T91铁素体耐热钢相变过程及强化工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
T91(9Cr-1Mo-V-Nb-N)钢是高Cr铁素体耐热钢的代表钢种,广泛用于超临界发电厂锅炉管道上;同时也是开发更高使用温度的铁素体耐热钢材的研究基准。随着能源短缺和环境污染问题的日益突出,提高锅炉管用钢的耐热温度以及提高电厂热效率的研究势在必行。
     目前对T91钢的研究大都是从合金化、工艺性能、化学性能和工程使用上进行的,较少有关于该钢相变过程、组织控制及强化机理的报导。为深入地研究T91钢相变过程及机理、组织形成与演化规律以及探索铁素体耐热钢进一步强化的成型新工艺,本文综合采用线膨胀测量和现代材料分析方法,进行T91钢加热过程中奥氏体化、连续冷却转变以及冷却过程中等温停留与施加微小应力变形等情况下的T91钢相变过程的研究,以期系统地澄清T91钢的相变过程及规律,阐明其影响机理。并在此基础上进行T91钢强化工艺的热机械变形模拟,论证通过形变热处理进行组织细化,第二相的诱导析出来进一步强化T91钢的可行性。在大量实验研究与理论分析的基础上,取得了如下结论:
     (1)通过对升温过程中加热速度对T91钢奥氏体形成影响的研究,绘制了连续加热奥氏体化过程转变曲线,实验结果表明:
     加热速度显著影响T91钢的奥氏体形成开始温度( )和结束温度( ),加热速度愈大,和愈高,奥氏体形成速率愈快;奥氏体化速率的峰值与加热速度符合如下关系:(其中为奥氏体化速率,V为加热速度)。与此同时,碳化物溶解与加热速度密切相关,加热速度较低时,奥氏体中大量M23C6型碳化物溶解,改变了C浓度分布,从而促进MX型碳化物的形成,形成的MX型碳化物可有效避免奥氏体晶粒粗大;加热速度大到一定程度时,M23C6型碳化物在奥氏体加热过程中溶解得很少或是不溶,而是被高的加热速度推迟到奥氏体区保温阶段溶解;此外,较快的加热速度可使奥氏体初始晶粒度细化,但不利于奥氏体的均匀化。df /dtmax
     (2)澄清了T91钢连续冷却过程中的相变规律,确定了该钢发生马氏体转变的临界冷却速度,绘制了连续冷却转变曲线,研究表明:
     T91钢的连续冷却过程中只存在铁素体和马氏体转变区,10℃/min和2℃/min分别为奥氏体向马氏体转变的上临界冷却速度和下临界冷却速度。
     不同淬火速度对T91钢马氏体开始转变温度(Ms)有较大的影响,其不同于随冷速增加而相变点升高的经典理论。淬火速度通过碳原子气团、淬火空位和内应力的形成来影响过冷奥氏体状态,从而影响相变点;随淬火速度的增加,过冷奥氏体转变后的组织呈细化趋势,但当速度大于1000℃/min时,冷速的变化对组织形貌几乎没有影响。
     (3)通过对T91钢过冷奥氏体冷却过程中,在Ms点附近等温停留的奥氏体稳定化研究发现:
     在Ms点以上较高温度等温停留时,该钢表现出明显的反稳定化现象,即马氏体转变开始温度高于Ms点,并随保温时间延长反稳定化程度增加;
     在Ms点以上较低温度等温停留时,T91钢的马氏体转变开始温度低于Ms点;且随保温时间的延长继续降低;其最终组织仍为完全马氏体,属于伪稳定化。在Ms点以下附近温度(400℃)保温时,马氏体继续转变温度降低,但因转变温度较高,而且机械稳定化作用太小,所以室温组织仍没有残余奥氏体出现,亦属伪稳定化现象。
     当在380℃以下等温停留时,T91钢的奥氏体稳定化趋势显著,马氏体继续转变温度显著降低,发生不完全马氏体转变,组织中存在残余奥氏体,此时奥氏体稳定化过程受机械稳定化和热稳定化的双重因素影响。
     (4)针对T91钢过冷奥氏体冷却过程中,施加微小压应力变形的研究发现:
     T91钢在850℃温度以上施加应力不会促进马氏体的形成。在此温度以下施加应力将促进马氏体的形成,提高马氏体相变开始温度。应力作用下的T91钢存在两种转变机制:施加应力温度较高时,其转变机制属应变诱发马氏体,组织呈细化趋势,晶界形态趋于不规则;在施加应力温度较低时,属应力诱发马氏体转变,其形态与热诱发马氏体相似。440℃是应力诱发马氏体相变的开始温度,150~200MPa存在着440℃应力诱发马氏体相变的临界应力。
     (5)利用T91钢宽的奥氏体未再结晶区和含有Nb、V等元素的特点,进行了形变热处理诱导Nb/V碳氮化物析出,从而使其性能进一步强化的探索性研究,研究发现:
     形变热处理后T91钢显微组织发生显著的均匀细化,更重要的是该工艺可以为MX型Nb/V碳氮化物颗粒的析出提供更多的形核位置,从而来生成更多、更细小的弥散分布的MX型碳氮化物。
     通过拉伸实验表明:形变热处理可以明显提高T91钢的强度,使其进一步强化,说明了采用形变热处理工艺来提高铁素体耐热钢的使用温度是切实可行的。
T91(9Cr-1Mo-V-Nb-N)is the representative of high Cr ferritic heat-resistant steels, which has been widely used in high temperature structural components such as main steam pipe, superheater tube and resuperheater tube in advanced power plants in view of good mechanical properties, excellent oxidation-resistant properties, outstanding thermal properties relative to other elevated temperature alloys. So it is regarded as research benchmark for the development of new ferritic heat-resistant steels with higher application temperature. Furthermore,under the pressure of energy shortage and environment pollution,the study on the thermal efficiency of generating station and heat-resistant temperature of the boiler tube is also imperative.
