汉钢2~#高炉热风炉提高风温实践研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热风炉是高炉炼铁生产的重要设备之一,热风炉结构不断发展变化,目的是向高炉提供更高温度的热风。理论实践证明,提高风温可以降低焦比,增加喷煤量。我国部分重点企业的热风温度已经达到世界先进水平,但是地方中小企业的热风温度还处在一个较低的水平,风温水平维持在1050℃左右,有的企业甚至更低。我国平均风温与国际先进水平仍有150℃~200℃的差距。
     本文研究的汉钢2~#高炉热风炉为外燃式球式热风炉,风温水平较低,年平均风温在960℃左右,成为制约2~#高炉各项技术经济指标提高的主要障碍。在收集汉钢2~#高炉热风炉各项参数的基础上,掌握了致使汉钢风温水平低下种种因素。结合汉钢实际情况,实施了以提高风温为目的的技术改造。技改措施主要有:采用整体式热管换热器单预热助燃空气、改良球床结构、引进新型高效陶瓷燃烧器、改善原料条件确保高炉顺行,改进热风炉操作制度以及对管道和拱顶进行了加固。通过以上措施,提高了热风炉拱顶温度,增大了球床蓄热面积和稳定性,改善了燃烧工况,同时确保了高炉有接受高风温的条件。
     通过提高风温的实践研究,汉钢2~#高炉热风炉风温由961.2℃提高到1120.7℃,提高了159.5℃,高炉利用系数平均提高了0.147t/(m~3.d),喷煤比提高20.57kg/t,入炉焦比下降95.77kg/t。实践证明本次以提高风温为目的的实践研究是成功的,极大地改善了汉钢2~#高炉的各项技术指标,为企业带来了巨大的经济效益。热风炉技改后,新型陶瓷燃烧器的使用、新型操作系统、管道绝热保护措施等等,使热风炉的热效率大大提高,节约了高炉煤气,也降低了工人的劳动强度,为国内同类型企业的技术发展积累了实践经验。
The hot-blast stove is one of the most important equipment of blast furnace(BF) iron making.The structure of the hot stove has undergoing a continuous development with the aim of providing ahigher temperature of hot blast than ever before to the BF. Theories and practices have proved that higher hot-blast temperature results in lower coke rate and higher volume of coal injection.Although hot-blast temperature in some key domestic enterprises has achieved the world's advanced level,most of the Local small and medium-sized enterprises in China still have a hot-blast temperature of low level.Hot-blast temperature in those enterprises is maintained at about 1050℃,and in some enterprises even lower.To catch up with the advanced international level,our average hot-blast temperature still has to be increased by 150℃-200℃.
     Hansteel's 2~# BF mentioned in this thesis employs the global hot-blast stove of external combustion,of which the hot-blast temperature is in a low level.Its annual average hot-blast temperature is about 960℃,which is not good for the optimization of various technical and economic indexes,and becomes the main block of the development of the BE After collecting all the parameters of hot-blast stove of the Hansteel 2~# BF,the author presents concludes various factors which may result in the low hot-blast temperature.Then the author implements a series of technical transformations to improve the hot-blast temperature in accordance with the actual situation of Hansteel.Major measures include:1) changing the preheating combustion air singly into integral-type heat pipe;2) improving the structure of the pebble-bed;3) introducing the new type of highly effective ceramic burner;4) improving the condition of the raw material to ensure the normal operation environment of the BF;5) promoting the operation system of the hot stove and 6) strengthening the pipes and arch-roof.By adopting these measures,the temperature of the arch-roof is increased,the pebble-bed heating surface and its stability are expanded,and the working condition of combustion is promoted.Meanwhile,these measures ensure the condition for the BF to get a high hot-blast temperature.
     After the experiment,the hot-blast temperature of Hansteel's 2~# BF increases by 159.5℃from 961.2℃to 1120.7℃,the utilization coefficient of the BF increased by 0.147t/(m~3.d),injection rate of coal increased by 20.57kg/t,and the coke rate reduced by 95.77kg/t.All these results demonstrate that this technological transformation is successful.It greatly improves the technical indexes of Hansteel's 2# BF and brings tremendous economic benefits for the related enterprise In addition,after the technological transformation,including the use of new ceramic burner,the employment of the automatic operating system and the adoption of the piping heat-insulation protection measures etc.,the thermal efficiency of hot-blast stove is greatly improved, the BF gas is saved and the workers' labor intensity is also reduced,which provide reference and experience to the technological development of the domestic enterprises of the same type.
引文
[1]项钟庸,郭庆弟.蓄热式热风炉[M].北京:冶金工业出版社,1988.1-10.
    [2]周传典.高炉炼铁生产技术手册[M].北京:冶金工业出版社,2003.481-561.
    [3]王维兴.我国高炉结构现状分析[J].炼铁,2001,20(2):47-48.
