效果较好的种,对镍离子模拟水样做去除实验,并将驯化前后大肠杆的吸附性能进行对比,实验证明吸附性能有所改善。此外,采用三种细对染料进行脱色,探讨用微生物对染料进行预处理的可行性。具体研究内容如下:
     (1)初始驯化镍离子浓度的选择
     大肠杆对镍离子的应急反应是生化反应过程,它与培养基中Ni~(2+)的浓度密切相关,研究了培养基中Ni~(2+)浓度对大肠杆生长及吸附行为的影响,在Ni~(2+)培养基中,Ni~(2+)对大肠杆的抑制作用随其浓度升高而增强。大肠杆对Ni~(2+)的吸附量随细数量增加而升高,在稳定生长期达到最大。用红外光谱对大肠杆的表面官能团进行分析,推测大肠杆对Ni~(2+)的吸附以-OH,-COOH等表面的官能团为主,可能与蛋白质也有关。XPS分析了细表面O、N、S、P等元素的变化,推测蛋白质等生物的大分子参与了Ni~(2+)的吸附过程。TEM观察到Ni~(2+)引起大肠杆的形貌变化,镍离子的毒性也使细胞壁脆性增加。当培养基中Ni~(2+)浓度为30 mg·L~(-1)时,大肠杆对Ni~(2+)离子的吸附率较高,因此,选该浓度下培养的大肠杆,作后续驯化的种。
     (2)大肠杆的应急驯化及其机理初探
     大肠杆经三代驯化,发现驯化后大肠杆在镍离子培养基中的适应力增强,生长速度与驯化前后Ni~(2+)浓度梯度有关,梯度越小,大肠杆的生长越快。驯化的吸附性能也增强,吸附行为与驯化的Ni~(2+)浓度有关,第一代驯化的大肠杆对Ni~(2+)的最大吸附量出现在稳定期(30mg·L~(-1)、100mg·L~(-1)),分别将其接入Ni~(2+)浓度为20mg·L~(-1)和150mg·L~(-1)的培养基中进行第二代驯化,在前一浓度中驯化的大肠杆(大肠杆ⅡC、D)对Ni~(2+)的吸附出现两个峰,分别在对数生长期和稳定生长期,而后者(大肠杆ⅡE、F)只在对数生长期出现一个峰。将两者分别接入300mg·L~(-1)的Ni~(2+)培养基中继续进行第三代驯化,从20mg·L~(-1)的Ni~(2+)培养基中转接的株(大肠杆ⅢG)也出现两个峰,而在150mg·L~(-1)转接的(大肠杆ⅢH)却只有一个峰。FTIR分析了吸附过程中表面官能团的作用,除-OH峰外,酰胺峰也发生了较大偏移,此外,多糖的C-O峰也有偏移,这些生物大分子都可与镍离子结合。用光学显微镜,TEM分别观察驯化细胞的形貌变化,随驯化的Ni~(2+)浓度升高,细胞胞膜局部裂解,同时发生聚集现象。碱法裂解大肠杆提取质粒DNA,电泳结果显示,大肠杆细胞有质粒,但驯化前后质粒无变化。
     (3)驯化大肠杆对镍离子的去除效果
     为评价驯化的吸附性能,采集天然水体,不加营养物质,经过滤灭后加镍离子制备模拟水样,选用吸附效果最好的大肠杆ⅢG(0-30-20~(-1)50 mg·L~(-1)),去除模拟水样中的Ni2(+<10 mg·L~(-1))。驯化对镍离子的耐性增加,它们在5 mg·L~(-1)和10 mg·L~(-1)的水样中的浊度(OD)值约为未驯化的3倍。在处理低浓度的Ni~(2+)水样时,驯化的去除率有较大提高,当水样中Ni~(2+)浓度为1 mg·L~(-1)时,驯化对镍离子的去除率是未驯化的3.16倍。红外图谱表明,更多的表面官能团参与了镍离子的去除过程。
     (4 )大肠杆、金黄色葡萄球及枯草芽孢杆对日落黄、亚甲基蓝的脱色作用研究
     以阴离子染料(日落黄)和阳离子染料(亚甲基蓝)为研究对象,探讨不同细对染料的脱色行为。该染料在pH2.0-9.0范围内吸光度变化小,稳定性较好。脱色实验表明,细对染料的脱色包括吸附和降解两个过程,细对染料的吸附在稳定期最强,但在降解过程中,降解酶需经合成、分泌及酶解,导致了细对染料的最高脱色率不在稳定期,而在衰亡期。不同的细对两种染料的脱色效果有较大差异。大肠杆对亚甲基蓝的脱色率最高达60%,金黄色葡萄球对日落黄的脱色率最高为56%。
Heavy-metal pollutants and dye wastewater have become the most serious problem through out the world.Metal ions are invisible and can’t be degraded, while dyes usually have complex aromatic molecular structure, which make the wastewater of high COD brilliance and intensity colors and low biodegradability. They are difficult to disposal by conventional physical or chemical treatment process mainly becauce of it’s expensiveness, energy-costly and secondary pollution. In recent years, numerous metal ions have been treated by non-living biomass very well, except nickel ion. Researchers have found that the metals biosorbed on the surface can be biotransformed after enter into the cell, and dyes will be biodegraded by the enzyme that excreted by living microoganism.