     There are lots of papers which deal with alloying, processing property, chemistry property and potential engineering applications, etc, while few investigations on phase transformation and structural evolution of T91 steel are developing. In order to clarify the phase transformation process and mechanism, structural evolution and explore new forming process of T91 ferritic heat-resistant steel, the possible influence on the properties of T91 steel, such as austenization, continuous cooling transformation, isothermal holding, and applied stress were systematically characterized by means of high-resolution linear differential dilatometry and modern materials analysis methods. Controlled Rolling and Cooling process of T91 products was simulated in labs to demonstrate the feasibility of improving the mechanical properties through structural refinement and induced precipitation of secondary phase, results as following:
     (1) Austenization is not only the first stage for the heat treatment of iron and steels,but also the governing factor the state of undercooled austenite, which determines the final structure of steels. The curves of continuous heating transformation state the effect of heating rating on the austenization of T91 steel as following:
     Heating rate has a significant effect on the Ac1 temperature for the onset of austenization and the Ac3 temperature for the end of austenization. The thus determined temperatures of Ac1 and Ac3 increase with heating rate increasing. In case austenization rate evidently increase, the periods of austenization also shorten remarkably. The relation between the peak of transformation rate curve and the heating rate accords with the formulation:
     (With transformation rate and V heating rate). It is also found that the dissolution of carbonization is correlative to the heating rate. When heating rate is low, substantive M23C6 carbide dissolves. As a result, the formation of MX carbide profits from C concentration altering. Owing to the separation of MX carbide,the grains of austenite keep fine even at low heating rate. When the heating rate increase to some extent, most M23C6 carbide don’t dissolve until isothermal holding segment is adopted. The fast heating rate keeps initial grain size fine,but does harm to uniformity of austenite grains. df /dt
     (2) The rule of phase transformation of T91 steel during continuous cooling is clarified in this part, the martensite critical cooling speed is determined, and the continuous cooling transformation (CCT) curve is obtained. It follows:
     There reserve only ferritic and martensite during the process of continuous cooling of the explored T91 steel,10℃/min and 2℃/min are the upper and nether critical cooling rates for the phase transformation from austenite to martensite. The quenching rate has a significant effect on the onset temperature of Martensite transformation Ms. The result is different from the classical theory that claimed the transformation point falls when cooling rate reduces. The quenching rate determines the transform point by affecting the carbon atomic group, quenching vacancy and internal stress. With the quenching rate increasing, the structure has a tendency of fining, whereas the cooling rate beyond 1000℃/min, it has nothing on the morphology of the structure.
     (3) Study on the isothermal stabilization behaviors of austenite localizing near to Ms temperature during the cooling process of undercooled Austenite of T91 steel indicates:
     When isothermal holding temperature beyond upper Ms, T91 steel possess obvious anti-stabilization characterization. The tendency of anti-stabilization is strong with holding time prolonging. On the other hand, when isothermal holding temperature just beyond Ms, the martensite start temperature of T91 steel is less than Ms, and it decrease continuously with holding time prolonging, but ultimate structure keeps martensite without any residual austenite remaining,what is called false stabilization. While rest on 400℃under Ms, owing to the high transformation temperature,room temperature microstructure of T91 samples does not contain the residual austenite on action of mechanical stabilization, it can still be attributed to false stabilization. When isothermal transformation takes place under 380℃, austenite stabilization of the samples boosts up, the continued transformation temperature of austenization demand reduces, partial transformation of austenite occurs. There exists residual austenite in the final microstructure. At the moment, stabilization of austenite be enslaved to mechanical and heat stabilization treatments.
     (4) Study on the undercooled austenite applied external stress during cooling, the results demonstrate:
     In case of the temperature applied external stress over 850℃, the evidence of martensite formation is not observed in T91 steel, While it under 850℃, the result indicates the applied external stress not only facilitates the formation of martensite, but also enhances the onset temperature of the martensite transformation. It is summarized that there are two transformations occurring at this situation: when the temperature applied external compressive stress is high, the mechanism of strain-induced Martensite transformation acts on,as a result, the microstructure inclines to be fine, the grain boundary tends to be irregular. On the other hand, when the temperature applied external compressive stress is low, stress-induced Martensite transformation takes place, the morphology is similar to that of heat-induced martensite. The experiment data reveal that 200MPa is the critical stress for the explored T91 steel and 440℃is critical temperature of the start of the stress-induced martensite transformation.
