丙烯酸树脂基相变储能微胶囊的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变储能材料(PCMs)可在恒定温度下提供高能量密度,在能源问题日益凸显的今天备受关注。相变储能微胶囊(MicroPCMs)既可解决PCMs的泄露及体积变化问题,又可提高PCMs的稳定性、耐久性及基体相容性。丙烯酸树脂具有化学稳定性高、安全无害、价格合理等优点。本论文选用不同特性的丙烯酸酯类或甲基丙烯酸酯类单体合成不同类型的丙烯酸树脂作为囊材,采用悬浮聚合法制备出一系列包覆正烷烃类PCMs的MicroPCMs,并对其性能进行了研究;同时,通过交联、共聚等方式对囊材改性以提高MicroPCMs的机械强度、储热性能及耐热性能。
     对聚甲基丙烯酸甲酯(PMMA)进行交联改性以提高囊材的强度和刚度,并系统研究了交联剂类型对MicroPCMs性能的影响。增加交联剂官能度或引入刚性苯环,可改善MicroPCMs的力学性能、储热性能及耐热性能。季戊四醇四丙烯酸酯(PETRA)交联MicroPCMs具有最高熔融焓(156.4J/g)和结晶焓(182.6J/g),其耐热温度达239oC;以其小试工艺为蓝本扩大至10L中试生产,为产业化奠定了基础。
     引入长链烷基丙烯酸酯类单体与MMA共聚以改进囊材柔韧性、储热能力与耐热性能,并从分子结构层面系统分析了单体性质与MicroPCMs性能的相关性。引入甲基丙烯酸正丁酯(BMA)的MicroPCMs储热能力略高于PMMA基MicroPCMs;MicroPCMs的储热能力随着第二单体烷基链的增长而降低。引入甲基丙烯酸十八烷基酯(SMA)的MicroPCMs耐热稳定性优良,其耐热温度达255oC。
     制备出一系列长链烷基丙烯酸酯均聚物基MicroPCMs以探讨不同类型丙烯酸树脂作为囊材的优劣势。丙烯酸正丁酯(BA)或BMA合成的MicroPCMs,其储热性能明显优于甲基丙烯酸月桂酯(LMA)或SMA合成的MicroPCMs;二乙烯基苯(DVB)交联的PBMA基MicroPCMs的耐热温度最高,达248oC。1000次冷热循环后,MicroPCMs相变焓值的降幅约10%,显示出良好的耐冷热循环能力。
     引入极性较高的单体与BMA共聚以提高成囊驱动力。引入甲基丙烯酸(MAA)或丙烯酸(AA)后,MicroPCMs储热能力和耐热能力明显改善。未复合与复合MicroPCMs的石膏板加热时温度随时间变化对比表明,复合MicroPCMs的石膏板具良好的调温性能。
Phase change materials (PCMs) is promising for use in thermal energy storage andthermal regulation due to their characteristic of storing thermal energy at a constanttemperature via phase transition and their ability to provide high energy storagedensities. Microencapsulated phase change materials (MicroPCMs) are PCMs inliquid/solid form enveloped within a polymer or inorganic shell, the size of which is inthe range of1-1000μm. There are many advantages of MicroPCMs, such as preventingthe interior PCMs from leakage, withstanding the change in the storage material volumeduring phase transition, reducing reactivity of PCMs toward the outside environmentand increasing heat transfer area. Acrylic resins are very attractive shell materialsbecause of their good impact strength, excellent dimensional stability, weatherresistance, non-toxic, ease of fabrication and commercial availability at reasonable cost.In this paper, microcapsules containing n-alkane with different acrylic-based polymershells were fabricated by a suspension-like polymerization. The as-preparedMicroPCMs were characterized and analyzed.
     Firstly, MicroPCMs with the crosslinked methylmethacrylate (MMA)-basedpolymer as shells were prepared.1,4-butylene glycol diacrylate (BDDA),divinylbenzene (DVB), trimethylolpropanetriacrylate (TMPTA) and pentaerythritoltetraacrylate (PETRA) were employed as crosslinking agents. Increasing crosslinkablefunctional moieties of the crosslinking agents and amount of crosslinking agent led toan increase in the shell mechanical strength, the heat storage capacities and the thermalstabilities of the MicroPCMs. Both shell mechanical strength and heat capacity ofMicroPCMs with DVB were higher than those of MicroPCMs prepared with BDDAdue to the two-vinyl group in DVB connecting with rigid phenyl group. Pilot-scalechemical reaction was carried out based on the above synthetic process, and a yield ofmore than1kg can be obtained per time.