     Mechanism of Escherichia coli domestication was discussed in this paper. The bacteria was domesticated for three times in the medium by increasing the Ni~(2+) concentration gradullay. Morphological and surface characteristics of E.coli were anlysized by infra-red spectrum, X-ray electron spectra, transmission electron microscopy and light microscopy, meanwhile, plasmid was also anlysized in these processes. Domesticated bacteria that of higher Ni~(2+) accumulation capacity was used to deal with the simulation water, compared to common strain, the accumulation capability turn out to be better. At the same time, three kinds of bacteria were used to decolorize dyes, and to explore the feasibility of microoganism in dye wastewater pretreatment. In this paper we have done the works as follows:
     1. Selecting the initial concentration of nickel ions for domestication processes When incubated in the Ni~(2+) environment, The emergency response of E.coli was a biochemical process, which was closely related to the concentration of Ni~(2+). Therefore, the effect of concentration of Ni~(2+) on the behaviors of growth and accumulation were studied. The results showed that growth of E.coli was drastically inhibited by the increasing concentration of Ni~(2+). Accmulation capacity was enhanced with the biomass increasd, the maximal Ni~(2+) accumulation capacity occurred in the stationary phase. Results of FT-IR showed that, the Ni~(2+) accumulation mainly depend on the functional groups on the surface of biomass, sunch as–OH, -COOH, maybe protein was also involved in this process. From XPS spectra, we can draw a conclusion that the protein was certainly participated in Ni~(2+) accumulation. TEM observed that the biomorph of cells were changed and the cell wall became frangible after Ni~(2+) accumulation. The maximal accumulation rate of Ni~(2+) was obtained at the concentration of 30 mg l~(-1), it is selected as the strain for the later domestication process.
     2.The primary mechanism of emergency response in domestication process
     After domesticated for three times, E.coli can quickly acclimatize itself to Ni~(2+) medium, and the growth rate was controlled by the Ni~(2+) concentration, the propagated speed of the bacteria increased with the decreasing of the Ni~(2+) concentration gradients. The accumulation capability of domesticated bacteria, which related to the concentration of Ni~(2+) was also advanced. The time for maximal capacity of E.coliⅠwas at the stionary phase. There are two kinds of E.coliⅡ, one was incubated at the concentration of 20 mg·L~(-1), while another at 150mg·L~(-1), for the former one(E.coliⅡC,D), there were two periods of maximal capacity at log phase and stionary phase, repectively, and the latter (E.coliⅡE,F) it was at log phase. E.coliⅡwere domesticated for the third time at the concentration of 300mg·L~(-1). For E.coliⅢ, the periods of maximal capacity were the same to their strains. FT-IR anlysis showed that, besides the peaks of hydroxyl, peaks of amide groups shifted obviously and the peaks of C-O for amylose shifted, as well. All of these biomacromolecules can biosorbe the Ni~(2+) by combining with it. Light microscope and TEM were applied to investigated the microstrueture of cells, and observed that cells were destroyed and fissioned with the Ni~(2+) increased during domestication, furthermore, the cells aggregated together. Plasmid was prepared by NaOH method, and the profiles showed that there was only one plasmid in the E.coli, and it didn’t changed in domestication process.
