碳热还原合成晶须增韧陶瓷刀具研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用碳热还原合成晶须增韧陶瓷刀具材料的方法,研制成功了Ti(CxN1-x)系晶须和LTW系列新型陶瓷刀具。提出了碳热还原合成晶须增韧陶瓷刀具材料的设计思路,对碳热还原合成晶须、晶须生长机理、材料力学性能、微观组织、增韧补强机理、切削性能等进行了系统研究。为Ti(CxN1-x)系晶须和LTW系列新型陶瓷刀具的进一步应用奠定了基础。
     研究了碳热还原合成晶须增韧陶瓷刀具材料的设计方案。从碳热还原合成碳氮化钛系晶须、陶瓷刀具材料体系、刀具材料粉末制备、刀具材料制备、切削性能等方面,提出了碳热还原合成晶须增韧陶瓷刀具材料的设计方案。提出了碳热还原合成碳氮化钛系晶须的设计方案,根据Ti(C,N)连续固溶体的特性,改变晶须原料配比的C/Ti比值,可制备出x取值不同的Ti(CxN1-x)系晶须。
     研究了碳热还原合成晶须增韧陶瓷刀具材料粉末的制备。重点研究了碳热还原合成晶须工艺参数、晶须生长助溶剂和催化剂等,研制成功了三种碳热还原合成晶须,即TiCo.3No.7、TiCo.5No.5和TiCo.7No.3,为碳氮化钛系晶须增韧陶瓷刀具材料粉末的制备奠定基础。
     研究了碳热还原合成碳氮化钛系晶须的生长机理。从晶须生长的基本过程、热力学原理、动力学原理、生长机理以及影响晶须生长品质的因素等方面,建立和完善了碳热还原合成晶须的理论。提出了碳氮化钛晶须的气-固(VS)生长机理,建立了碳氮化钛晶须的气-液-固与气-固微观生长机理模型。
     研究了碳热还原合成晶须增韧陶瓷刀具的制备工艺及力学性能。研制成功了LTW310(Al2O3/Ti(C0.5N0.5)p/Ti(C0.3N0.7)w),LTW510(Al2O3/Ti(C0.5N0.5)p/Ti(C0.5N0.5)w)和LTW710(Al2O3/Ti(C0.5N0.5)p/Ti(C0.7N0.3)w)三种新型刀具材料。LTW310的力学性能为抗弯强度752.5MPa,断裂韧度8.83MPa·m1/2,硬度21.9GPa。LTW510的力学性能为抗弯强度812.9MPa,断裂韧度7.64MPa·m1/2,硬度20.0GPa。LTW710的力学性能为抗弯强度753.8MPa,断裂韧度8.12MPa·m1/2,硬度20.2GPa。并研究了LTW系列新型陶瓷刀具的力学性能与微观组织之间关系。
     研究了碳热还原合成晶须增韧陶瓷刀具材料的增韧补强机理,建立了Ti(C,N)p和Ti(C,N)w协同增韧模型。研究表明,Ti(C,N)w与Ti(C,N)p协同增韧补强为主要增韧机制,纳米颗粒增韧补强为辅助增韧机制。
     研究了碳热还原合成晶须增韧陶瓷刀具的切削性能。连续切削淬硬40Cr合金钢的切削速度达到600m/min,断续切削淬硬45#钢的切削速度达到300m/min。LTW系列刀具与LT55刀具的抗磨损和抗破损性能良好且相当。刀具磨损以前刀面月牙洼磨损和后刀面犁沟状磨损为主,破损以前刀面贝壳状剥落和刀刃碎断为主要失效形式。
Ti(CxN1-x) whiskers and the novel kinds of LTW series ceramic cutting tools were fabricated successfully by means of carbothermal synthesizing technology. The new design thought for carbothermal synthesized whisker toughening ceramic cutting tools was proposed. The carbothermal reduction process, whisker growth mechanism, mechanical properties, microstructure, toughening and strengthening mechanism, cutting performance were studied systematically. The design scheme for the synthesis of Ti(CxN1-x) whiskers by carbothermal reduction process was also proposed. According to the characteristics of the Ti(CxN1-x) continuous solid solution, Ti(CxN1-x) series whiskers where x value is various were successfully fabricated by controlling the molar ratio of C and Ti. This research laid the foundation of the further application of Ti(CxN1-x) whiskers and the LTW series ceramic cutting tools.