     Secondly, MicroPCMs with different methylmethacrylate (MMA)-basedcopolymer shells were fabricated. Butyl acrylate (BA), butyl methacrylate (BMA),lauryl methacrylate (LMA) and stearyl methacrylate (SMA) were employed asmonomers to copolymerize with MMA. Heat capacities of MicroPCMs decreased withthe increase in the length of the side chains of the monomer, which is BMA MicroPCMs with P(MMA-co-BMA)> MicroPCMs withP(MMA-co-BA)> MicroPCMs with P(MMA-co-LMA).
     Thirdly, MicroPCMs with crosslinked PBMA, PBA, PLMA and PSMA shellswere fabricated. DVB and pentaerythritol triacrylate (PETA) were employed ascrosslinking agents. The MicroPCMs prepared by using DVB show greater heatcapacities and thermal stabilities compared with the MicroPCMs prepared by usingPETA. Heat capacities of both the MicroPCMs with PBMA and PBA were higher thanthose of MicroPCMs with PLMA and PSMA. The MicroPCMs with PBMA has thehighest thermal resistant temperature when prepared by DVB, while the MicroPCMswith PSMA exhibits the greatest thermal stability when prepared by PETA.
     Finally, MicroPCMs with different BMA-based copolymer shells were synthesized.Methacrylic acid (MAA) and acrylic acid (AA) were employed as monomers tocopolymerize with BMA. The performances of MicroPCMs have been improved whenMAA or AA was introduced to the polymer shells. Furthermore, heat capacity andthermal stability enhanced with the increasing of MAA content in the acryliccomposition of the shell. Thermal images showed that the gypsum board withincorporated P(BMA-co-MAA)/n-octadecane microcapsules possessedtemperature-regulated property.
引文
[1]张仁元.相变材料与相变储能技术.北京:科学出版社,2009:1-2.
    [2] Jegadheeswaran S, Pohekar S D. Performance enhancement in latent heat thermalstorage system: a review. Renewable and Sustainable Energy Reviews,2009,13(9):2225-2244.
    [3] Pitié F, Zhao C Y, Cáceres G. Thermo-mechanical analysis of ceramic encapsulatedphase-change-material (PCM) particles. Energy&Environmental Science,2011,4(6):2117-2124.
    [4] Regin A F, Solanki S C, Saini J S. Heat transfer characteristics of thermal energystorage system using PCM capsules: A review. Renewable and Sustainable EnergyReviews,2008,12(9):2438-2458.
    [5] Gil A, Medrano M, Martorell I, et al. State of the art on high temperature thermalenergy storage for power generation. Part1-Concepts, materials and modellization.Renewable and Sustainable Energy Reviews,2010,14(1):31-55.
    [6] Xia L, Zhang P, Wang R Z. Numerical heat transfer analysis of the packed bed latentheat storage system based on an effective packed bed model. Energy,2010,35(5):2022-2032.
    [7] Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phasechange materials and applications. Renewable and Sustainable energy reviews,2009,13(2):318-345.
    [8]缪春燕.典型有机相变储能材料的绿色微封装及其性能研究:[博士学位论文].北京:清华大学材料科学与工程系,2008.
    [9] Huang L, Petermann M, Doetsch C. Evaluation of paraffin/water emulsion as a phasechange slurry for cooling applications. Energy,2009,34:1145–1155.
    [10]马素德.新型复合化相变储能材料的制备与性能研究:[博士后出站报告].北京:清华大学材料科学与工程系,2010.
    [11] Pasupathy A, Velraj R, Seeniraj R V. Phase change material-based buildingarchitecture for thermal management in residential and commercial establishments.Renewable and Sustainable Energy Reviews,2008,12(1):39-64.
