盐角草SeCMO、SePEAMT基因在大肠杆菌中的表达及转双基因烟草耐旱性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在干旱、盐碱等逆境条件下植物体内可积累大量的甜菜碱,甜菜碱的积累对改善渗透调节、保护细胞膜具有重要作用,因此甜菜碱被认为是很有效的渗调剂之一。胆碱单加氧酶(CMO)和磷酸乙醇胺N-甲基转移酶(PEAMT)是高等植物甜菜碱合成途径中的两个关键酶。利用基因工程技术,把与甜菜碱合成相关的基因导入植物,使其积累甜菜碱,将有可能达到增强植物抗旱性的目的。
     为了制备CMO、PEAMT抗体,我们将盐角草SeCMO、SePEAMT基因分别连接到表达质粒pGEX-6p1中,得到重组质粒pGEX6p1-SeCMO和pGEX6p1-SePEAMT,转化大肠杆菌BL21(DE3),经IPTG诱导,SDS-PAGE分析,显示SeCMO、SePEAMT基因能够在大肠杆菌中大量表达,通过GST亲和层析纯化,获得了较纯的融合蛋白。
     为评价转基因烟草的耐旱性,以野生型烟草、转SeCMO烟草及转SePEAMT+SeCMO烟草为材料,进行自然停水干旱处理,测定甜菜碱含量、相对含水量、光合参数、质膜损伤、活性氧代谢、主要渗透调节物质含量等生理生化指标。结果显示:干旱胁迫后,转基因烟草甜菜碱含量显著高于野生型烟草,并能维持较高的相对含水量。干旱胁迫后,所有株系的净光合速率、气孔导度均下降,转双基因株系PC26、PC45仍具有显著高于野生型烟草的净光合速率,且胞间CO_2浓度低于对照,表明其光合系统损伤较轻。此外,转双基因株系的细胞膜离子渗透率和丙二醛含量显著低于野生型,且SOD活性、POD活性、可溶性糖含量、游离脯氨酸含量、可溶性蛋白含量普遍高于野生型烟草。以上结果表明:转基因烟草中高水平甜菜碱的积累,能通过渗透调节、保护细胞膜及代谢酶类稳定性的作用,提高烟草的耐旱性
Betaine will be accumulated in plants in response to drought and salinity stress.The betaine accumulation plays an important role in improving osmotic adjustment and protecting cell membrane,therefore,betaine is a very effective osmoprotectant.Choline monooxygenase(CMO) and Phosphoethanolamine N-methyltransferase(PEAMT) are the key enzyme in the pathways of GlyBet synthesis in plants.The genes related to glycine betaine synthesis are transformed into plants through genetic engineering,which could enhance the drought tolerance of plants.
     The SeCMO and SePEAMT genes were subcloned into the expression vector pGEX-6p1, recombinant plasmids pGEX6p1-SeCMO and pGEX6p1-SePEAMT were obtained and transformed into Escherichia coli BL21(DE3).Expression induced by IPTG and SDS-PAGE analysis showed that the SeCMO and SePEAMT gene could express in E.Coli.The fusion proteins were purified with affinity chromatography of GST.
     To evaluate the drought tolerance of the transgenic tobacco,the wild type(WT) and transgenic tobacco were exposed to drought stress by withholding water.During the stress period,the Glycinebetaine(GB) content and other physiological parameters including relative water content(RWC),photosynthesis,cell membrane stability,active oxygen metabolism and osmoprotectants content of tobacco plants were measured.The transgenic tobacco plants accumulated significantly higher levels of GB than WT tobacco plants.Under the water stress, the transgenic lines had higher RWC than WT tobacco plants,and the net photosynthesis rate (Pn) and stomatal conductance(Gs) of all plants were reduced,while PC26,PC45 had significantly higher Pn than WT plants and lower substomatal CO_2 concentration(Ci) than non-stress plants,which demonstrating that the photosynthetic system damaged slightly.The percentage of ion leakage and malondialdehyde(MDA) content of transgenic plants were lower than those of the WT plants,while the SOD,POD activity and content of proline, soluble sugar,soluble protein of transgenic plants were generally higher than those of WT plants.Results convinced that the higher level GB content of transgenic tobacco may play an important role in osmotic adjustment and protecting membranes and enzymes from damage, thus the drought tolerance of transgenic tobacco is enhanced.