    [4]吴启常,张建梁,苍大强.我国热风炉的现状及提高风温的对策[J].炼铁,2002,21(5):1-4.
    [5]杨冬梅,李身钊.国内外热风炉高风温、长寿技术现状[J].钢铁钒钛,1997,(6):45-47.
    [6]孙科社.酒钢公司1号高炉热风炉风温潜力分析研究.西安建筑科技大学硕士学位论文[D],2002,5-7.
    [7]A.H拉姆,王莜留等译.现代高炉过程的计算分析[M].北京,冶金工业出版社,1978,11-12.
    [8]叶才彦.国外高炉大喷煤措施[J],炼铁,1998,(1):22-23.
    [9]袁熙志,唐飞来.我国球式热风炉技术的发展及应注意的问题[J].钢铁,2002,37(10):65-69.
    [10]杜森林.球式热风炉设计及生产运行中的若干问题[J].炼铁,2008,27(1):13.16.
    [11]张胤,贺友多,李士琦等.套筒式陶瓷燃烧器内燃烧过程数学模型.金属学报,2000,36(6):667-672.
    [12]贺友多,张胤,李士琦,沈颐身.对热风炉用陶瓷燃烧器的评价[J].包头钢铁学院学报,1999,18(2):83-86.
    [13]陈恩忠.汉钢380m~3高炉外燃式球式热风炉设计[J].炼铁,1997,16(6):35-37.
    [14]朱光俊等.优化热风炉燃烧技术的研究[J].工业炉,2005,27(4):31-33.
    [15]刘世聚.热风炉耐火球的研制与应用[J].炼铁,2003,22(3)48-50.
    [16]钟章格.高炉热风炉烟气余热回收技术的应用[J].冶金能源,2002,21(4):46-48.
    [17]邹永安.高炉煤气布袋除尘技术的发展与展望[J].四川冶金,2008,30(5):55-57.
    [18]韩明荣,张生芹,邓能运.高炉煤气布袋除尘的机理与效果分析[J].重庆科技学院学报(自然科学版),2005,7(2:42-43.
    [19]王成立,顾林娜.球式热风炉球床结构的热工讨论[J].冶金丛刊,2003,(1):3-7.
    [20]钟树周.球式热风炉在300m~3级高炉的使用特点[J].冶金丛刊,2003,(4):24-26.
    [21]杨虎,黄征.球式热风炉耐火球床参数的选择[J].新疆钢铁,2005,(2):39-41.
    [22]张福利,蔡简元.高效节能高风温大型球式热风炉的开发应用与热平衡测定[J].炼铁,2005,24(2):1-6.
    [23]饶荣水,戴方钦.套筒式陶瓷燃烧器能力不足的讨论[J].冶金能源,2000,19(3):46-51.
    [24]王永莉.热风炉燃烧器的改造与优化[J].河北冶金,2004,(4):3 1-33
    [25]饶荣水,王立等.热风炉用高效能陶瓷燃烧器的丌发[J].工业加热,2002,(1):27-30.
    [26]武文林.热风炉用耐火材料性能[J].国外耐火材料,2003,(5):53-58.
    [27]刘全兴.我国高炉热风炉新技术应用回顾与发展[J].山东冶金,2007,29(1):4-8.
    [28]郁庆瑶,张龙来,林成城.高炉炉渣流动性的实验研究[J].宝钢技术,2002,(3):37-40.
    [29]王俭等译.渣图集[M].北京:冶金工业出版社,1989,50.
    [30]王常珍主编.冶金物理化学研究方法[M].北京:冶金工业出版社,1982,36.
    [31]朱文玲,赵文广,安胜利.F,MgO对包钢高炉渣性能影响的实验研究[J].包头钢铁学院学报,2006,25(1):8-12.
    [32]张玉柱等.MgO含量和碱度对高炉渣的黏度的影响[J].材料与冶金学报,2005,4(4):253-255.
    [33]何环宇,王庆祥,曾小宁.MgO含量对高炉渣黏度影响的实验研究[J].武汉科技大学学报,2002,25(4):340-341.
    [34]张庆东.安钢3号高炉高炉配加白云石试验[J].炼铁,2004,23(5):45-47.
    [35]王敏,胡雄光,张金明,韩向东.改进首钢高炉热风炉操作的措施[J].首钢科技,2002,(3):31-33.
    [36]贺友多,汤清华等.提高热风炉风温的途径.钢铁[J],2003,(3):69-72.
    [37]马竹梧.高炉热风炉全自动控制专家系统[J].控制工程,2002,9(4):57-62.
    [38]张逸君等.我国高炉热风炉燃烧控制技术进展[J].包钢科技,2003,31(6):5-7.
    [39]刘光明,贾彦忠.高风温结构讨论[J].江西冶金,2007,27(1):15-17.