     The process for fabricating carbothermal synthesized whisker toughening ceramic cutting tool preforming powders was investigated. The study focused on the process parameters of carbothermal process parameters, and the optimization and selection of flux and catalyst. The novel whiskers such as TiC0.3N0.7, TiC0.5N0.5 and TiC0.7N0.3 were prepared successfully, which laid a foundation for developing Ti(CxN1-x) whisker toughening ceramic cutting tools.
     The growth mechanism of Ti(CxN1-x) series whiskers used in the ceramic tools was investigated. The theory of Ti(CxN1-x) whisker growth was analyzed and improved from the aspects of the basic process of whisker growth, thermodynamic principle, kinetics principle, whisker growth mechanism and the factors influencing the quality of whiskers. The V-S (Vapor-Solid) growth mechanism of Ti(CxN1-x) whisker was proposed and analyzed. The micro-growth mechanism model of V-S and V-L-S (Vapor-Liquid-Solid) growth mechanism of Ti(CxN1-x) whisker was established.
     The fabrication process and the mechanical properties of Ti(CxN1-x) whisker toughening ceramic cutting tools were studied. The novel kinds of whisker-toughening ceramic cutting tools such as LTW310 (Al2O3/Ti(C0.5N0.5)p/Ti(C0.3N0.7)w), LTW510 (Al2O3/Ti(C0.5N0.5)p/Ti(C0.5N0.5)w) and LTW710 (Al2O3/Ti(C0.5N0.5)p/Ti(C0.7N0.3)w were developed successfully. The flexural strength, fracture toughness and Vickers hardness of LTW310 are 752.5MPa,8.83MPa·m1/2 and 21.9GPa respectively. The flexural strength, fracture toughness and Vickers hardness of LTW510 are 812.9MPa, 7.64MPa·m1/2 and 20.0GPa respectively. The flexural strength, fracture toughness and Vickers hardness of LTW710 are 753.8MPa,8.12MPa·m1/2 and 20.2GPa respectively. The relationship between the microstructure and the mechanical properties was also investigated.
     The toughening and strengthening mechanism of the whisker toughening ceramic cutting tools was studied. The synergistic toughening mechanism model of Ti(C,N)w and Ti(C,N)p was established. The research results showed that the main toughening mechanism was the synergistic toughening and strengthening mechanism of Ti(C,N)w and Ti(C,N)p, whereas the assistant toughening mechanism was the toughening and strengthening mechanism by nano particle.
     The cutting performance of the carbothermal synthesized whisker toughening ceramic cutting tools was studied. The cutting speed for continuously turning the quenched alloy steel 40Cr was 600m/min, and the cutting speed for intermittent turning the quenched carbon steel 45# was 300m/min. The wear resistance and the fracture resistance of novel series tools LTW was good and similar to the compared commercial ceramic cutting tool LT55. The wear mechanisms were mainly controlled by crater wear on rake face and furrow wear on flank face, and the fracture mechanisms were mainly controlled by the conchoidal flaking-off on flank face and the breakage on the main cutting edge.
引文
1 肖诗纲.刀具材料及其合理选择[M].第二版.北京:机械工业出版社,1990:13-14
    2 苗赫濯.新型陶瓷刀具的发展与应用[J].中国有色金属学报.2004,14(1):237-242
    3 X.S. Li, It-Meng Low. Ceramic cutting tools-An introduction[J]. Key Engineering Materials.1994,96(1):1-18
    4 W. Dawihl, E. Dorre, U. Dworak. Application of ceramictools in machining steel and cast iron[J]. Powder Metallurgy International.1971,3(4):189-192