    [12] Song G, Ma S, Tang G, et al. Preparation and characterization of flame retardantform-stable phase change materials composed by EPDM, paraffin and nanomagnesium hydroxide. Energy,2010,35(5):2179-2183.
    [13]李伟.正十八烷微/纳/大胶囊的研制及性能:[博士学位论文].天津:天津工业大学材料工程与化学科学学院,2008.
    [14] Farid M M, Khudhair A M, Razack S, et al. A review on phase change energy storage:materials and applications. Energy conversion and management,2004,45(9):1597-1615.
    [15] Zhang Y, Zhou G, Lin K, et al. Application of latent heat thermal energy storage inbuildings: State-of-the-art and outlook. Building and Environment,2007,42(6):2197-2209.
    [16]宋健,陈磊,李效军.微胶囊化技术及应用.北京:化学工业出版社,2001:74-75.
    [17]张兴祥,王馨,吴文健.相变材料胶囊制备与应用.北京:化学工业出版社,2009:38.
    [18] Palanikkumaran M, Gupta K K, Agrawal A K, et al. Highly stablehexamethylolmelamine microcapsules containing n-octadecane prepared by in situencapsulation. Journal of Applied Polymer Science,2009,114(5):2997-3002.
    [19] Fan Y F, Zhang X X, Wu S Z, et al. Thermal stability and permeability ofmicroencapsulated-octadecane and cyclohexane. Thermochimica acta,2005,429(1):25-29.
    [20] Zhang X, Tao X, Yick K, et al. Structure and thermal stability of microencapsulatedphase-change materials. Colloid and polymer science,2004,282(4):330-336.
    [21] Tseng Y H, Fang M H, Tsai P S, et al. Preparation of microencapsulated phase-changematerials (MCPCMs) by means of interfacial polycondensation. Journal ofmicroencapsulation,2005,22(1):37-46.
    [22]刘星,汪树军,刘红研. MUF/石蜡的微胶囊制备.高分子材料科学与工程,2006,22(2):235-238.
    [23] Zhang G S Z. Mechanical properties of melamine-formaldehyde microcapsules.Journal of microencapsulation,2001,18(5):593-602.
    [24] Sun G, Zhang Z. Mechanical strength of microcapsules made of different wallmaterials. International Journal of Pharmaceutics,2002,242(1):307-311.
    [25] Su J F, Huang Z, Ren L. High compact melamine-formaldehyde microPCMscontaining n-octadecane fabricated by a two-step coacervation method. Colloid andPolymer Science,2007,285(14):1581-1591.
    [26] Su J F, Wang L X, Ren L, et al. Mechanical properties and thermal stability ofdouble-shell thermal-energy-storage microcapsules. Journal of applied polymerscience,2007,103(2):1295-1302.
    [27]梁治齐.微胶囊化技术及应用.北京:轻工业出版社,1999:17-28.
    [28] Shin Y, Yoo D I, Son K. Development of thermoregulating textile materials withmicroencapsulated phase change materials (PCM). II. Preparation and application ofPCM microcapsules. Journal of Applied Polymer Science,2005,96(6).
    [29] Zhang X X, Tao X M, Yick K L, et al. Expansion space and thermal stability ofmicroencapsulated n‐octadecane. Journal of applied polymer science,2005,97(1):390-396.
    [30] Salaün F, Devaux E, Bourbigot S, et al. Thermoregulating response of cotton fabriccontaining microencapsulated phase change materials. Thermochimica Acta,2010,506(1):82-93.
    [31] Jin Z, Wang Y, Liu J, et al. Synthesis and properties of paraffin capsules as phasechange materials. Polymer,2008,49(12):2903-2910.
    [32] Zhang X, Fan Y, Tao X, et al. Crystallization and prevention of supercooling ofmicroencapsulated n-alkanes. Journal of Colloid and Interface Science,2005,281(2):299-306.
    [33] Li W, Wang J, Wang X, et al. Effects of ammonium chloride and heat treatment onresidual formaldehyde contents of melamine-formaldehyde microcapsules. Colloidand Polymer Science,2007,285(15):1691-1697.
    [34] Mulligan J C, Colvin D P, Bryant Y G. Microencapsulated phase-change materialsuspensions for heat transfer in spacecraft thermal systems. Journal of Spacecraft andRockets,1996,33(2):278-284.