引文
[1]杨献光,梁卫红,齐志广等.植物非生物胁迫应答的分子机制[J].麦类作物学报,2006,26(6):158-161.
    [2]Kaur N,Gupta AK.Signal transduction pathways under abiotic stresses in plants[J].Curr Sci.,2005,88(11):1771-1780.
    [3]Wang W,Vinocur B,Altman A.Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance[J].Planta,2006,218:1-14.
    [4]刘友良.植物水分逆境生理[M].北京:农业出版社,1992.
    [5]赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展[J].植物学通报,1999,16(5):540-546.
    [6]Delauney AJ,Hu CAA,Kishor PBK,et al.Cloning of ornithine delta-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis[J].J.Biol.Chem.,1993,268(25):18673-18678.
    [7]Kavi Kishor PB,Hong Z,Miao GH,et al.Overexpression of[delta]-Pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants[J].Plant Physiol,1995,108(4):1387-1394.
    [8]Hugo Bruno Correa Molinari,Celso Jamil Marur,Joao Carlos Bespalhok Filho,et al.Osmotic adjustment in transgenic citrus rootstock Carrizo citrange(Citrus sinensis Osb.x Poncirus trifoliate L.Raf) overproducting proline[J].Plant Science,2004,167(6):1211-1224.
    [9]Tarczynski MC,Jensen RG,Bohnert HJ.Stress protection of transgenic tobacco by production of the osmolyte mannitol[J].Science,1993,259(5094):508-510.
    [10]Abebe T,Guenzi AC,Martin B,et al.Tolerance of mannitol-accumulating transgenic wheat to water stress and salnity[J].Plant Physiol,2003,131(4):1748-1755.
    [ii]Zentella R,Gallardo JM,Dijck PV,et al.A selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress tolerance defects in a yeast tpsl mutant[J].Plant Physiol,1999,119(4):1473-1482.
    [12]A.M.Almeida,Anabela B.Silva,Susana S.Araujo,et al.Responses to water withdrawal of tobacco plants genetically engineered with the AtTPSl gene:a special reference to photosynthetic parameters[J].Euphytica,2007,154:113-126.
    [13]Rhodes D,Hanson AD.Quaternary ammonium and tertiary sulfonium compounds in higher plants[J].Annu.Rev.Plant Physiol.Plant Mol.Biol.,1993,44:357-384.
    [14]Park EJ,Jeknie Z,Sakamoto A,et al.Genetic engineering of glycinebetaine synthesis in tomato protects seeds,plants,and flowers from chilling damage[J].The Plant J.,2004,40(4):474-487.
    [15]Grumet R,Hanson AD.Genetic evidence for an osmoregulatory function of glycinebetaine accumulation in barley[J].Aust.J.Plant Physiol.,1986,13(3):317-327.
    [16]Saneoka H,Nagasaka C,Habn DT,et al.Salt tolerance of glycinebetaine-deficient and -containin maize lines[J].Plant Physiol,1995,107(2):631-638.
    [17]Jagendorf AT,Takabe T.Inducers of glycinebetaine synthesis in barley[J].Plant Physiol,2001,127(4):1827-1835.
    [18]Naidu BP,Cameren DF,Konduri SV.Improving drought tolerance of cotton by glycinebetaine application and selection[C].In:Proeeedings of the 9th Australian Agronomy Conference,1998.
    [19]Xing WB,Rajashekar CB.Alleviation of water stress in beans by exogenous glycine betaine[J].Plant Science,1999,148(2):185-192.
    [20]Chen WP,Li PH,Chen THH.Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L[J].Plant Cell Environ.,2000,23(6):609-618.