    5 E.D. Whitney. Modern ceramic cutting tool materials[J]. Powder Metallurgy International.1983,15(4):201-205
    6 N. Claussen. Fracture toughness of Al2O3 with an unstabilized ZrO2 dispersed phase[J]. Journal of the American Ceramic Society.1976,59(1-2):49-51
    7 G.C. Wei, P.F. Becher. Development of SiC-whisker-reinforced ceramics[J]. American Ceramic Society Bulletin.1985,64(2):296-304
    8 E.R. Billman, P.K. Mehrotra, A.F. Shuster, et al. Machining with Al2O3-SiC whisker cutting tools[J]. American Ceramic Society Bulletin.1988,67(6): 1016-1019
    9 R.N. Katz. An assessment of the present status and future prospects of advanced ceramics in high temperature structural applications[C]. Proceedings of the World Congress on High Tech Ceramics, the 6th International Meeting on Modern Ceramics Technologies. Milan, Italy,1987:145-161
    10 H.Z. Miao, Z.B. Luo, Z.Z. Jiang. A new type of ceramic cutting tool[C]. Proceeding of Second International Metal Cutting Conference. Wuhan, China, 1985:583-595
    11 I.W. Chen. Silicon nitride ceramics:scientific and technological advances[J]. Materials Research Society.1993,287:507-511
    12 H.Z. Miao, L.H. Qi, Z.Q. Zeng, et al. Si3N4-based and TiCxN1-x-based ceramic cutting tools[J]. Advances in science and technology.1999:165-172
    13 T. Ekstrom, M. Nygren. Sialon ceramics[J]. Journal of the American Ceramic Society.1992,75(2):259-276
    14 T. Ekstrom. Effect of composition, phase content and microstructure on the performance of yttrium Si-Al-O-N ceramics[J]. Materials Science and Engineering A.1989,109:341-349
    15 艾兴,萧红.陶瓷刀具切削加工[M].北京:机械工业出版社,1988:3-4
    16张彦博.陶瓷刀具的发展与使用[J].攀枝花大学学报.2001,(4):65-67
    17何柏林,孙佳.陶瓷基复合材料增韧技术的研究进展[J].粉末冶金工业.2009,19(4):48-53
    18黄康明,李伟信.陶瓷增韧技术的研究进展[J].中国陶瓷.2007,43(11):6-9
    19郝春成,崔作林,尹衍升,等.颗粒增韧陶瓷的研究进展[J].材料导报.2002,16(2):28-30
    20张明,赵波,刘传绍,等.SiCw/ZrO2陶瓷复合材料晶须增韧机理与效果预测研究[J].新技术新工艺.2006,(12):64-66
    21 刘玲,殷宁,亢茂青,等.晶须增韧复合材料机理的研究[J].材料科学与工程.2000,18(2):116-119
    22林广涌,吴柏源,雷廷权,等.晶须增韧陶瓷基复合材料强韧化机制的评述[J].华南理工大学学报(自然科学版).1996,24(7):34-39
    23 张林,范仕刚.Zr02增韧陶瓷的研究进展[J].现代技术陶瓷.2002,(4):23-26
    24 陈守刚,尹衍升,周春华,等.氧化锆相变稳定机制的研究进展及应用[J].硅酸盐通报.2004,(3):73-76
    25 罗学涛,张立同.氮化硅陶瓷自增韧技术进展[J].复合材料学报.1997,14(2):254-256
    26林广涌,吴柏源.ZrO2增韧Al2O3/SiCw陶瓷[J].复合材料研究.1996,24(7):83-87
    27兰俊思,丁培道,黄楠.SiC晶须和Ti(C,N)颗粒协同增韧A1203陶瓷刀具的研究[J].材料科学与工程学报.2004,22(1):59-64
    28 L. Erker. Tretise on ores and assaying[M].2nd. USA:University of Chicago,1951: 177-183
    29 C. Herring, J.K. Galt. Elastic and plastic properties of very small metal speciments[J]. Physical Review.1952,85:1060-1061
    30 F.C. Frank, J.F. Nicholas. Stable dislocations in the common crystal lattices[J]. Philmag.1953,44:1213-1235
    31 R.S. Wagner, W.C. Ellis. Vapor-Liquid-Solid mechanism of single crystal growth[J]. Applied Physics Letters.1964,4:89-90
    32季光.晶须增韧陶瓷刀具评述[J].工具技术.1994,28(4):39-40
    33 王树强,袁启明,谈家琪,等.α-Al2O3晶须形貌及其生长过程研究[J].硅酸盐学报.1992,20(6):568-573
    34邓建新,李兆前,艾兴.晶须增韧陶瓷基复合材料的进展[J].材料导报.1994,5:72-75
    35 潘金生,陈永华.晶须及其应用[J].复合材料学报.1995,12(4):1-7
    36萧虹,艾兴.SiC晶须增韧Al2O3陶瓷刀具材料的增韧特性及其对刀具破损的影响[J].硅酸盐学报.1992,20(1):1-7
    37蔡红.晶须的制备[J].青海大学学报(自然科学版).1995,13(4):30-34
    38徐永东,张立同,张湛.晶须增强氮化硅陶瓷自生复合材料[J].复合材料学报.1995,12(1):43-49