    [35] Liang C, Lingling X, Hongbo S, et al. Microencapsulation of butyl stearate as a phasechange material by interfacial polycondensation in a polyurea system. Energyconversion and management,2009,50(3):723-729.
    [36] Zou G L, Tan Z C, Lan X Z, et al. Preparation and characterization ofmicroencapsulated hexadecane used for thermal energy storage. Chinese ChemicalLetters,2004,15(6):729-732.
    [37] Zou G L, Lan X Z, Tan Z C, et al. Microencapsulation of n-hexadecane as a phasechange material in polyurea. Acta Phys Chim Sin,2004,20(1):90-93.
    [38] Cho J S, Kwon A, Cho C G. Microencapsulation of octadecane as a phase-changematerial by interfacial polymerization in an emulsion system. Colloid and polymerscience,2002,280(3):260-266.
    [39] Kwon J Y, Kim H D. Preparation and application of polyurethane-urea microcapsulescontaining phase change materials. Fibers and Polymers,2006,7(1):12-19.
    [40]李伟,唐国翌.高囊芯含量聚脲复合囊壁胶囊及其制造方法:中国,CN102000536A(专利公开号).
    [41] Su J F, Wang L X, Ren L, et al. Preparation and characterization of polyurethanemicrocapsules containing n-octadecane with styrene-maleic anhydride as a surfactantby interfacial polycondensation. Journal of applied polymer science,2006,102(5):4996-5006.
    [42] Kim E Y, Kim H D. Preparation and properties of microencapsulated octadecane withwaterborne polyurethane. Journal of applied polymer science,2005,96(5):1596-1604.
    [43]潘祖仁,翁志学,黄志明.悬浮聚合.北京:化学工业出版社,1997:5.
    [44] Sánchez L, Sánchez P, de Lucas A, et al. Microencapsulation of PCMs with apolystyrene shell. Colloid and Polymer Science,2007,285(12):1377-1385.
    [45]徐伟箭,陈海明,熊远钦,等.相变材料正十八烷微胶囊的制备和表征.湖南大学学报(自然科学版),2005,32(1):69-72.
    [46] Chaiyasat P, Ogino Y, Suzuki T, et al. Preparation of divinylbenzene copolymerparticles with encapsulated hexadecane for heat storage application. Colloid andPolymer Science,2008,286(2):217-223.
    [47]邓沃尔斯H R,维斯顿R,凯利R.颗粒状组合及其制备:中国, CN1946475A.
    [48] Miao C Y, Yao Y W, Tang G Y, et al. Preparation and characterization of silicamicrocapsules containing butyl-stearate via sol-gel method. Transactions ofNonferrous Metals Society of China,2007,17: s1018-s1021.
    [49] Miao C, Lü G, Yao Y, et al. Preparation of silica microcapsules containing octadecaneas temperature-adjusting powder. Chemistry Letters,2007,36(4):494-495.
    [50] Onder E, Sarier N, Cimen E. Encapsulation of phase change materials by complexcoacervation to improve thermal performances of woven fabrics. Thermochimica Acta,2008,467(1):63-72.
    [51] Basal G, Sirin Deveci S, Yalcin D, et al. Properties of n‐eicosane‐loaded silkfibroin‐chitosan microcapsules. Journal of Applied Polymer Science,2011,121(4):1885-1889.
    [52]邢琳,方贵银,杨帆.微胶囊相变蓄冷材料的制备及其性能研究.真空与低温,2006,12(3):153-156.
    [53]苏峻峰.用于墙体具有自调温功能相变储热微胶囊的制备及其性能研究.[硕士学位论文].河北工业大学,2004.
    [54] Hawlader M N A, Uddin M S, Zhu H J. Preparation and evaluation of a novel solarstorage material: microencapsulated paraffin. International journal of solar energy,2000,20(4):227-238.
    [55] Deveci S S, Basal G. Preparation of PCM microcapsules by complex coacervation ofsilk fibroin and chitosan. Colloid and Polymer Science,2009,287(12):1455-1467.
    [56] Hawlader M N A, Uddin M S, Khin M M. Microencapsulated PCM thermal-energystorage system. Applied energy,2003,74(1):195-202.