     3.The removal efficiency of Ni~(2+) with domesticated bacteria
     Domesticated bacteria that of better Ni~(2+) accumulation capacity was used to deal with the simulation water, the concentration of Ni~(2+) in the sample was in the range of 0 ~ 10 mg·L~(-1). the tolerance of bacteria to Ni~(2+) became improvement after domestication. At the concentration of 5 mg·L~(-1) and10 mg·L~(-1), the OD600 for the domesticated E.coli was about three-fold of common one. Removal rate also improved more than 3 times. FT-IR spectra showed that more functional groups had participated in Ni~(2+) accumulation in the sample.
     4. Study on the decolorization of dyes with three kinds of bacteria
     Decolorization behaviors of bacteria on Sunset yellow and Methylene blue were investigated. When the pH was in the range of 2.0-9.0, the absorbance varied slightly. Decolorization experiment showed that the decolorization process of bacteria includes two steps, adsorption and degradation. In the first step, the maximal adsorption rate which depended on the numerous biomass was at the stionary phase, while in the next one, due to the synthesis, excretion and dagragation of enzyme, the maximal decolorization rate was delayed to the death phase. The decolorization rate of three kinds of bacteria for the dyes were different. The E.coli can remove 60% of the colour of Methylene blue, and, decolorization rate of sunset yellow by Staphylococcus aureus was 56%.
引文
[1]陈同斌.重金属对土壤的污染.金属世界,1999,3:11~(-1)2.
    [2]中国环境年鉴编辑委员会.中国环境年鉴.北京:中国环境年鉴出版社,2000, 714-720.
    [3]章杰,晓琴,皆怡.发展迅速的中国染料工业(上).纺织导报,2003,35-36.
    [4] Henrandez A, Mellado R P, Martinez J L. Metal accumulation and Vanadium Induced multidrug resistance by environmental isolates of Escherichia hermanniiand Enteorbacter cloacae.Apply Environment Microbiol ,1998,64: 4317-4320.
    [5]谢先德,张刚生.微生物-矿物相互作用之环境意义的研究.岩石矿物学杂志,2001,20(4): 382-386.
    [6]刚葆琪,庄志雄.我国镍毒理学研究进展.卫生毒理学杂志,2000,14: 129~(-1)35.
    [7]唐受印,戴友芝.废水处理水热氧化技术.北京:化学工业出版社, 2002, 115~(-1)32.
    [8] Solisio C, Lodi A, Converti A, et al. The effect of acid pretreatment on the biosorption of chromium (III) by Sphaerotilus natans from industrial waste- water. Water Research, 2000,34(12):3171-3178.
    [9]王振余.碳膜处理染料水溶液的研究.膜科学与技术,1997,17(5):7~(-1)0.
    [10]李亚新,李莉,马志敏等.塑料孔板波纹填料厌氧生物滤池法处理印染废水试验的研究.中国给水排水,1995,11(5):16~(-1)9.
    [11] Knapp J S, Newby P S. The Microbiological Decolorization of an Industrial Effluent Containing Diazo-linkedchro-mophore.Water Research,1995, 29(7): 1807~(-1)809.
    [12] Shaw C B, Carliell C M, Wheatley A D. Anaerobic/aerobic treatment of coloured textile effluents using sequencing bath reactors. Water Research, 2002, 36(8) :1993-2001.
    [13]闰庆松.厌氧+好氧+煤渣吸附处理偶氮染料废水的研究.工业水处理,2000,20(7):19-22.
    [14] Gavrileseu M. Removal of heavy metals from the environment by biosorp -tion. England Life Science,2004,4(3):219-232.
    [15]刘振海,王鹏,姜洪泉等.铜镍电镀退镀废液资源化处理工艺.环境科学, 2002,23(2):113~(-1)17.
    [16]张洪玲.废生物体资源化利用吸附处理低浓度重金属废水研究:[南京理工大学硕士论文].南京:南京理工大学,2004:1-2.
    [17]刘恒,王建龙,文湘华.啤酒酵母吸附重金属离子铅的研究.环境科学研究, 2002,15(2):26-29.
    [18]任洪强,陈坚,伦世仪.重金属生物吸附剂的应用研究现状.生物技术, 2000,10(1):33-36.
    [19]马占青.水污染控制和污水生物处理.第一版.北京:中国水利水电出版社, 2003.
    [20] Raghavacharya C. Colour removal from industrial effluents-comparative review of available technologies. Chemosphere,2003,50(4): 517-528.