    39黄勇,张宗涛,江作昭.晶须补强陶瓷基复合材料界面研究进展[J].硅酸盐学报.1996,24(4):451-458
    40 陆磊,陆德平.TiC晶须增强补韧硬质合金材料的研究[J].热处理技术与装备.2006,27(5):21-23,34
    41 徐晓虹,郭子瑜.原位生成莫来石晶须机理的研究[J].武汉理工大学学报.2005,27(12):18-21
    42 C.C. Evans. Whiskers[M]. London:Mills Boon Limited,1972:1-68
    43袁建君,方琪,刘智恩.晶须的研究进展[J].材料科学与工程.1996,14(4):1-7
    44 R.S. Wagner, W.C. Ellis. Vapor-liquid-solid mechanism of single crystal growth[J]. Journal of Applied Physics.1964,35(10):89-90
    45 M. Nagano. Growth of SnO2 whiskers by VLS mechanism[J]. Journal of Crystal Growth.1984,66:377-379
    46 H. Iwanaga, S. Motojima, M. Ichihara, et al. Amorphous Si3N4 whiskers containing a crystalline core[J]. Journal of Crystal Growth.1990,100:271-274
    47 M. Seiji, U. Shuji, H. Tatsuhiko, et al. Preparation of whiskers and spring-like fibres of Si3N4 by impurity-activated chemical vapour deposition[J]. Journal of Crystal Growth.1989,96:383-389
    48 M. Schreiner, W. Wruss, B. Lux. Growth morphology and growth mechanism of α-Al2O3 whiskers[J]. Journal of Crystal Growth.1983,61:75-79
    49 Z. Wokulski. The influence of nickel on VLS growth and real structure of TiC whiskers[J]. Journal of Crystal Growth.1987,82(3):427-434
    50 W. Guo, X.G. Ning, H.Q. Ye. Growth morphology of titanium nitride whiskers[J]. Journal of Crystal Growth.1990,106:400-404
    51 O. Toshitaka, Y. Iwao, Y. Mitsunori. Vapor phase growth of titania whiskers by hydrolysis of titanium flouride[J]. Journal of Crystal Growth.1984,66:262-268
    52 G.C. Pablo, K.S. Herbert. Morphology and crystallography of aluminum nitride whiskers[J]. Journal of the American Ceramic Society.1994,77(4):977-983
    53 Z.X. Chen. Synthesis and characterization of P-Sialon whiskers prepared from the carbothermal reaction of silica fume and α-Al2O3[J]. Journal of Materials Science. 1993,28(22):6021-6025
    54 N. Koparanova, Z. Zlatev, D. Genchev, et al. Cadmium oxide whisker crystals grown by the vapour-liquid-solid mechanism using various elements as growth initiators[J]. Journal of Materials Science.1994,29:103-109
    55 E.I. Givargizov, P.A. Babasian. Negative whiskers formed by solid-liquid-vapor mechanism during vaporization of ZnS[J]. Journal of Crystal Growth.1977,37: 140-146
    56马俊峰,沈君权.碳热还原法制备β-SiC晶须的结晶特征及内部缺陷[J].硅酸盐通报.1993,(2):33-36
    57 Y. Iwao, S. Hajime. Vapor phase growth of alumina whiskers by hydrolysis of aluminum fluoride[J]. Journal of Crystal Growth.1978,45:511
    58 袁建君,刘智恩,韩玉.溶胶凝胶法制备莫来石晶须[J].硅酸盐学报.1996,24(1):5-8
    59 G. Inna, S.M. Silver, A.H. Deberah. Rigid mulletwhisker felt and method of preparation. US Patent.4,948,766. Aug.14,1990
    60 袁建君,刘智恩,韩玉.莫来石晶须制备新方法及其机理[J].无机材料学报.1998,13(5):691-697
    61 T. Ishii, T. Sato, Y. Sekikawa, et al. Growth of whiskers of hexagonal boron nitride[J]. Journal of Crystal Growth.1981,52:285-289
    62 Y. Masahiro, S. Hiroyuki, O. Kengo, et al. Hydrothermal synthesis of biocompatible whiskers[J]. Journal of Materials Science.1994,29:3399-3402
    63 K. Niihara. New design concepts of structural ceramic-ceramic nanocomposite[J]. Journal of the Ceramic Society of Japan.1991,99(10):974-977
    64 W.B. Chou, W.H. Tuan, S.T. Chang. Preparation of NiAl-toughened Al2O3 by vacuum hot pressing[J]. British ceramic transactions.1996,95(1):71-74.