    [57]吕常钦.丙烯酸及酯生产与管理.北京:中国石化出版社,2009:6-15.
    [58] Sánchez-Silva L, Tsavalas J, Sundberg D, et al. Synthesis and characterization ofparaffin wax microcapsules with Acrylic-based polymer shells. Industrial&Engineering Chemistry Research,2010,49(23):12204-12211.
    [59] Loxley A, Vincent B. Preparation of poly (methylmethacrylate) microcapsules withliquid cores. Journal of colloid and interface science,1998,208(1):49-62.
    [60] Alkan C, Sar A, Karaipekli A, et al. Preparation, characterization, and thermalproperties of microencapsulated phase change material for thermal energy storage.Solar Energy Materials and Solar Cells,2009,93(1):143-147.
    [61] Alkan C, Sar A, Karaipekli A. Preparation, thermal properties and thermal reliabilityof microencapsulated n-eicosane as novel phase change material for thermal energystorage. Energy Conversion and Management,2011,52(1):687-692.
    [62] Sari A, Alkan C, Karaipekli A, et al. Microencapsulated n-octacosane as phase changematerial for thermal energy storage. Solar Energy,2009,83(10):1757-1763.
    [63] Sar A, Alkan C, Karaipekli A. Preparation, characterization and thermal properties ofPMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermalenergy storage. Applied Energy,2010,87(5):1529-1534.
    [64] Chang C C, Tsai Y L, Chiu J J, et al. Preparation of phase change materialsmicrocapsules by using PMMA network‐silica hybrid shell via sol-gel process.Journal of Applied Polymer Science,2009,112(3):1850-1857.
    [65] Taguchi Y, Yokoyama H, Kado H, et al. Preparation of PCM microcapsules by usingoil absorbable polymer particles. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2007,301(1):41-47.
    [66] Ma S, Song G, Li W, et al. UV irradiation-initiated MMA polymerization to preparemicrocapsules containing phase change paraffin. Solar Energy Materials and SolarCells,2010,94(10):1643-1647.
    [67] Shan X L, Wang J P, Zhang X X, et al. Formaldehyde-free and thermal resistantmicrocapsules containing n-octadecane. Thermochimica Acta,2009,494(1):104-109.
    [68] Sánchez-Silva L, Rodríguez J F, Romero A, et al. Microencapsulation of PCMs with astyrene-methyl methacrylate copolymer shell by suspension-like polymerisation.Chemical Engineering Journal,2010,157(1):216-222.
    [69] Xu J, Wan X, Zhang B, et al. Wax/P (MMA-co-AA) core-shell microcapsules. ChineseJournal of Acta Polymerica Sinica,2009,11:1154-1156.
    [70] Yang R, Xu H, Zhang Y. Preparation, physical property and thermal physical propertyof phase change microcapsule slurry and phase change emulsion. Solar energymaterials and solar cells,2003,80(4):405-416.
    [71] Alay S, G de F, Alkan C. Synthesis and thermal properties of poly (n-butylacrylate)/n-hexadecane microcapsules using different cross-linkers and theirapplication to textile fabrics. Journal of Applied Polymer Science,2011,120(5):2821-2829.
    [72] Borreguero A M, Carmona M, Sanchez M L, et al. Improvement of the thermalbehaviour of gypsum blocks by the incorporation of microcapsules containing PCMSobtained by suspension polymerization with an optimal core/coating mass ratio.Applied Thermal Engineering,2010,30(10):1164-1169.
    [73] Schossig P, Henning H M, Gschwander S, et al. Micro-encapsulated phase-changematerials integrated into construction materials. Solar Energy Materials and SolarCells,2005,89(2):297-306.
    [74]杨玉山,董发勤,甘四洋.相变储能混凝土的研究.功能材料,2007,2(38):276-278.
    [75] Hawes D W, Feldman D. Absorption of phase change materials in concrete. SolarEnergy Materials and Solar Cells,1992,27(2):91-101.
    [76] Entrop A G, Brouwers H J H, Reinders A. Experimental research on the use ofmicro-encapsulated Phase Change Materials to store solar energy in concrete floorsand to save energy in Dutch houses. Solar Energy,2011,85(5):1007-1020.