     (5) The experiment of Thermal-Mechanical Control Process simulation have been preformed in the wide austenite non-recrystallization region of the explored T91 steel. The principle are verified the induced carbonitride precipitates by thermomechanical treatment can improve the properties of ferritic heat-resistant steel due to abundance Nb, V elements in T91 steel, the results show:
     The microstructure of T91 steel appears to be refined after thermomechanical treatment, furthermore, the process offers more nucleation positions that facilitate the formation of more nano-sized dispersing MX carbonitride precipitates.
     In addition, the tension experiment indicated thermomechanical treatment has a significant influence in improving the strength of T91 steel, all of these prove the tentative using thermomechanical treatment to enhance the working temperature of T91 steel is feasible.
引文
[1] M Yoshizawa,M Igarashi,Long-term creep deformation characteristics of advanced ferritic steels for USC power plants,International Journal of Pressure Vessels and Piping,2007,84(1-2):37-43
    [2] M J Beer,High efficiency electric power generation:the environmental role,Progress in Energy and Combustion Science,2007,33(2):107-134
    [3] C Stefano,Carbon dioxide separation from high temperature fuel cell power plants,Journal of Power Sources,2002,112(1):273-289
    [4] Y Yano,T Yoshitake,S Yamashita,et al,Tensile and transient burst properties of advanced ferritic/maxtensitic steel claddings after neutron irradiation,JNuclearMater,2007,367-370(1):127-131
    [5] A Alamo,J L Bertin,VK Shamardin,et al,Mechanical properties of 9Cr martensitic steels and ODS-FeCr alloys after neutron irradiation at 325℃up to 42 dpa,J Nuclear Mater,2007.367-370(1):54-59
    [6]L Enrico,A closer look at the fracture toughness of ferritic/martensitic steels,J Nuclear Mater,2007,367-370(1):575-580
    [7] J R Longwell,E S Rubin,J Wilson,Coal:Energy for the future,Progress in Energy and Combustion Science,1995,21(4):269-360
    [8]孟繁茂,付俊岩,现代含铌不锈钢,北京:冶金工业出版社,2004 189~199
    [9]太田定雄(著),张善元,张绍林(译),铁索体系耐热钢,北京:冶金工业出版社,2003 1~12
    [10] K Natesaaa,J H Park,Fireside and steamside corrosion of alloys for USC plants,International Journal ofHydrogen Energy,2007,32(16):3689-3697
    [11]赵钦新,顾海澄,陆燕荪,国外电站锅炉耐热钢的一些进展,动力工程,1998,18(1):74-83
    [12]杨华春,屠勇,超(超)临界机组锅炉钢管选材与国产化可行性,发电设备,2005,1:37-42
    [13]杨富,李为民,任永宁,超临界、超超临界锅炉用钢,电力设备,2004,5(10):41-46
    [14] K Natesaaa,J H Park,Fireside and steamside corrosion of alloys for USC plants,Intemational Journal ofHydrogen Energy,2007,32(16):3689-3697
    [15] J Steven Zinkle,Advanced materials for fusion technology,Fusion Engineering and Design,2005,74(1-4):31-40
    [16] J Chaaa-Seo,B Si-Yeon,K Dong-Hyun et al,Creep rupture life and variation of micro-structure according to aging time and creep test methods,Mater Sci Eng A,2007,449-451(25):155-158
    [17] F Abe,Bainitic and martensitic creep-resistant steels,Current Opinion in Solid State and Materials Science,2004,8(3-4):305-311
    [18] T Hirose,K Shiba,M Ando,et al,Joining technologies ofreduced activation ferritic/martensitic steel for blanket fabrication,Fusion Engineering and Design,2006,81(1-7):645-651
    [19] A Zemaa,L Debaxberis,J Kocik,et al,Microstructural analysis of candidate steels pre-selected for new advanced reactor systems,J Nuclear Mater,2007,362(2-3):259-267
    [20] K M Nikbin,M Yatomi,K Wasmer,et al,Probabilistic analysis of creep crack initiation and growth in pipe components,Intemational Journal of Pressure Vessels and Piping,2003,80(7-8):585-595
    [21]H S Cho,H Ohkubo,N 1wata,et al,Improvement of compatibility of advanced ferritic steels with super critical pressurized water toward a higher thermally efficient water-cooled blanket system,Fusion Engineering and Design,2006,81(8-14):1071-1076
    [22] C Coussement,A Dhooge,M de Witte,et al,High temperature properties of improved 9%Cr steel weldments.Intemational Journal of Pressure Vessels and Piping,1991,45(2):163-178
    [23]束国刚,T/P91钢国产化工艺组织和性能改进的研究与应用:[博士学位论文],武汉;武汉大学,2005