    [21]李银心,常凤启,杜立群等.转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性.植物学报,2000,42(5):480-484.
    [22]Jia GX,Zhu ZQ,Chang FQ.Transformation of tomato with the BADH gene from Atriplex improves salt tolerance[J].Plant Cell Rep.,2002,21(2):141-146.
    [23]Sakamoto A,Murata N.The role of glycinebetaine in the protection of plants from stress:clues from transgenic plants[J].Plant Cell Environ.,2002,25(2):163-171.
    [24]Kumar S,Dbingra A,Daniell H.Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells,roots,and leaves confers enhanced salt tolerance[J].Plant Physiol,2002,136(1):2843-2854.
    [25]Bowler C,Van Montacu M,Ina D.Superoxide dismutase and stress tolerance[J].Annul Rye Plant Physiol Mol Bio1,1992,43:83-116.
    [26]覃鹏,刘飞虎,梁雪妮.超氧化物歧化酶与植物抗逆性[J].黑龙江农业科学.2002,(1):31-34.
    [27]Van Breusegem F,Slooten L,Stassart JM,et al.Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize[J].Plant Celll Physiol.1999,40(5):515-523.
    [28]覃鹏,孔治有,刘叶菊等.水分胁迫对烟草转SOD基因品系光合特性的影响[J].江苏农业学报.2004,20(2):91-94.
    [29]林士杰,李俊涛,姜静等.转柽柳晚期胚胎富集蛋白基因烟草的耐低温性分析[J].生物技术通讯,2006,14(4):563-566.
    [30]钱刚,翟旭光,韩兆雪等.西藏青稞LEA3蛋白新抗旱基因的克隆与序列分析[J].作物学报,2007,33(2):292-296.
    [31]刘昀,李冉辉,郑易之等.大豆PM2蛋白及其结构域可提高烟草耐盐性[J].深圳大学学报:理工版,2007,24(1):95-101.
    [32]Koag MC,Fenton RD,Wilkens S,et al.The binding of maize DHN1 to lipid vesicles.Gain of structure and lipid speci ficity[J].Plant Physiol,2003,131(1):309-316.
    [33]Sung DY,Guy C.Physiological and molecular assessment of altered expression of Hsc70-1 in Aiabidopsis.Evidence for pleiotropic consequences[J].Plant Physiol,2003,132(2):979-987.
    [34]Wang W,Vinocur B,Shoseyov O,et al.Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J].Trends Plant Science,2004,9(5):244-252.
    [35]Sugino M,HibinoT,Tanaka Y,et al.Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytice acquires resistance to salt stress in transgenic tobacco plants[J].Plant Science,1999,146(2):81-88.
    [36]Riechmann J L,Heard J,Martin G,et al.Arabidopsis transcriptional factors:genome-wide comparative analysis among eukaryotes[J].Science,2000,290(5499):2105-2110.
    [37]Seki M,Narusaka M,Abe H,et al.Monitoring the expression pattern of 1300Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray[J].Plant Cell,2001,13(i):61-72.
    [38]Thomashow MF,Stochinger EJ,Jaglo-Ottosen KR,et al.Role of the Arabidopsis CBF transcriptional activators in cold acclimation[J].Plant Physiol.,2002,112(2):171-175.
    [39]Jaglo-Ottosen KR,Kleff S,Amundsen KL,et al.Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species[J].Plant Physiology,2001,127(3):910-917.
    [40]Hsieh TH,Lee JT,Yang PT,et al.Heterology expression of the Arabidopsis C-repeat/dehydration-respons1ve element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato[J].Plant Physiol,2002,129(3):1086-1094.
    [41]Jaglo-Ottosen KR,Gilmour SJ,Zarka DG,et al.Arabidopsis CBF1 overexpression nduces COR genes and enhances freezing tolerance[J].Science,1998,280(5360):104-106.
    [42]Kasuga M,Liu Q,Miura S,et al.Improving plant drought,salt,and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J].Nature biotech,1999,17(3):287-291.