    [77] Lee W M. Microcapsule containing phase change material and article having same:WIPO: U.S.,2002053370(美国专利公开号).
    [78] Shim H, McCullough E A, Jones B W. Using phase change materials in clothing.Textile Research Journal,2001,71(6):495-502.
    [79] Bryant Y G, Colvin D P. Fiber with reversible enhanced thermal storage propertiesand fabrics made therefrom: U.S.,4756958(美国专利公开号).
    [80] Cox R. Synopsis of the new thermal regulating fiber outlast. Chemical fibersinternational,1998,48(6):475-479.
    [81]蔡利海,张兴祥.相变材料微胶囊的研究与应用.材料导报,2002,16(12):61-64.
    [82] Holman M E. The use of microencapsulated phase-change materials to enhance thethermal performance of apparel. ASME-PUBLICATIONS-HTD,1999,363:235-240.
    [83] Colvin D P, Bryant Y G. Protective clothing containing encapsulated phase changematerials. ASME Heat Transfer Div Publ HTD,1998,362:123-132.
    [84]焦剑,雷渭媛.高聚物结构、性能与测试.北京:化学工业出版社,2003:502.
    [85] Ha M, Lee K, Choe S. Crosslinkable functional moiety for the formation of highlycrosslinked stable microspheres in the precipitation polymerization. Polymer,2008,49(21):4592-4601.
    [86] McDonald C J, Bouck K J, Chaput A B, et al. Emulsion polymerization of voidedparticles by encapsulation of a nonsolvent. Macromolecules,2000,33(5):1593-1605.
    [87]钱蕾,陈水林.聚电解质在压敏显色微胶囊原位聚合法中的应用.中国纺织大学学报,1997,23(2):27-33.
    [88] Li W, Song G, Tang G, et al. Morphology, structure and thermal stability ofmicroencapsulated phase change material with copolymer shell. Energy,2011,36(2):785-791.
    [89] Zhang H, Wang X. Synthesis and properties of microencapsulated n-octadecane withpolyurea shells containing different soft segments for heat energy storage and thermalregulation. Solar Energy Materials and Solar Cells,2009,93(8):1366-1376.
    [90] Sarier N, Onder E. The manufacture of microencapsulated phase change materialssuitable for the design of thermally enhanced fabrics. Thermochimica Acta,2007,452(2):149-160.
    [91] Li W, Zhang X X, Wang X C, et al. Preparation and characterization ofmicroencapsulated phase change material with low remnant formaldehyde content.Materials Chemistry and Physics,2007,106(2):437-442.
    [92] Hawlader M N A, Uddin M S, Khin M M. Microencapsulated PCM thermal-energystorage system. Applied energy,2003,74(1):195-202.
    [93] Zhang X, Tao X, Yick K, et al. Structure and thermal stability of microencapsulatedphase-change materials. Colloid and polymer science,2004,282(4):330-336.
    [94]潘祖仁.高分子化学.北京:化学工业出版社,1996:72-73.
    [95]徐军,万贤,张冰清,等.石蜡/P (MMA-co-AA)核壳结构相变蓄能微胶囊的制备.高分子学报,2009,11:1154-1156.
    [96]何曼君,陈维孝,董西侠.高分子物理(修订版).上海:复旦大学出版社.2001:91.
    [97]何平笙.高聚物的力学性能(第二版).合肥:中国科技大学出版社,2008:131.
    [98] Jang J, Kim B S. Studies of crosslinked styrene–alkyl acrylate copolymers for oilabsorbency application. I. Synthesis and characterization. Journal of applied polymerscience,2000,77(4):903-913.
    [99] Ngai K L. The glass transition and the glassy state. Physical Properties of Polymers,Cambridge University Press, Cambridge, UK,2004:72-152.
    [100] Shang S, Huang S J, Weiss R A. Synthesis and characterization of itaconic anhydrideand stearyl methacrylate copolymers. Polymer,2009,50(14):3119-3127.
    [101] Stergiou G, Dousikos P, Pitsikalis M. Radical copolymerization of styrene and alkylmethacrylates: monomer reactivity ratios and thermal properties. European polymerjournal,2002,38(10):1963-1970.