    [24] N Fujita,K ohmura,A Yamamoto,Changes of microstructures and high temperature properties during high temperature service of Niobium added ferritic stainless steels,Mater Sci Eng A,2003,351(1-2):272-281
    [25] M Hattestraaad,H O Andren,Influence of strain on precipitation reactions during creep of an advanced 9%chromium steel,Acta mater,2001,49(12):2123-2128
    [26] M Hattestrand,H O Andr6n,Boron distribution in 9-12%chromium steels,Mater Sci Eng A,1999,270(1):33-37
    [27] S R Holdsworth,Creep damage zone development in advanced 9%Cr steel weldments,Intemational Journal of Pressure Vessels and Piping,2001,78(11-12):773-778
    [28] J S Lee,H G Armaki,K Maruyaana,et al,Causes of breakdown of creep strength in 9Cr-18W-0.5Mo-VNb steel,Mater Sci Eng A,2006,428(1-2):270-275
    [29] S R Holdsworth,Creep damage zone development in advanced 9%Cr steel weldments,International Journal of Pressure Vessels and Piping,2001,78(11-12):773-778
    [30] T Kaito,T Narita,S Ukai,et al,High temperature oxidation behavior of ODS steels,J Nuclear Mater,2004,329-333(1):1388-1392
    [31] P J Ennis,A Zielinska-Lipiec,O Wachter,Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant,Acta Materialia,1997,45(12):4901-4907
    [32] S R Holdsworth,Creep damage zone development in advanced 9%Cr steel weldments,International Journal of Pressure Vessels and Piping,2001,78(11-12):773-778
    [33]赵钦新,10Cr9MoVNbN耐热钢的深化研究:[博士学位论文],西安;西安交通大学,1998
    [34] R Agamennone,w Blum,C Gupta,Evolution ofmicrostructure and deformaion resistance in creep oftempered martensitic 9-12%Cr-2%W-5%Co steels,Acta mater,2006,54(11):3003-3014
    [35]胡正飞,杨振国,高铬耐热钢的发展及其应用,钢铁研究学报,2003,15 (3):60.65
    [36]杨华春,屠勇,国外超临界锅炉用高温高压钢管材料特性及应用介绍,东方锅炉,2004,1:14-29
    [37] M Hattestraaad,M Schwind,H Andren,Microanalysis of two creep resistant 9-12%chromium steels,Mater Sci Eng A,1998,250(1):27-36
    [38] D J Allen,B Harvey,S J Brett,“F0uRcRAcK”-An investigation of the creep performance of advanced high alloy steel welds,International Journal of Pressure Vessels and Piping,2007,84(1-2):104-113
    [39] J Onoro,Weld metal microstructure analysis of 9-12%Cr steels,International Journal of Pressure Vessels and Piping,2006,83(7):540-545
    [40] L.P Antalffy,P N Chaku,D A Canonico,The potential for using high chromium ferritic alloys for hydroprocessing reactors,International Journal of Pressure Vessels and Piping,2002,79(8-10):561-569
    [41] T Uwaba,S Ukai,T Nakai,Properties of friction welds between 9Cr-ODS martensitic and ferritic-martensitic steels,J Nuclear Mater,2007,367-370(1):1213-1217
    [42] J ONoro,Weld metal microstructure analysis of 9-12%Cr steels,International Journal of Pressure Vessels and Piping,2006,83(7):540-545
    [43] G Gupta,Z Jiao,A N Ham,Microstructural evolution of proton irradiated T91,JNuclearMater,2006,351(1-3):162-173
    [44] K MiliCka,F Dobes,Small punch testing of P91 steel,International Journal of Pressure Vessels and Piping,2006,83(9):625-634
    [45] T Watanabe,M Tabuchi,M Yamazaki,et al,Creep damage evaluation of 9Cr-1Mo-V-Nb steel welded joints showing Type IV fracture,International Journal ofPressure Vessels and Piping,2006,83(1):63-71
    [46] S Spigarelli,E Quadrini,Analysis of the creep behaviour of modified P91 (9Cr-1Mo-NbV)welds,Materials&Design,2002,23(6):547-552
    [47]李亚江,王娟,周冰等,P91耐热钢焊接区的微观组织结构分析,焊接学报,2003,24(2):39-44
    [48]D Laverde,T G6mez-Acebo,Fraacisco Castro,Continuous and cyclic oxidation of T91 ferritic steel under steam,Corrosion Science,2004,46(3):613-631
    [49] Y Chen,K Sridharan,T Allen,Corrosion behavior of ferritic-martensitic steel T91 in supercritical water,Corrosion Science,2006,48(9):2843-2854
    [50] B Fournier,M Sauzay,C Caes,et al,Creep-fatigue-oxidation interactions in a 9Cr-1Mo maxtensitic steel Part I:effect oftensile holding period on fatigue lifetime,International Journal of Fatigue,2007,In Press
    [51] I A Shibli,N Le Mat Hamata,Creep crack growth in P22 and P91 welds- overview-from SOTA and HIDA projects,International Journal of Pressure Vessels and Piping,2001,78(11-12):785-793
    [52] N Le Mat Hamata,I A Shibli,Creep crack growth of seam-welded P22 and P91 pipes with artificial defects Part I Experimental study and post-test metallography,International Journal of Pressure Vessels and Piping,200 1,78(11-12):819-826