    [43]Gilmour SJ,Sebolt AM,Salazar MP,et al.Overexpression of the Arabidopsis CBF3transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J].Plant Physiol,2000,124(4):1854-1865.
    [44]Haake V,Cook D,Riechmann JL,et al.Transcription factor CBF4 is a regulator of drought adaptation in ArabidopsisEJ].Plant Physiology,2002,130(2):639-648.
    [45]Bray E A.Plant responses to water deficit[J].Trends in Plant Science,1997,2(2):48-54.
    [46]单长卷,卫秀英,鲁玉贞.冬小麦品种幼苗对水分胁迫的响应及其抗旱性[J].灌溉排水学报.2006,25(5):30-32.
    [47]胡荣海.农作物资源的抗旱筛选技术及其应用[J].农牧情报研究.1989,1:36-41.
    [48]Schonfeld MA,Richard C.Johnson,Brett F.Carver,et al.Water relations in winter wheat as drought resistance indicators[J].Crop Science.1998,28(3):526-531.
    [49]Regan KL,W han BR,Tumer NC.Evaluation of chemical desiccation as a selection technique for drought resistance in dryland wheat breeding program[J].Aust J Agric Res.1993,44(8):1683-1691.
    [50]Singh TN,Aspinall D,Paleg LG.Proline accumulation and varietal adaptability to drought in barley:a potential metabolic measure of drought resistance[J].Nat New Bioi.1972,236(67):188-90.
    [51]Deshmukh RN,Laware SL,Dhumal KN.Metabolic alterations in Sorghum bicolor under water-stress[J].Maharashtra Agri.Univ.,2001,26:50-53.
    [52]赵勇,马雅琴,翁跃进.盐胁迫下小麦甜菜碱和脯氨酸含量变化[J].植物生理与分子生物学报.2005,31(1):103-106.
    [53]覃鹏,刘飞虎,孔治有.转SOD基因对烟草抗旱性和相关生理指标的影响[J].广西植物.2006,26(6):621-625.
    [54]林关石.谷子品种抗旱性观察[J].陕西农业科学.1984,4:17-19.
    [55]Guy RD,Warne PG,Reid DM,et al.Glycinebetaine content of halophytes:improved analysis by Liquid chromatography and interpretations of results[J].Physiol Plant,1984,61(2):195-202.
    [56]张士功,高吉寅,宋景芝.甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响[J].植物学通报1999,16(4):429-432.
    [57]孙文越,王辉,黄久常.外源甜菜碱对干早胁迫下小麦幼苗膜脂过氧化作用的影响[J].西 北植物学报,2001,21(3):487-491.
    [58]骆爱玲,刘家尧,马德钦,等.转甜菜碱醛脱氢酶基因烟草叶片中抗氧化酶活性增高[J].科学通报,2000,45(18):1953-1956.
    [59]衣艳君,刘家尧,骆爱玲等,转BADH基因烟草的光系统Ⅱ和呼吸酶活性的变化[J].植物学报,1999,41(9):993-996.
    [60]Chen THH,Murata N.Enhancement of tolerance to abiotic stress by metabolic engineering of betaines and other compatible solutes[J].Curr.Opin.Plant Biol.,2002,5(3):250-257.
    [61]McNeil SD,Nuccio ML,Hanson AD.Betaines and related osmoprotectants:targets for metabolic engineering of stress resistance[J].Plant Physiol.,1999,120(4):945-949.
    [62]Weretilnyk EA,Bednarek S,MeCue KF,et al.Comparative biochemical and immunological studies of the glycinebetaine synthesis pathway in diverse families of dicotyledons[J].Planta,1989,178(3):342-352.
    [63]Akamoto A.Genetic engineering of biosynthesis of glycinebetaine enhances tolerance to various stresses.In plant tolerance to Ablotic Stress in Agrieulture:Role of Genetic Engineering.2000,83:95-104.