    [102] Mabilleau G, Stancu I C, Honore T, et al. Effects of the length of crosslink chain onpoly (2-hydroxyethyl methacrylate)(pHEMA) swelling and biomechanical properties.Journal of Biomedical Materials Research Part A,2006,77(1):35-42.
    [103] Caycik S, Jagger R G. The effect of cross-linking chain length on mechanicalproperties of a dough-molded poly (methylmethacrylate) resin. Dental Materials,1992,8(3):153-157.
    [104] Pascu O, Garcia‐Valls R, Giamberini M. Interfacial polymerization of an epoxy resinand carboxylic acids for the synthesis of microcapsules. Polymer International,2008,57(8):995-1006.
    [105] Leyrer R J, M chtle W. Emulsion polymerization of hydrophobic monomers likestearyl acrylate with cyclodextrin as a phase transfer agent. MacromolecularChemistry and Physics,2000,201(12):1235-1243.
    [106]单新丽,王建平,刘妍,等.丙烯酸共聚物囊壁的正十八烷微胶囊的制备和性能表征.物理化学学报,2009,25(12):2590-2596.
    [107] Dutertre F, Pennarun P Y, Colombani O, et al. Straightforward synthesis of poly(lauryl acrylate)-b-poly (stearyl acrylate) diblock copolymers by ATRP. EuropeanPolymer Journal,2011,47(3):343-351.
    [108] Livshin S, Silverstein M S. Cross-linker flexibility in porous crystalline polymerssynthesized from long side-chain monomers through emulsion templating. Soft Matter,2008,4(8):1630-1638.
    [109] Suresh K I, Sitaramam B S, Raju K V S N. Effect of Copolymer Composition on theDynamic Mechanical and Thermal Behaviour of Butyl Acrylate‐AcrylonitrileCopolymers. Macromolecular materials and engineering,2003,288(12):980-988.
    [110] Meier M A R, Metzger J O, Schubert U S. Plant oil renewable resources as greenalternatives in polymer science. Chemical Society Reviews,2007,36(11):1788-1802.
    [111] Ma Y, Chu X, Li W, et al. Preparation and characterization of poly (methylmethacrylate-co-divinylbenzene) microcapsules containing phase change temperatureadjustable binary core materials. Solar Energy,2012.
    [112] Kolarz B N, Wojaczyńska M. Pentaerythritol triacrylate-homopolymer and itscopolymers with butyl acrylate. Polymer,1998,39(1):69-74.
    [113] You M, Zhang X X, Wang J P, et al. Polyurethane foam containing microencapsulatedphase-change materials with styrene–divinybenzene co-polymer shells. Journal ofmaterials science,2009,44(12):3141-3147.
    [114] Sánchez L, Sánchez P, Carmona M, et al. Influence of operation conditions on themicroencapsulation of PCMs by means of suspension-like polymerization. Colloid andPolymer Science,2008,286(8-9):1019-1027.
    [115] Zhang X X, Fan Y F, Tao X M, et al. Fabrication and properties of microcapsules andnanocapsules containing n-octadecane. Materials Chemistry and Physics,2004,88(2):300-307.
    [116] Tyagi V V, Kaushik S C, Tyagi S K, et al. Development of phase change materialsbased microencapsulated technology for buildings: a review. Renewable andSustainable Energy Reviews,2011,15(2):1373-1391.
    [117]单新丽,王建平,刘妍,等.丙烯酸共聚物囊壁的正十八烷微胶囊的制备和性能表征.物理化学学报,2009,25(12):2590-2596.
    [118] Talmatsky E, Kribus A. PCM storage for solar DHW: An unfulfilled promise?. SolarEnergy,2008,82(10):861-869.
    [119] Shukla A, Buddhi D, Sawhney R L. Solar water heaters with phase change materialthermal energy storage medium: A review. Renewable and Sustainable EnergyReviews,2009,13(8):2119-2125.
    [120] Tarhan S, Sari A, Yardim M H. Temperature distributions in trapezoidal built instorage solar water heaters with/without phase change materials. Energy conversionand management,2006,47(15):2143-2154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700