    [53] B Kim,C Jeong,B Lim,Creep behavior and microstructural damage of martensitic P92 steel weldment,Materials Science and Engineering,2007,In Press
    [54] E E1-Magd,J Gebhard,J Stuhrmann,Simulation of the creep behaviour of P92 sandwich structures at 650℃with loading transverse to the intermediate layer,Computational Materials Science,2007,39(2):446-452
    [55] P J Ennis,A Zielinska-Lipiec,O Wachter,Microstructural stability and creep rupture strength of the maxtensitic steel P92 for advanced power plant,Acta mater,1997,45(12):4901-4907
    [56] S Kunimitsu,Y You,N Kasuya,Y Sasaki,et al,Effect ofthermo-mechanical treatment on toughness of 9Cr-W ferritic-martensitic steels during aging.J Nuclear Mater,1991,179-181(1):689-692
    [57] P Ampornrat,G S Was,Oxidation of ferritic-martensitic alloys T91,HCMl2Aand HT-9 in supercritical water,J Nuclear Mater,2007.371(1):1-17
    [58] Y.YI,B Lee,S Kim,Corrosion and corrosion fatigue behaviors of 9cr steel in a supercriticalwater condition,Mater SciEngA,2006,429(1-2):161-168
    [59] T R Allen,L Tan,J Gan,et al,Microstructural development in advanced ferritic-maxtensitic steel HCM12A,JNuclearMater,2006,351(1-3):174-186
    [60] F Abe,M Tabuchi,M Kondo,et al,Suppression of Type IV fracture mad improvement of creep strength of 9Cr steel welded joints by boron addition,International Journal of Pressure Vessels and Piping,2007,84(1-2):44-52
    [61] P Auerkari,S HolmstrOm,J Veivo,et al,Creep damage and expected creep life for welded 9-11%Cr steels.International Journal of Pressure Vessels mad Piping,2007,84(1-2):69-74
    [62]刘正东,程世长,钒对T122铁索体耐热钢组织和性能的影响,特殊钢,2006,7(1):7-11
    [63]包汉生,傅万堂,程世长等,T122耐热钢中氮化硼(BN)化合物的探讨,钢铁,2005,40(10):68-71
    [64]曹金荣,刘正东,程世长等,T122耐热钢平衡相转变的热力学计算和分析,特殊钢,2005,26(6):16-21
    [65] R L Klueh,Reduced-activation bainitic and martensitic steels for nuclear fusion applications,Current Opinion in Solid State and Materials Science,2004,8(3-4):239-250
    [66] J Brozda,M Zeman,Wrong heat treatment of martensitic steel welded tubes caused major cracking during assembly of resuperheaters in a fossil fuel power plant,Engineering Failure Analysis,2003,10(5):569-579
    [67] R K Shiue,K C Laaa,C Chen,et al,Toughness and austenite stability of modified 9Cr-1Mo welds after tempering,Mater Sci Eng A,2000,287(1):10-16
    [68] K Rodak,A Hernas,A Kietbus,Substructure stability of highly alloyed martensitic steels for power industry,Materials Chemistry and Physics,2003,81(2-3):483-485
    [69] R L Klueh,A T Nelson,Ferritic/martensitic steels fornext-generation reactors,J Nuclear Mater,2007,371(1-3):37-52
    [70] P D Jablonski,D E Almaaa,Oxidation resistance and mechanical properties of experimental low-coefficient of thermal expansion(CTE)Ni-base alloys,International Journal ofHydrogen Energy,2007,32(16):3705-3712
    [71] J Ehlers,D J Young,E J Smaardijk,et al,Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments,Corrosion Science,2006,48(11):3428-3454
    [72]L Korcakova,J Hald,A J Somers,Quantification of Laves phase particle size in 9CrW steel,Materials Characterization,2001,47(2):111-117
    [73] S Holmstrom,P Auerkari,Predicting weld creep strength reduction for 9%Cr steels,International Journal of Pressure Vessels and Piping,2006,83(11-12):803-808
    [74]L Korcakova,J H Marcel,A J Somers,Quantification of Laves phase particle size in 9CrW steel,Materials Chaamcterization,2001,47(2):111-117
    [75] F Abe,M Taneike,K Sawada,Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized caacbonitrides,International Journal of Pressure Vessels mad Piping,2007,8(1-2):3-12
    [76] R L Klueh,N Hashimoto,P J Maziasz,et al,Development of new- nano-particle-strengthened martensitic steels,Scripta mater,2005,53(3):275-280
    [77]朱丽慧,赵钦新,顾海澄等,10cr9MolVNbN耐热钢强化机理研究,机械工程材料,1999,23(1):6-8
    [78]赵钦新,朱丽慧,顾海澄等,国产T91/P91的深化研究锅炉技术,1999,30(8):16-26
    [79]徐德录,郭军,陈玉成,T91钢的性能及在我国电站锅炉中的应用前景,电力建设,1999,3(2):12-16
    [80] H.Y Lee,S H Lee,Jong-Bum Kim,Creep-fatigue damage for a structure with dissimilar metal welds of modified 9Cr-1Mo steel and 316L stainless steel,International Journal ofFatigue,2007,29(9-11):1868-1879