    [21] Sanghi R, Bhattacharya B. Review on decolorisation of aqueous dye solutions by low cost adsorbents. Coloration Technology,2002,118(5): 256-269.
    [22]周珊,杜冬云.粉煤灰-Fenton法处理酸性红印染废水.环境科学与技术, 2004,27(2):69-70,83-84.
    [23] Ozacar M. Adsorption of acid dyes from aqueous solutions by calcine dalunite and granular activated carbon. Adsorption,2002,8 (4):301-308.
    [24]刘兴奋,叶巧明.新型有机膨润土的制备及脱色性能研究.矿业研究与开发,2004,24(2):35-37.
    [25] Stephen J A, Quan G, et al. Comparison of optimised isotherm models for basic dye adsorption by kudzu. Biores Technology,2003,88 (2): 143- 152.
    [26] Robinson T, Chandra B, et al. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Research, 2002, 36(11):2824-2830.
    [27]余颖,张永刚,庄源益. NKY功能化树脂静态吸附混合染料的研究.环境化学,2003,22(4):353-358.
    [28]董丽丽,马子川.新生态MnO2吸附法处理水溶性阴离子染料废水的研究.环境污染与防治,2004,26(2):99~(-1)00.
    [29] Aldegs Y, Khraisheh M A M, Allen et al. Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Reseach,2000, 34 (3): 927-935.
    [30] Chen L C. Effect of factors and interacted factors on the optimal decoloriza -tion process of methyl orange by ozone. Wat Res,2000,34(3): 974-982.
    [31]刘梅红,姜坪.膜法染料废水处理试验研究.膜科学与技术,2002,22(4): 46-48.
    [32] Akbari A, Remigy J C, Aptel P. Treatment of textile dye effluent using a polyamide based nanofiltration membrane. Chemical Engineering and Pro- cessing, 2002,41(7):601-609.
    [33]嵇鸣,张艳,赵宜江等.吸附-微滤法对印染废水脱色的研究.环境化学, 2002,21(2):155~(-1)61.
    [34]许佩瑶,王淑娜,王德宏.高浓度印染废水的电解-内电解法复合处理.印染, 2004,8:26-28.
    [35]马红芳.内电解提高印染废水生物处理的研究.工业用水与废水,2003,34(4):29-32.
    [36] Simonsson D. Electrochemical for cleaner environment. Chemical Society Review,1997,26(3):181~(-1)90.
    [37] Naohide T. Application of solid polymer electrolyte for treatment of water colored by dyestuffs. Mizu Kankyo Gakkaidhi,1998,21(1):47-50.
    [38]韩润平,石杰等.酵母对铅离子的生物吸附研究.河南科学,2000,18(1): 52-55.
    [39]李明春,姜恒等.酵母对重金属离子吸附的研究.物系统,1998,17(4): 367-373.
    [40] Nabil H, Alaa S, Abdel R, et al. Accumlation of Some Heavy Metals on Aspergillus flavus. Chem.Tech. Biotechnol,1997,68:19-22.
    [41] Anoop K, Viraraghavan T, Roy C D. Removal of heavy metals using the fungus Aspergillus niger. Bioresource Technology,1999,70:95~(-1)04.
    [42]潘进芬,林荣根.海洋微藻吸附重金属的机理研究.科学视野,2000,24 (2): 31-36.
    [43]尹平河,赵玲.海藻生物吸附废水中Pb~(2+)、Cu~(2+)和Cd~(2+)的研究.海洋环境科学,2000,19(3):11~(-1)6.
    [44]赵晓红等.高效活性污泥法处理分散染料废水实验研究.环境工程, 2002,20(1):77-81.
    [45]李清彪,吴涓等.白腐真菌菌丝球形成的物化条件及其对铅的吸附.环境科学,1999,20:34-40.
    [46]李伟民,江映翔,尹大强等.微生物选育技术在废水生物处理中的应用进展.环境污染治理技术与设备,2001,2(4):49-52.
    [47]郝鲁江,许平.微生物在染料脱色中的应用及其机理.山东轻工业学院学报,2001,15(2):52-56.
    [48] Shah V, Garg N, Madamwar D. An integrated process of textile dye removal and hydrogen eyolution using cyanobacterium. Phormidium valdenanum. World Journal of Microbiology and Biotechnology, 2001, 17(5): 499-504.
    [49]鲜海军,杨惠芳.多种染料的微生物脱色研究.环境科学学报,1988, 8(3): 266-273.