    [64]Holmstrom KO,Welin B,Mandal A,et al.Production of the Escherichia coli betaine-aldehyde dehydrogenase,an enzyme required for the synthesis of the osmoprotectant glycine betaine in transgenic plants[J].Plant J.,1994,6(5):749-758.
    [65]Rathinasabapathi B,MeCue KF,Gage DA,et al.Metabolic engineering of glyeine betaine synthesis:Plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobaceo chloroplasts where they confer betaine aldehyde resistance[J].Planta,1994,193(2):155-162.
    [66]Nuccio ML,McNeil SD,Ziemak MJ,et al.Choline import into chloroplasts limits glycine betaine synthesis in tobacco:analysis of plants engineered with a chloroplastic or a cytosolic pathway[J].Metabolism Engineering.2000,2(4):300-311.
    [67]McNeil SD,Nuccio ML,Ziemak MJ et al.Enhanced synthesis of choline and glycine Betaine in transgenic tobacco plants that overexpress phosphor- ethanolamine N-methyltransferase[J].PNAS.2001,98(17):10001-10005.
    [68]Landfald B,Strom AR.Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli[J].J.Bacteriol.,1986,165(3):849-855.
    [69]Lamark T,Kaasen I,Eshoo MW,at al.DNA sequence and analysis of the bet genes encoding the osmoregulator choline-glycine betaine pathway of Escherichia coli[J].Mol.Microbiol.2006,5(5):1049-1064.
    [70]Ikuta S,Imamura S,Misaki H,et al.Purification and characterization of choline oxidase from Arthrobaerer globlformis[J].J.Biochem.,1977,82(6):1741-1749.
    [71]Nyyssola A,Kerovuo J,Kaukinen P.Extreme haloPhiles synthesize betaine fiom glycine by methylation[J].J.Bio.Chem.,2000,275(29):22196-22201.
    [72]Waditee R,Tanaka Y,Aold K,et al.Isolation and functional charaeterization N-methyltransferases that catalyze betaine synthesis from glycine in halotolerant Photosynthetic organism Aphanotheee halophytica[J].J.Biol.Chem.,2003,278(7):4932-4942.
    [73]肖岗,张耕耘,刘凤华等.山菠菜甜菜碱醛脱氢酶研究[J].科学通报,1995,40(8):741-745.
    [74]Weretilnyk EA,Hanson AD.Molecular cloning of a plant betaine-aldehyde dehydrogenase,an enzyme implicated in adaptation to salinity and drought[J].PNAS,1990,87(7):2745-2749.
    [75]Nakamura T,Yokota S,Muramoto Y,et al.Expression of a betaine aldehyde dehydrogenase gene in rice,a glyeinebetaine nonaccumulator,and possible localization of its protein in peroxisomes[J].Plant J.,1997,11(5):1115-1120.
    [76]骆爱玲.不同基因型小麦和高粱的抗旱性与其种芽甜菜碱醛脱氢酶的关系[J].植物学报,2001,43(1):108-110.v77]Rathinasabapathi B,McCue KF,Gage DA,et al.Metabolic engineering of glycine betaine synthesis:plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance[J].Planta,1994,193(2):155-162.
    [78]付光明,苏乔,吴畏等.转BADH基因玉米的获得及其耐盐性[J].辽宁师范大学学报(自然科学版),2006,3:344-347.
    [79]杨晓玲,郭守华,杨晴等.转BADH基因水稻幼苗抗旱性研究[J].华北农学报,2007,3:60-64
    [80]Rathinasabapathi B,Burnet M,Russell BL,et al.Choline monooxygenase,an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants:prosthetic group characterization and cDNA cloning[J].PNAS,1997,94(7):3454-3458.
    [81]Nuccio ML,Russell BL,Nolte KD.The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase[J].Plant J.,1998,16(4):487-496.
    [82]McNeil SD,Rhodes D,Russell BL,et al.Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in tobacco[J].Plant Physiol.2000,124(1):153-162.