    65 张存满,徐政,许业文.弥散SiC颗粒增韧Al2O3基陶瓷的增韧机制分析[J].硅 酸盐通报.2001,20(5):47-50
    66 陈尔凡,郝春功,李素莲,等.晶须增韧陶瓷复合材料[J].化工新型材料.2006,34(5):1-4
    67黄政人,沈志坚,凌律巍,等.碳化硅晶须补强莫来石复合材料的SPS烧结致密化研究[J].陶瓷学报.2001,(5):115-120
    68 P.F. Becher, C.H. Hsueh. Toughening behavior in whisker reinforced ceramic matrix composites[J]. Journal of the American Ceramic Society.1988,71(12): 1056-1061
    69 P. Pettersson, M. Johnsson. Thermal shock properties of alumina reinforced with Ti(C,N) whiskers[J]. Journal of the European Ceramic Society.2003,2(23): 309-313
    70宋桂明,周玉.晶须增强陶瓷中晶须参数对晶须韧化效果的研究[J].材料科学与工艺.1997,5(1):121-124
    71 刘宁,叶瑞伦,邓永茜.无机纤维增强陶瓷复合材料[J].硅酸盐通报.1989,(4):64-70
    72黄传真,李久立.新型Al2O3陶瓷刀具材料颗粒弥散增韧与晶须增韧的协同作用[J].山东工业大学学报.1998,28(2):112-117
    73 王海龙,汪长安,张锐,等.纳米SiC晶须和SiC颗粒混合增韧ZrB2陶瓷性能[J].复合材料学报.2009,26(4):95-101
    74董利民,田杰谟,张保清,等Si3N4/SiCp/SiCw系纳米复合材料力学性能研究[J].材料导报.2000,(10):343-345
    75 周和平,陈浩,吴音,等.碳热还原法合成AIN晶须及其生长机理[J].材料研究学报.1998,12(1):25-30
    76徐桂英,李建保NbCx晶须的制备[J].金属学报.1998,34(2):205-210
    77张颖,蒋明学,崔曦文,等.碳热还原法制备SiC晶须试验研究[J].西安建筑科技大学学报(自然科学版).2008,40(6):788-791
    78 N. Ahlen, M. Johnsson, M. Nygen. Carbothermal synthesis of TiC whiskers via a vapor-liquid-solid growth mechanism[J]. Journal of the American Ceramic Society. 1996,79(11):2803-2808
    79 N. Ahlen, M. Johnsson, L. Ann-Kristin, et al. On the carbothermal vapour-liquid-solid (VLS) mechanism for TaC, TiC and TaxTi1-xC whisker growth[J]. Journal of the European Ceramic Society.2000,20(14-15):2607-2618
    80 Kida. Process for producing titanium carbide whisker. US Patent.5,256,243. Oct. 26,1993
    81 R.V. Krishnarao, J. Subrahmanyam, M. Yadagiri. Formation of TiC whiskers through carbothermal reduction of TiO2[J]. Journal of Materials Science.2002, 37(3):1693-1699
    82赵吉,苗赫濯,胡晓清,等Ti(C,N)晶须制备与研究[J].陶瓷工程增刊.1999,11:18-20
    83 曹顺华,蔡志勇,谢湛,等.碳热还原合成Ti(C,N)晶须的相转变行为及生长机理[J].中国有色金属学报.2007,17(7):1072-1076
    84 吴义权,张玉峰.原位生长晶须增强陶瓷基复合材料研究现状[J].材料导报.2000,14(12):20-22
    85 刘炳强.原位生长晶须增韧氧化铝陶瓷刀具及切削性能研究[D].山东大学博士学位论文.2007:10-11
    86李洁,乃学瑛,边绍菊,等.氧化铝晶须的研究进展[J].现代化工.2007,27(2):129-132
    87 周曦亚,周斌扬.新型陶瓷晶须的制备与性能[J].陶瓷学报.2007,28(4):316-320