    [50]王彩华,余惠生,付时雨.贝壳状革耳和黄孢平革固体培养酶系比较.微生物学报,1999,39 (2):127~(-1)31.
    [51]黄国兰,孙红文,宋志慧等.固定化藻类的生理特征和对染料的脱色能力研究.环境科学学报.2000,20(4):445-449.
    [52]严国安,谭智群.藻类净化污水的研究及其进展.环境科学进展,1995,3(3): 45-55.
    [53]贾振杰,李慧君,杨清香等.不同培养基对富集筛选脱色真菌菌群的效果比较.微生物学通报,2007,34(4):629-632.
    [54]常天俊,潘文维,赵丽等.白腐真对染料脱色的培养条件研究.环境工程学报,2007,1(2):54-58.
    [55]李蒙英,倪建国,洪法水等.真和细对染料的吸附脱色及再生能力的研究.环境科学学报,2002,22(6):779-783.
    [56]张秀丽,刘月英.贵重金属的生物吸附.应用与环境生物学报,2002,8(6): 668-671.
    [57] Veglio S,Suyama K. Recovery and refining of Au by goldeyanide ion bio -sorption using animal fivrous proteins. Appl Biochemi&Biotechnol,1998, 70(2):719-728.
    [58]刘刚,李清彪.重金属生物吸附的基础和过程研究.水处理技术,2002, 28(1): 17-21.
    [59] Aksu Z. Investigation of biosorption of copper(II) by C.vulgaris and Z.ra -migera. Environmental Technology,1992,13:579-586.
    [60]胡洪波,梁洁,刘月英等.微生物吸附贵金属的研究与应用.微生物学通报, 2002,29(3):94-97.
    [61]李强,陈明,崔富昌等.生物吸附剂ZI5-2对Cr(VI)的吸附机理.环境科学, 2006,27(2):343-346.
    [62]陈玉成.污染环境生物修复工程.北京:化学工业出版社,2003,26-30.
    [63]倪建国,李蒙英,孟祥勋等.真和细协同作用对染料的吸附与脱色降解.环境工程学报,2007,1(4):48-52.
    [64]辛宝平,庄源益,邹其猛等.青霉GX2对蒽醌染料的吸附作用.环境科学, 2001,22(1):14~(-1)8.
    [65] Silke B. Isolation of bacterial strain with the ability to utilize the sulfonated azo compound 4-carboxy-4’-sulfoazobenzene as the sole source of carbon and energy. Applie ang Environmental Microbiology,1998,64(6):2315-2317.
    [66]胡棋昊,王黎明,黄兴华等.高压脉冲放电降解染料废水的实验研究.清华大学学报(自然科学版),2002,42(9):1148~(-1)150.
    [67]赵玲,尹平河.海洋赤潮生物原甲藻对重金属的富集机理.环境科学, 2001,22(4):42-45.
    [68] Williams C J, Aderhold D, Edyvean R G J.Comparison between biosorben- ts for the removal of metal of metal ions from aqueous solutions. Water Reseach,1998,32 (1):216 -224.
    [69] Holan Z R, Volesky B. Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bio eng,1994,43 :1001 ~(-1)009.
    [70] Tsezos M, Remoudake E, Angelaton V. A systematic study on equilibrium and kinetics of biosorptive accumulation the case of Ag and Ni. Int Biodeterioration and Biodegradation,1995,35:129~(-1)53.
    [71]董新姣,陈文海.耐铜细的筛选及其吸附条件优化.环境科学与技术, 2002,25(5):6-7.
    [72] Samia A, Tahar M, Bharat K C, et al. Isolation and characterization of a mesophilic heavy-metals-tolerant sulfate-reducing bacterium Desulfomicro- bium sp. from an enrichment culture using phosphogypsum as a sulfate- source. Journal of Hazardous Materials,2007,140:264–270.
    [73] White C, Gadd G M. Copper accumulation by sulfate-reducing bacterial biofilms, FEMS Microbiol. Lett,2000,183:313–318.
    [74] Barnes L J, Janssen F J, Sherren J et al. A new process for the microbial removal of sulfate and heavy metals from contaminated waters extracted by a geohydrological control system. Trans. Inst. Chem. Eng,1991,69:184–186.