    [83]高志民,彭镇华.甜菜碱合成调控基因共表达载体的构建与抗盐初步研究[J].林业科学研究.2005,18(3):231-235.
    [84]葛庆燕.盐角草胆碱单加氧酶基因的克隆及其在烟草中的表达研究[D].大连:大连理工大学.2005.
    [85]韩志萍.盐角草胆碱单加氧酶(CM0)基因在烟草中的表达及耐盐性的研究[D].大连:辽宁师范大学.2006.
    [86]安家璐.PEAMT和CMO基因提高植物耐盐性的研究[D].大连:辽宁师范大学.2007.
    [87]马赛箭.盐角草磷酸乙醇胺N-甲基转移酶基因(PEAMT)及其启动子的克隆和表达分析[D].大连:大连理工大学.2008.
    [88]Lilius G,Holmberg N,Bulow L.Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase[J].Bio.Technol1996,14:177-180.
    [89]Takabe T,Hayashi Y,Tanaka A,et al.Evaluation of glycinebetaine accumulation for stress tolerance in transgenic rice plants[P].In Proceedings of Intemational Workshop on Breeding and Biotechnology for Environmental Stressin Rice.Hokkaido National Agricultural Experiment Station and Japan International Scienee and Technology Exehange Center,Sapporo,Japan,PP63-68.
    [90]王淑芳,王峻岭,赵彦修等.胆碱脱氢酶基因的转化及转基因番茄耐盐性的鉴定[J].植物生理学报,2000,27(3):248-252.
    [91]Holmstrom KO,Somersalo S,Mandal A,et al.Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine[J].J.Exp.Bot.,2003,51(343):177-185.
    [92]Hayashi H,Alia,Mustardy L.Transformation of Arabidopos thaliana with the codA gene for choline oxidase:accumulation of glyeinebetaine and enhanced tolerance to salt and cold stress[J].Plant J.,1997,12(I):133-142.
    [93]Alia,Hayashi H,Sakamoto A,et al.Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis glycinebetaine[J].Plant J.,1998,16(2):155-161.
    [94]Sakamoto A,ValverdeR,Alia,et al.Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants[J].Plant J.,2000,22(5):449-453.
    [95]Waditee R,Bhuiyan MNH,Rai V,et al.Genes for direct methylation of glycine provide high levels of g]ycinebetaine and abiotic-stress tolerance in Synechoeoecus and AiabidoPsis[J].PNAS,2005,102(5):1318-1323.
    [96]刘家尧,衣艳君,骆爱玲等.菠菜叶片胆碱单加氧酶的纯化及抗体制备[J].植物学报,1999,41(7):785-787.
    [97]申晓辉,陆海,王沙生等.菠菜胆碱单加氧酶(CMO)基因的克隆及在大肠杆菌中的诱导表达[J].北京林业大学学报,2003,25(1):6-9.
    [98]赵艳.羊草胆碱单氧化酶(CMO)基因的克隆及其在大肠杆菌中的表达[D].长春:吉林农业大学,2007.
    [99]Jean-Benoit Frenette Charron,Ghislain Breton,Jean Danyluk,et al.Molecular and Biochemical Characterization of a Cold-Regulated Phosphoethanolamine N-Methyltransferase from Wheat[J].Plant Physiology,2002,129(i):363-373.
    [100]陈少良,毕望富,李金克等.反相HPLC离子对色谱法测定植物组织中的甜菜碱[J].植物学报,2000,42(10):1014-1018.
    [101]张建新,徐福利,吕家垅等.外源甜菜碱对作物的抗旱作用效果研究[J].干旱地区农业研究,2003,21(2):86-90。
    [102]Leidi EO,Lo pes JM,Lo pes M,Gutierrez JC.Searching for tolerance to water stress in cotton genotypes:photosynthesis,stomatal conductance and transpiration[J].Photosynthetica,1993,28(3):383-390.
    [103]BlumA,Ebercon A.Cell membrane stability as measure of drought and heat tolerance in wheat[J].Crop Sci.,1981,21:43-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700