    [81] F Masuyama,Creep degradation in welds of Mod 9Cr-1Mo steel,International Journal ofPressure Vessels and Piping,2006,83(11-12):819-825
    [82] A H Yaghi,T H Hyde,A A Becker,Residual stress simulation in welded sections of P91 pipes,Journal of Materials Processing Technology,2005,167(2-3):480-487
    [83] I Nonaka,T Ito,F Takemasa,Full-size internal-pressure creep test for welded P91 hot reheat piping.International Journal of Pressure Vessels and Piping,2007,84(1-2):88-96
    [84] I Nonaka,T Ito,F Takemasa,Full size internal pressure creep test for welded P91 hot reheat elbow,International Journal of Pressure Vessels and Piping,2007,84(1-2):97-103
    [85] F Abe,T Horiuchi,M Taneike,Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature,Mater Sci Eng A,2004,378(1-2):299-303
    [86]翁宇庆,超细晶钢--钢的组织细化理论与控制技术,北京:冶金工业出版社,2003 10-26
    [87]王昭东,应用形变热处理原理开发HQ685高强钢板:[博士学位论文],沈阳;东北大学,1998
    [88] T H Hyde,A A Becker,w Sun,Finite-element creep damage analyses of P91 pipes,International Journal of Pressure Vessels and Piping,2006,83(11-12):853-863
    [89]宛农,张家福,周静彬等,Mod9Cr-1Mo耐热钢析出相的热力学计算及应用,特殊钢,1999,20(2):20-23
    [90] Y S Li,M Spiegel,S Shimada,Effect of Al/Si addition on KCl induced corrosion of 9%Cr steel,Mater Lett,2004,58(29):3787-3791
    [91]王起江,邹风呜,T91高压锅炉管的研制与应用,发电设备,2005,1:43-47
    [92] F G Caballero,C Capdevila,L F Alvarez,et al,Thermoelectric power studies on a martensitic stainless steel,Scripta Mater,2004,50(7):1061-1066
    [93] S J Zinkle,Advanced materials for fusion technology,Fusion Engineering and Design,2005,74(1-4):31-40
    [94]孙智,董小文,张绪平等,奥氏体化温度对9Cr-1Mo-V-Nb钢组织与性能的影响,金属热处理,2001,26(8):12-14
    [95]杨钢,程世长,林肇杰,国内外T91耐热钢管质量对比分析,机械工程材料,2002,26(2):26-31
    [96]X Jia,Y Dai,Micro-hardness measurement and micro-structure characterization of T91 weld metal irradiated in SINQ Taacget-3.J Nuclear Mater,2005,343(1-3):212-218
    [97] c R Das,S K Albert,A K Bhaduri,et al,Effect of Prior Microstructure on Microstructure and Mechanical Properties of Modified 9Cr-1Mo Steel Weld Joints.Mater Sci Eng A.2007.In Press
    [98] P Chellapandi,S C Chetal,Influence of mis-match of weld and base material creep properties on elevated temperature design ofpressure vessels and piping,Nuclear Engineering and Design,2000,195(2):189-196
    [99] I Nonaka,T Ito,F Takemasa,Full-size internal-pressure creep test for welded P91 hot reheat piping.International Journal of Pressure Vessels and Piping.2007,84(1-2):88-96
    [100]F Masuyama,Creep degradation in welds of Mod 9Cr-1Mo steel,International Journal ofPressure Vessels and Piping.2006.83(11-12):819-825
    [101]R Mythili,V T Paul,S Saroja,et al,Microstructural modification due to reheating in multipass manual metal arc welds of 9Cr-1Mo steel,J Nuclear Mater,2003,312(2-3):199-206
    [102]龙听,胥永刚,蔡光军,9%Cr耐热钢焊缝金属连续冷却组织转变,焊接学报,2000,21(1):53-55
    [103]D Deng,H.Murakawa,Prediction of welding residual stress in multi-pass butt-welded modified 9Cr-1Mo steel pipe considering phase transformation effects,Computational Materials Science,2006,37(3):209-219
    [104]A A Mazrouee,R K Singh Raman,R N Ibrahim,Effect of post weld heat treatment on the oxide scaling of Cr-Mo steel weldments,Journal of Materials Processing Technology,2005,164-165(5):964-970
    [105]S Holmstr6m,P Auerkari,Predicting weld creep strength reduction for 9%Cr steels,International Journal of Pressure Vessels and Piping,2006,83(11-12):803-808
    [106]A H Yaghi,T H Hyde,A A Becket et al,Residual stress simulation in welded sections of P91 pipes,Journal of Materials Processing Technology, 2005,167(2-3):480-487
    [107]w H.Lee,R K Shiue,C Chen,Mechanical properties ofmodified 9Cr-1Mo steel welds with notches,Mater Sci Eng A,2003,356(1-2):153-161
    [108]M Hattestrand,M Schwind,H.O Andren,Microanalysis of two creep resistant 9-12%chromium steels,Mater Sci Eng A,1998,250(1):27-36
    [109]朱丽慧,赵钦新,顾海澄等,10cr9MovNbN耐热钢的动态断裂韧度研究,西安交通大学学报,1999,33(2):41-48
    [110]K Sawada,F Abe,K Kimura,Deformaion behavior of high Cr ferritic steel upon abrupt stress loading,Mater Sci Eng A,2004,387-389(15):683-686