    [75] Mishra S, Doble M. Novel chromium tolerant microorganisms: Isolation, characterization and their biosorption capacity. Ecotoxicology and Environmental Safety(2008),doi:10.1016/j.ecoenv.2007.12.017.
    [76]汪杏莉,李宗伟,陈林海等.工业微生物物理诱变育种技术的新进展.生物技术通报,2007,2:114~(-1)18.
    [77]王龙,贾乐,林雅兰.金属硫蛋白产生的诱变育种.微生物学通报.1999,26(2)102~(-1)06.
    [78]尤兰兰,周波,姚良同等.产金属硫蛋白酿酒酵母诱变株的生物学功能研究.微生物学杂志,2005,25 (1 ):36-39.
    [79]韦明肯,唐华英,黄素等.青霉Penicillium janthinellum株GXCR的高抗重金属盐及其对Cu~(2+)和Zn~(2+)离子吸收的特性.物学报,2006,25(4): 616-623.
    [80]徐文东,文湘华.微生物在含染料废水处理中的应用.环境污染治理技术与设备,2000,1(2):9~(-1)6.
    [81]阐振荣,李亚青,李红梅.废水依赖性细及其对染料的脱色作用.河北大学学报,2001,21(2):163~(-1)66.
    [82]阚振荣,杨东虎.偶氮染料直接大红GBE脱色细的筛选及研究.环境污染治理技术与设备,2002,3(12):52 - 53.
    [83]田萍,姚秉华,杜宝中等.优势固定化细胞对偶氮染料脱色的研究.化学研究与应用,2004,6(16):765-767.
    [84]张金平,阚振荣,李彦芹等.染料脱色与芳胺降解的筛选及降解染料研究.生物技术,2006,16(1):68-70.
    [85]肖继波,王汉道.染料脱色的筛选及对活性艳红X-3B的脱色研究.环境保护科学,2005,6:31-33.
    [86] Zhao X W, Deng X, et al. Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli. Process Biochemis- try, 2005,40:1611–1616.
    [87]陈素华,周启星等.微生物与重金属间的相住作用及其应用研究.应用生态学报,2002,13(2):239 -242.
    [88] Srinath T,Verma T, et al. Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere,2002,48:427–435.
    [89] Deng X, Zheng Y C, Li Q B. Effect of ambient conditions on simultaneous growth and bioaccumulation of mercuric ion by genetically engineered E. coli JM109. Journal of Hazardous Materials B,2006,136:233–238.
    [90]赵肖为,李清彪,卢英华等.高选择性基因工程E.coli SE5000生物富集水体中的镍离子.环境科学学报,2004,24(2):231-236.
    [91]张炳华,张彦琼,王吉伟等.微生物重金属抗性的研究进展.中国医学工程,2006,14(2):153~(-1)55.
    [92] Gonen F, Aksu Z. Use of response surface methodology (RSM) in the evalu -ation of growth and copper(II) bioaccumulation properties of Candida utilis in molasses medium. Journal of Hazardous Materials,2008,154:731- 738.
    [93] Gonen F, Aksu Z. Copper(II) bioaccumulation properties of the yeast C. tropicalis: Effect of copper(II) on growth kinetics. Journal of Biotechno-logy,2007,131: 165~(-1)66.
    [94]刘月英,杜天生等.啤酒酵母废体吸Pd~(2+)的物理化学特性.高等学校化学学报,2003,24( 12):2248-2251.
    [95]佘晨兴,许旭萍,沈雪贤等.球衣对重金属离子的耐受性及其吸附能力.应用与环境生物学报,2005,11(1):90-92.
    [96]孔繁翔.环境生物学.第一版.北京:高等教育出版社,2000,216,213,210.
    [97]沈萍,陈向东.微生物学,第二版.北京:高等教育出版社,2006,135,136,43.
    [98] Nourbakhsh M, Sag Y, Ozer D, et al. Acomparative study of various biosor- bents for removal of chromium(VI) ions from industrial wastewaters. Process Biochemistry, 1994,24:1–5.
    [99] Deng S B,Ting Y P. Characterization of PEI-modified biomass and biosorp- tion of Cu(II), Pb(II) and Ni(II). Water Research, 2005,39,2167–2177.
    [100] Pan H, Ge X P, Liu R X, et al. Characteristic features of Bacillus cereus cell surfaces with biosorption of Pb(II) ions by AFM and FT-IR. Colloids and Surfaces B: Biointerfaces,2006,52: 89–95.