    88黄勇,张宗涛.晶须补强陶瓷基复合材料界面研究进展[J].硅酸盐学报.1996,24(4):451-458
    89林广涌,吴柏源,雷廷权,等.晶须增韧陶瓷基复合材料的设计与制备[J].机械工程材料.1996,20(1):43-47
    90黄传真,艾兴.物理和化学相容性及其对陶瓷刀具材料JX-2-1力学性能的影响[J].现代技术陶瓷.1997,72(2):8-11
    91 陈希来.熔盐介质中制备Ti(C,N)及不同添加剂对炭砖性能的影响[D].武汉科技大学硕士学位论文.2007:2-4
    92 叶大伦,胡建华.实用无机物热力学数据手册[M].第二版.北京:冶金工业出版社,2002:2-9,175,194,625-626,1051-1052,1055-1056
    93 邓建新,艾兴,冯益华.陶瓷刀具切削加工时的磨损和润滑及其与加工对象的匹配研究[J].机械工程学报.2002,38(4):40-45
    94艾兴.高速切削加工技术[M].北京:国防工业出版社,2003:79-81
    95 艾兴,邓建新.陶瓷刀具的发展及其应用[J].机械工人(冷加工).2000,9:4-6
    96蔡志勇.碳热还原制备Ti(C,N)晶须的研究[D].中南大学硕士学位论文.2007:6-7
    97邓建新,艾兴.TiB2和SiCw对A1203陶瓷材料高温摩擦磨损特性的影响[J].无 机材料学报.1996,11(4):665-670
    98 张希华,张建华.氧化铝基陶瓷材料增韧研究现状及其发展方向[J].山东大学学报(工学版).2004,34(5):14-17
    99 张敬强,荣守范.氧化铝陶瓷增韧的研究现状[J].铸造设备研究.2006,2:40-44
    100路学成,阎殿然.氧化铝陶瓷增韧技术及机理[J].陶瓷.2006,12:11-15
    101黄勇,路学成.氧化铝陶瓷增韧研究进展[J].江苏陶瓷.2007,40(2):11-15
    102颜练武,吴恩熙,黄伯云.非化学计量化合物与过渡族金属碳化物、氮化物研究进展[J].硬质合金.2008,25(4):261-263
    103 H. Pastor. Titanium carbonitride based hard alloys for cutting tools[J]. Materials Science and Engineering A.1988,105/106(5):401-409
    104于仁红,王宝玉,蒋明学,等.碳热还原氮化法制备碳氮化钛粉末[J].耐火材料.2006,40(1):9-11
    105王辉平,周书助.Ti02在N2气氛中碳热还原直接合成Ti(C,N)固溶体的研究[J].稀有金属与硬质合金.1996,(127):25-29
    106 R. Koc. Process for synthesizing titanium carbide, titanium nitride andtitanium carbonitride. US Patent.5,417,952. May.23,1995
    107陈淼凤.TiCo.12No.88粉末的高温合成[J].中国陶瓷.2000,36(5):4-5
    108 J.H. Xiang. Synthesis of Ti(C,N) ultrafine powders by carbothermal reduction of TiO2 derived from sol-gel process[J]. Journal of the European Ceramic Society. 2000,20:933-938
    109徐智谋,易新建,胡茂中,等Ti(C1-xNx)系固溶体粉末的制备研究[J].华中科技大学学报(自然科学版).2003,31(7):31-33
    110李喜坤,修稚萌,孙旭东,等.碳热还原法制备Ti(C,N)粉末粉末[J].冶金工业.2004,14(1):18-22
    111 Y.G. Wang. Synthesis of CaWO4 nanoparticles by a molten salt method[J]. Materials Letters.2006,60:291-293
    112 Komeyal. Synthesis of titanium carbonitride by carbothermal reduction nitridation of TiO2 with CaF2[J]. Ceramic bulletin.1993,15:558-662
    113张克从,张乐潓.晶体生长科学与技术[M].北京:科学出版社,1997:57-341
    114曹有名,于德梅.碳酸钙晶须的制备[J].化工新型材料.2001,29(7):33-35