    [111]F Abe,Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels,Mater Sci Eng A,2004,387-389(15):565-569
    [112]B C Schaffernak,H H Cerjak,Design of improved heat resistant materials byuse ofcomputational thermodynmnics,Calphad,2001,25(2):241-251
    [113]T R Allen,L Tan,J Gan,Microstructural development in advanced ferritic maxtensitic steel HCMl2A,J Nuclear Mater,2006,351(1-3):174-186
    [114]S S Hwang,B H Lee,J G Kim,et al,SCC and corrosion evaluations ofthe F/M steels for a supercritical water reactor,J Nuclear Mater,2007,In Press
    [115]Y Chen,K Sridharan,T R Allen,Microstructural exmnination of oxide layers formed on an oxide dispersion strengthened ferritic steel exposed to supercritical water,J Nuclear Mater,2006,359(1-2):50-58
    [116]耿波,刘江南,赵颜芬等,T91钢高温水蒸汽氧化层形成机理研究,铸造技术,2004,25(12):914-920
    [117]A Heinzel,M i Kondo,M Takahashi,Corrosion of steels with surface treatment and Al-alloying by GESA exposed in lead-bismuth,J Nuclear Mater,2006,350(3):264-270
    [118]H S Cho,A Kimura,S Ukai,et al,Corrosion properties of oxide dispersion strengthened steels in super-critical water environment,J Nuclear Mater,2004,329--333(1):387--391
    [119]B A Pint,I G Wright,Long-term high temperature oxidation behavior of ODS ferritics,J Nuclear Mater,2002,307-311(1):763-768
    [120]B Hadzima,M JaJaecek,Y Estrin,et al,Microstructure and corrosion properties of ultrafine-grained interstitial free steel,Mater Sci Eng A,2007,462(1-2):243-247
    [121]L Tan,M T Machut,K Sridharan,et al,Corrosion behavior of a ferritic/martensitic steel HCM 12A exposed to harsh environments,J Nuclear Mater, 2007,371(1-3):161-170
    [122]G Gupta,E Ampornrat,X Ren,et al,Role of grain boundary engineering in the SCC behavior of ferritic martensitic alloy HT-9,J Nuclear Mater,2007,361(2-3):160-173
    [123]H S Cho,A Kimura,Corrosion resistance of high-Cr oxide dispersion strengthened ferritic steels in super-critical pressurized water,J Nuclear Mater,2007,367-370(1):1180-1184
    [124]T Hirose,K Shiba,M Enoeda,et al,Corrosion mad stress corrosion cracking of ferritic/martensitic steel in super critical pressurized water,J Nuclear Mater,2007.367-370(1):1185-1189
    [125]H H Young,P C Jin,K H Sang,Effects of non-metallic inclusions on the initiation of pitting corrosion in 11%Cr ferritic stainless steel examined by micro-droplet cell,Corrosion Science,2007,49(3):1266-1275
    [126]S Balaji,G Joshi,A Upadhyaya,Corrosion behavior of sintered aluminide- reinforced ferritic stainless steel,Scripta Mater,2007,56(2):149-151
    [127]T Sundararajan,S Kuroda,J Kawakita,High temperature corrosion of nanoceria coated 9Cr-1Mo ferritic steel in air and steam,Surface and Coatings Technology,2006,201(6):2124-2130
    [128]S Dryepondt,Y Zhang,B A Pint,Creep and corrosion testing of aluminide coatings on ferritic-martensitic substrates,Surface and Coatings Technology, 2006,201(7):3880-3884
    [129]X Ren,K Sridhaxan,T R Allen,Corrosion of ferritic-martensitic steel HT9 in supercritical water,J Nuclear Mater,2006,358(2-3):227-234
    [130]L S Uk,A J Chen,K D Hyun,et al,Influence of chloride and bromide anions on localized corrosion of 15%Cr ferritic stainless steel,Mater Sci Eng A,2006,434(1-2):155-159
    [131]K Sawada,T Ohba,H Kushima,Effect of microstructure on elastic property at high temperatures in ferritic heat resistant steels,Mater Sci Eng A,2005,394(1-2):36-42
    [132]Y Chen,K Sridharan,T Allen,Corrosion behavior of ferritic-martensitic steel T91 in supercritical water,Corrosion Science,2006,48(9):2843-2854
    [133]P Chan-Jin,A Myung-Kyu,K Hyuk-Sang,Influences of Mo substitution by W on the precipitation kinetics of secondary phases and the associated localized corrosion and embrittlement in 29%Cr ferritic stainless steels,Mater Sci Eng A,2006,418(1-2):211-217
    [134]H S Cho,H Ohkubo,N 1wata,et al,Improvement of compatibility of advanced ferritic steels with super critical pressurized water toward a higher thermally efficient water-cooled blanket system,Fusion Engineering and Design,2006,81(8-14):1071-1076
    [135]N Eun-Young,K Jae-Yong,B Shin-Young,Electrochemical evaluation of crevice corrosion of 430 ferritic stainless steel using the microcapillary tube technique,Desalination,2005,186(1-3):65-74