    [101] Gunshin H, Mackenzie B, Berger U V, et al.Cloning and characterization of a mammalian proton-coupled metalion transporter. Nature,1997,388 (6641):482-488.
    [102] Sheng P X, Ting Y P, Chen J P, et al. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Colloid Interface Sci, 2004,275: 131~(-1)41.
    [103]全先庆,张洪涛.植物金属硫蛋白及其重金属解毒机制研究进展.遗传, 2006,28(3):375-382.
    [104]茆灿泉,薛沿宁.微生物展示技术在重金属生物修复中的研究进展.生物工程进展,2001,21(5):49-51.
    [105] Deng X, Li Q B, Lu Y H, et al. Bioaccumulation of nickel from aqueous solutions by genetically engineered Escherichia coli. Water Research,2003, 37: 2505–2511.
    [106] Jayna C, Zuyun H, Maureen E et al. Studies of metal binding reactions inmetallothioneins by spectroscopic,molecular biology,and molecular model- ing techniques. Coordination Chemistry Reviews,2002,233-234:319-339.
    [107] Donmez G, Aksu Z. The effect of copper(II) ions on the growth and bioaccumulation properties of some yeasts. Process Biochemistry,1999,35: 135~(-1)42.
    [108] Jana K, Edita V. Comparison of differences between copper bioaccumu- lation and biosorption. Environment International,2005,31:227-232.
    [109]王晓媛.活性啤酒酵母吸附Cr(Ⅵ)生物吸附的研究.水处理技术,2005, 31(2):33-36.
    [110]许卫锋,梁建生,陈云等.环境重金属污染的植物修复及基因工程在其中的应用.生物技术通讯,2003,14(4):349-352.
    [111]徐柳,谢明德,佟鑫等. Ni~(2+)金属结合肽的筛选和序列分析.应用与环境生物学报,2006,12(3):379-380.
    [112] Hoof N A L M, Hassinen V H, Hakvoort H W J, et al. Enhanced copper tolerance in Silenevulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothio- nein gene, Plant Physiology, 2001,126:1519~(-1)526.
    [113] Yamada T, Furukawa K, Hara S, et al. Isolation of Copper-Tolerant Mutants of Sake Yeast with Defective Peptide Uptake. Journal of bioscience and bio -engineering,2005, 100(4):460–465.
    [114]叶锦韶,尹华,彭辉.微生物抗重金属毒性研究进展.环境污染治理技术与设备,2002,3: 1- 4.
    [115] Pennanen T, Froslegard A, Fritze H, et al. Phospholipid fatty acid composi- tion and heavy metal tolerance of soil microbial communities along two heavy-metal-polluted gradients in coniferous forests. Appl.Environ. Micro- biol, 1996,62:420-428.
    [116] Diaz R M, Baath E. Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Apply E nvironment Microbial, 1996,62:2970-2977.
    [117] Company R,Serafim A, et al. Effect of cadmium, copper and mercury onantioxidant enzyme activities and lipid peroxidation in the gills of the hydrothermal vent mussel Bathymodiolus azoricus.Marine Environmental Research, 2004,58:377-381.
    [118] Banerjee B D, Seth V, Bahattacharya A. Biochemical effects of some pesti- cides on lipid peroxidation and free radicalscavengers. Toxicology Ltters, 1999,107(2):33- 47.
    [119] Henriquesa I D S, Love N G. The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins. Water Research, 2007,41:4177-4185.
    [120]段学军,闵航.稻田土壤细对重金属镉的氧化应激反应研究.安全与环境学报.2005,2(5):50-53.
    [121] Ye J, Kandegedara A, Martin P. Crystal structure of the staphylococcus aureus pI258 CadC Cd(II),Pb(II),Zn(II)-Responsive Repressor.Journal of Bacteriology,2005,187(12):4214-4221.
    [122]林稚兰,田哲贤.微生物对重金属的抗性及解毒机理.微生物学报,1998, 25:36-39.
    [123] Ehrlich H L. Microbes and metals. Appl Microbiol Biotechnol,1997, 48: 687-692.
    [124]翟中和,王喜忠,丁明孝主编.第一版,细胞生物学.北京:高等教育出版社,2000,235.
    [125]代淑娟,周东琴,魏德洲等.胶质芽孢杆对水中Pb~(2+)生物吸附-浮选性能研究.金属矿山,2007,5:70-74.