    115杨卜,王成彦,李敦钫,等.杂质元素对锌蒸气氧化产物形貌的影响分析[J].材料导报.2010,24(6):53-57
    116 S.Y. Zhang. Titanium carbonitride-based cermets:processes and properties[J]. Material Science and Engineering A.1993,163(1):141-148
    117 C.F. Davidson, M.B. Shirts, D.D. Harbuck. Production of titanium nitride, carbide, and carbonitride powders. US Patent.4,812,301. Mar.14,1989
    118徐智谋,易新建,郑家燊,等Ti(C1-xNx)系固溶体粉末的组织结构研究粉末[J].冶金技术.2004,22(1):3-6
    119张玉峰,郭景坤,黄校先,等.SiC晶须/Y-TZP(A1203)复合材料力学性能的研究[J].硅酸盐学报.1992,20(5):393-397
    120 T.N. Tiegs, P.F. Becher. Sintered Al2O3-SiC-whisker composites[J]. American Ceramic Society Bulletin.1987,66(2):339-342
    121 L. Sun, J, Pan. TiC whisker-reinforced MoSi2 matrix composites[J]. Materials Letters.2001,51(3):270-274
    122杨世源,郑昌琼.碳化硅晶须增韧氧化铝复合材料制备中的几个问题[J].中国陶瓷.1995,31(1):38-41
    123萧虹,邓建新.晶须增韧陶瓷材料的增韧机理分析[J].山东工业大学学报.1999,23(2):17-24
    124邓建新,李兆前,艾兴Al2O3/SiCw陶瓷材料中晶须的极限和最佳含量[J].硬质合金.1995,12(2):73-77
    125丁燕鸿,杨杨.SiC晶须/颗粒增韧金属陶瓷切削刀具的研究[J].株洲工学院学报.2006,20(4):60-62
    126李喜坤,修稚萌,孙旭东,等.常压烧结制备Al2O3/TiCN复合陶瓷材料[J].硅酸盐学报.2003,31(11):1069-1074
    127李华平,杜大明,赵世坤,等Al2O3/TiCN的制备和性能[J].江苏陶瓷.2003,36(2):26-28
    128宋希文,安胜利.氧化铝超细粉末的烧结特性[J].兵器材料科学与工程.2001,24(2):20-22
    129宋久鹏,B. Thierry,柳葆生,等.升温速率对氧化铝粉末烧结行为的影响[J].材料导报.2007,21(3):144-146
    130孟范成,张帆.燃烧反应加压法制备细晶氧化铝陶瓷的致密化机理[J].硅酸盐学报.2010,38(2):276-282
    131吴振东,叶建东.添加剂对氧化铝陶瓷的烧结和显微结构的影响[J].兵器材料科学与工程.2002,25(1):68-72
    132周泽华,丁培道Ti(C,N)基金属陶瓷中添加成分的研究现状[J].材料导报. 2000,14(4):21-22
    133 E. Conforto, D.Mari, T. Cutard. The role of molybdenum in the hard-phase grains of(Ti,Mo)(C,N)-Co cermets[J]. Philosophical Magazine.2004,11(6):1717-1733
    134 S.Z. Xu, H.P. Wang, S.Z. Zhou. The influence of TiN content on properties of Ti(C,N) solid solution[J]. Materials Science and Engneering A.1996,209:294-297
    135刘宁,刘灿楼.Mo、Ni含量对Ti(C,N)基金属陶瓷组织和性能之间的关系[J].硬质合金.1995,(5):74-78
    136熊惟皓,胡镇华,崔昆Ti(C,N)基金属陶瓷的相界面过渡层[J].金属学报.1996,(10):1075-1080
    137魏钟晴,马培华.溶液系统中的晶须生长机理[J].盐湖研究.1995,3(4):57-65
    138郑燕青,施尔畏,李汶军,等.晶体生长理论研究现状与发展[J].无机材料学报.1998,14(3):321-332
    139黄金昌.碳氮化钛基金属陶瓷[J].稀有金属与硬质合金.1994,119(4):43-49.