    [136]Y Kurata,M Futakawa,S Saito,Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb-Bi at 450 and 550℃.J Nuclear Mater,2005.343(1-3):333-340
    [137]H S Cho,A Kimura,S Ukai,et al,Corrosion properties of oxide dispersion strengthened steels in super-critical water environment,J Nuclear Mater,2004,329--333(1):387--391
    [138]M A Uusitalo,P M J Vuoristo,T A Mfintylfi,High temperature corrosion of coatings mad boiler steels in reducing chlorine-containing atmosphere,Surface and Coatings Technology,2002,161(2-3):275-285
    [139]M H Ras,P C Pistorius,Possible mechanisms for the improvement by vanadium ofthe pitting corrosion resistance of 18%chromium ferritic stainless steel,Corrosion Science,2002,44,(11):2479-2490
    [140]J W Darbyshire,J Barford,The mechanism of phase transformations in crystalline solids,The Institute of Metals,Monograph and Report Series N033,London:The Institute of Metals,1969,65
    [141]张世中,钢的过冷奥氏体转变曲线图集,北京:冶金工业出版社,1993.1-10
    [142]Y C Liu,F Sommer,E J Mittemeijer.Abnormal austenite ferrite transformation behaviour in substitute Fe-base alloys,Acta Mater,2003,51(2):507-519
    [143]姚可夫,钱滨,石伟等,马氏体回火过程中组织转变量预测的实验研究,金属学报,2003,39:892-896
    [144]王然,贺明贤,热处理对T91钢金相组织及显做硬度的影响,金属热处理,2000(11):6-8
    [145]A Garcia-Junceda,C Capdevila,F G Caballero,et al,Dependence of martensite start temperature on fine austenite grain size,Scripta mater,2008,58(2):134-137
    [146]A Danon,C Servant,A Alamo,et al,Heterogeneous austenite grain growth in 9Cr maxtensitic steels:influence of the heating rate and the austenitization temperature,Mater Sci Eng A,2003,348(1-2):122-132
    [147]G Gupta,G S Was,The role of grain boundary engineering on the high temperature of ferritic-martensitic Alloy T91,Journal of ASTM international,2005.2:1-11
    [148]刘云勋,金属热处理原理,北京:机械工业出版社,1981.1-30
    [149]F G Caballero,C Capdevila,Modelling of kinetics and dilatometric behaviour of austenite formation in a low--carbon steel with a ferrite plus pearlite initial microstructure,J Mater Sci,2002,37:3533-3540
    [150]J Onoro,Martensite microstructure of 9-12%Cr steels weld metals,Journal of Materials Processing Technology,2006,180(1-3):137-142
    [151]A Orlova J Bursik K Kuchasova,et al,Microstructural development during high temperature creep of 9%Cr steel,Mater Sci Eng A,1998,245(1):39-48
    [152]J Onoro,Weld metal microstructure analysis of 9-12%Cr steels,International Journal of Pressure Vessels and Piping,2006,83(7):540-545
    [153]胡光立,谢希文,钢的热处理,西安:西北工业大学出版社,1993 6-17
    [154]C Garcia de Andres,F G Caballero,C Capdevila,et al,Modelling of kinetics and dilatometric behavior of non--isothermal pearlite--to--austenite transformation in an eutectoid steel,Scripta Mater,1998,39(6):791-796
    [155]L Zhao,T A Kop,Quantitative dilatometric analysis ofintercritical annealing in a low-silicon TRIP steel,J Mater Sci,2002,37(5):1585-1591
    [156]徐祖耀,马氏体相变与马氏体,北京:科学出版社,1999
    [157]王国栋,刘相华,朱伏先等,新一代钢铁材料的研究开发现状和发展趋势,鞍钢技术,2005,4:1-8
    [158]王国栋,刘相华,吴迪,节约型钢铁材料及其减量化加工制造,轧钢,2006,23(2):1-5
    [159]徐祖耀,应力作用下的相变,热处理,2004,(19)2:1-16
    [160]朱伏先,刘川,王平等,9Cr-1Mo-V-Nb钢高温变形规律的研究,钢管,1999,28(2):8-13
    [161]M Tadashi,Stainless steel:progress in thermomechaaaical treatment,Current Opinion in Solid State and Materials Science,1997,2(3):290-295
    [162]R L Klueh,N Hashimoto,P J Maziasz,New-nano-particle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment,J Nuclear Mater,2007,367-370(1):48-53
    [163]M Mackenzie,A J Craven,C L Collins,et al,Nanoanalysis of very fine VN precipitates in steel,Scripta mater,2006,54(1):1-5
    [164]F G Caballero,A Garcia-Junceda,C Capdevila,et al,Precipitation of M23C6 carbides:thermoelectric power measurements,Scripta mater,2005,52(6):501-505
    [165]M Taneike,F Abe,K Sawada,Creep-strengthening of steel at high tem peratures using naylo-sized carbonitribe dispersions,Nature,2003,424:294-296
    [166]M Yoshino,Y Mishima,Y Toda,et al,Phase equilibrium between austenite and MX caxbonitridein a9Cr-1Mo-V-Nb Steel.ISIJIntemational.2005.1:107-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700