    [126]肖子丹,张朝平.赖氨酸-Ag反应机理的研究.无机化学学报,2004,20(8): 915-919
    [127]陈丹丹,张涛,任丽萍.金属及其配合物与生物分子相互作用机理的研究进展.分析科学学报,2006,22(5):600-604
    [128]卢显妍,尹华,彭辉等.对重金属去除影响的研究.微生物学通报, 2005,32 (2):15~(-1)9.
    [129]尹华,卢显妍,彭辉等.复合诱变原生质体选育重金属去除.环境科学, 2005,26(4):146~(-1)51.
    [130]王镜岩.生物化学.第三版.北京:高等教育出版社,2002,651.
    [131]国家环保局.水和废水监测分析方法.第四版.北京.中国环境科学出版社,2002,375-377.
    [132]刘国萍.5-Br-PADAP分光光度法测定水中微量镍的探讨.中国热带医学. 2005,5(4):821.
    [133]何宝燕,尹华,彭辉等.酵母融合-活性污泥曝气处理含镍废水研究.安全与环境学报,2005,4(5):8~(-1)0.
    [134]昝逢宇,赵秀兰.啤酒酵母吸附去除水中Cr(Ⅵ)的研究.云南环境科学, 2004,4(23):146~(-1)50.
    [135]胡章立,刑苗,吴玉荷等.转MT-like基因衣藻的重金属结合能力与抗性特征分析.湖泊科学,2002,14(3):247-252.
    [136]邓旭,魏斌,胡章立.转基因衣藻对重金属的抗性及对镉离子的富集.生物技术,2007,17(6):66-68.
    [137]何宝燕.重金属镉、镍废水的吸附研究:[暨南大学硕士学位论文].广州:暨南大学环境科学,2006,19-21.
    [138]朱一民,周东琴,魏德州.啤酒酵母对汞离子(Ⅱ)的生物吸附.东北大学学报,2004,1(25):89-91.
    [139]慈云祥,臧凯赛,高体玉.几种微生物的红外光谱研究.高等学校化学学报, 2002,23(6):1047~(-1)049.
    [140] Naja G, Mustin C, Volesky B, et al. A high-resolution titrator:a new approa- ch to studying binding sites of microbial biosorbents.Water Reseach, 2005, 39:579-588.
    [141]王战勇,张晶,苏婷婷.啤酒废酵母对镉离子的吸附研究.生物学杂志,2007, 24(2):37-40.
    [142]孙影芝,龚仁敏,张小平等.甘蓝皮生物吸附去除水中的阳离子染料.中国环境科学,2005,25:61-64.
    [143]吴赞敏,吕彤,翁亮等.生物对活性染料的脱色研究.纺织学报,2006, 27(5): 45-48.
    [144] Pradip B D, Rashmi R N, Stanislaus F D S. Denitrification of high strength nitrate waste. Bioresource Technology,2007,98:247-252.
    [145]张金平,阚振荣,梁利华等.脱色细的分离和对偶氮染料的脱色研究.生物学杂志,2006,4,23(2):35-38.
    [146]张俊,王宏勋,罗莉等.糠过滤处理染料溶液研究.环境科学与技术, 2006,29(1):77-78.
    [147] Aksu Z, Donmez G. Combined effects of molasses sucrose and reactivedye on the growth and dye bioaccumulation properties of Candida tropicalis. Prosess Biochemistry,2005,40:2443-2454.
    [148]刘军深,宋文芹,李桂华等.海水在碱性印染废水处理中的研究.工业水处理,2007,27(12):34-36.
    [149]刘厚田,杜晓明,刘金齐等.藻系统降解偶氮染料的机理研究.环境科学学报,1993,13 (3) :332-338.
    [150]张金平,梁力华等.染料脱色与芳胺降解的筛选及降解染料的研究.生物技术,2006,16(1):68.
    [151] Shen Z Z, Shen J Z. Ultrasound enhancement of the reducation of the Basic Green dye in wastewater by cast iron. Journal of Environmental Sciences, 2006,18(1):1-3.
    [152]王家玲.环境微生物学.北京:高等教育出版社,2004.
    [153] Nur K K, Jeppe L N,Meral Y, et al. Characterization of a simple bacterial consortium for effective treatment of wastewaters with reactive dyes and Cr(VI). Chemosphere, 2007,67(4):826-831.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700