    140莫畏,邓国珠,蜀方承,等.钛冶金[M].北京:冶金工业出版社,1998:89,98,101
    141章桥新TiC1-xNx固溶体的介电子结构及其性能研究[J].稀有金属与硬质合金.2000,143:28-38
    142郑伟涛.填隙碳氮原子所引起的面心Fe-Cr-N-Mn合金膨胀的研究[J].吉林大学自然科学学报.1990,(1):80
    143 L.M. Berger, K. Lanolf, Jaenicke-Rt-Bler, et al. Mass spectrometric investigations on the carbothermal reduction of titanium dioxide[J]. Journal of materials science. 1999,18:1409-1412
    144方民宪,陈厚生.碳热还原法制取Ti(C,N)的热力学原理[J].粉末冶金材料科学与工程.2006,11(6):329-336
    145吴义权,张玉峰,郭景坤Ti-N-C-O系的热力学分析与相平衡[J].硅酸盐通报.2000,(6):46-49
    146闵乃本.晶体生长的物理基础[M].上海:上海科学技术出版社,1982:339-484
    147叶铁林.化工结晶过程原理及应用[M].北京:北京工业大学出版社,2006:78-86
    148 Osamu Shimomura, Masami Suzuki. The increase of temperature range in the region of supersaturation of KDP solution by addition of impurity[J]. Journal of Crystal Growth.1989,98(4):276-282
    149杨宗璐,鲍慈光,阎智英,等.表面活性剂对结晶过程影响的研究进展[J].云 南化工.1994,(3):25-29
    ]50宫海燕,李彩虹,王佩佩,等.杂质对溶液结晶过程影响的研究进展[J].化学与生物工程.2010,27(3):9-12
    151 R.J. Davey, J.W. Mullin. A mechanism for the habit modification of ADP crystal in the presence of ionic species in aqueous solution[J]. Kristall und Technik.1976, 11(3):229-233
    152 Y. Yuan, J. Pan. The morphology and growth mechanism of TiC whisker prepared by chemical vapour deposition[J]. Journal of Materials Science.1998,33(24): 5773-5780
    153 D.G. Bhat, K. Narasimhan. Examination of the growth models for TiC whiskers made by CVD[J]. Materials and Manufacturing Processes.1992,7(4):613-624
    154 C. Leul, Y. M. Lu, M. H. Hon. Factors determining the diameter of silicon carbide whiskers prepared by chemical vapor deposition[J]. Materials Chemistry and Physics.1998,56(3):256-261
    155刘宁,胡镇华,崔昆Ti(C,N)基金属陶瓷中环形相的本质及形成过程[J].复合材料学报.1996,13(4):39-46
    156陈尔凡,陈东.晶须增强增韧聚合物基复合材料机理研究进展[J].高分子材料科学与工程.2006,22(2):20-24
    157黄传真.新型复相陶瓷刀具材料的研制和切削可靠性研究[D].山东工业大学博士学位论文.1994:65-70
    158新原皓一,伊崎正宽.高温超强度Si3N4-SiCナノ复合材料[J].粉体およぴ粉末冶金.1989,37(2):746-751
    159王听,周玉.纳米复合陶瓷增韧机理分析[J].陶瓷学报.2000,21(2):107-111
    160焦绥隆,C.E. Boraa氧化铝/碳化硅纳米复合陶瓷的力学性能和强化机理[J].材料导报.1996,10(2):89-93
    161 J.K. Ronald, S.H. Randall, J.P. Nicholas. Synthesis of the Fiber Coating by FP-CVI Process[J]. Ceramic Bulletin.1989,68(2):429-442
    162潘敏元,赵高扬.高强韧性复合陶瓷刀具材料的研究[J].陕西机械学院学报.1992,8(3):161-172
    163 G. Brandt. Flank and crater wear mechanisms of Al2O3 based cutting tools when machining steel [J]. Wear.1989,112(1):39-44
    164 S.F. Wayne, S.T. Buljan. Wear of ceramic cutting tools in Ni based superalloy machining[J]. Tribology Transactions.1990,33(4):618-625
    165 G. Brandt. Wear mechanisms of ceramic cutting tools when machining ferrous and non ferrous alloys[J]. Journal of the European Ceramic Society.1990,10(6): 273-278
    166 S.L. Casto, E.L. Valvo. Wear mechanism of ceramic tools[J]. Wear.1993,160(1): 227-231
    167 W. Gwidon, Stachowiak, et al. Wear behavior of ceramic cutting tools[J]. Key Engineering Materials.1994,96(1):137-146
    168薛群基,刘慧文.陶瓷摩擦学I-陶瓷的摩擦与磨损[J].摩擦学学报.1995,15(4):376-384
    169 P.F. Becher. Tonghenins behavior in whisker-reinforced-ceramic matrix composites[J]. Journal of the American Ceramic Society.1988,71(2):1050-1061
    170 A.G. Evans, D.B. Marshall. Wear mechanisms in ceramics[M]. New York: American Society of Metal Publication,1980:439-447
    171 A. Bellosi, Calzavarinir, M. G. Faga, et al. Characterrization and application of titanium carbonitride-based cutting tools[J]. Journal of Materials Processing Technology.2003,143/144:527-532
    172萧虹,艾兴.晶须增韧陶瓷刀具材料的磨损机理[J].机械工程学报.1992,28(3):1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700