    [40]王维兴.钢铁工业能源结构和节能分析[J].钢铁信息,2002,(10):34-35.
    [41]项钟庸.再论提高热风温度的途径[J].钢铁,1998,(10):12-14.
    [42]程冬生.应用热管换热器提高热风温度实践[J].炼铁,1997,(5):37-39.
    [43]王斌斌,仇型启.热管及其换热器在烟气余热回收中的应用[J].加热设备,2006,35(5):37-40.
    [44]刘全兴.关于钢铁工业能源合理配置的思考[J].中国钢铁业,2004,(4):25-27.
    [45]钱壬章,俞昌铬,林文贵.传热分析与计算[M].北京:高等教育出版社,1987,296-236.
    [46]陶文铨.计算传热学的近代发展[M].北京:科学出版社,2000,233-248.
    [47]马志,肖兴国.冶金反应工程问题数值解析[M].沈阳:辽宁科学技术出版社,1990,185-187.
    [48]丘树林,钱滨江.换热器原理、结构、设计[M].上海:上海交通大学出版社,1990,10-15.
    [49]周惠敏,徐大勇.格子砖涂覆高辐射材料提高热风温度的研究[J].炼铁,2006,(3):33-36.
    [50]刘全兴译.适用于高炉高效可靠操作的热风系统的设计准则[J].国外钢铁,1993,(3):13-20.
    [51]张正荣.传热学[M].北京:高等教育出版社,1983,10-20.
    [52]舒军.高温内燃式热风炉的发展及特征[J].炼铁,1998,(2):12-14.
    [53]陈映明.大型高温热风炉用耐火材料的现状与发展[J].钢铁技术,1994,(2):9-14.
    [54]张福明.大型顶燃式热风炉的进步[J].炼铁,2002,(10):5-0.
    [55]陈炳霖.关于高炉高风温的探讨[J].炼铁,1993,(3):13-18.
    [56]刘泉兴.鞍钢利用低热值煤气获得高风温技术的丌发[J].炼铁,1996,(3):49-50.
    [57]刘泉兴,陶欣.大型热风炉高效预热系统生产实践[J].钢铁,.1999,(11):1-4.
    [58]王子金,郝玉步等.热风炉烟气余热回收装置评述[J].炼铁,2000,(5):29-32.
    [59]李文忠.陶瓷燃烧器[J].钢铁,1997,32(增刊):527-530.
    [60]张胤,贺友多,李士琦等.套筒式陶瓷燃烧器内燃烧过程数学模型[J].金属学报,2000,36(6):667-672.
    [61]张胤,贺友多,李士琦,等.预热对陶瓷燃烧器燃烧过程的影响[J].燃烧科学与技术,2001,7(3):26-30.
    [62]S.Chen,Y.He and Q.Wu,Temperature field computation of stave in blast furnace operation,Iron Steel(Peking) 29(1)(1994).pp.52-56.
    [63]S.Chen,Q.Xue,D.Cang and T.Yang,Heat transfer analysis of blast furnace stave,Iron Steel(Peking) 34(5)(1999),pp.11-13.
    [64]Poukhov.A.P.A Flow - chart for Iron making on the Basis of 100%Usage of Process Oxygen and Hot Reducing Gases Injection.Personating at the 2nd European Iron making Congress.(2000),pp.15-20.
    [65]Heffner.Novel Method of Plasma Superheating of Hot Blast to Maximize Blast Furnace Fuel Injection.1998 CIST/ Iron making Conference Proceedings.545-556.
    [66]Ohkita S,Yamamoto K.Control Strength and Toughness at the Heat Affected Zone[J].Weld J.2002.71(8):22.
    [67]张捷宇,陈义胜,那树人等.热风炉冷风分配计算机模拟[J].北京科技大学学报,1995,17(增刊):34-37.
    [68]陈义胜,张捷宇,那树人等.热风炉蓄热室内气流分布的计算机模拟研究[J].钢铁,2000,135(8):10-12,17.
    [69]成兰伯著.高炉炼铁工艺计算[M].北京:冶金工业出版社,1991,331-336.
    [70]郭鸿志,张书臣,刘向军,程克友等.济钢2号高炉热风炉高风温燃烧技术的开发[J].炼铁,2003,(1):23-25.
    [71]李丙来,陈霞.热风炉燃烧自动控制仪的研究[J].炼铁,2000,(2).39-41.
    [72]张玉柱,胡长庆.炼铁节能与工艺计算[M].冶金工业出版社,2002.
    [73]曹玉璋,韩振兴.热工基础[M].北京:航空工业出版社,1993.
    [74]王明海.炼铁原理与工艺[M].北京:冶金工业出版社,2006.
    [75]F.T.Niemeijer(达涅利康力斯).21世纪热风炉[J].钢铁,2005,40(7):84-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700