一种新型致真菌性足菌肿的马杜拉分支菌TMMU3956的表型及分子特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
足菌肿是一种热带或亚热带疾病,该病的世界分布极其不均,南纬15?和北纬30?之间的区域为足菌肿高发区,尤以南亚的印度、非洲的苏丹和南美的墨西哥发病率为最高。据苏丹喀土穆中心医院的保守统计,足菌肿的就诊率大约在300~400人/年度。而地处温带和寒带的国家发病率较低,罕见于中国。据不完全统计,1960~2009这半个世纪以来,我国共有足菌肿的报道18例,发病率不足1人/年度。
     足菌肿可发生于全身任何部位,其中以足部最多见,约占70%,其次为手、四肢、肩背、臀部、会阴。一些罕见部位如胸腹壁、睾丸、女阴、腭部、眼睑、眶内、鼻旁窦、脑、肺、脊柱、胆囊、手术切口处也有报道。头颈部足菌肿的发生率为3.75%,一个无法解释的现象是:发生在头面部的足菌肿,80%由放线菌引起,仅有不足20%由真菌引起。尽管头颈部足菌肿发病率低,但后果严重且非常难以治疗。
     根据致病菌种类的不同,足菌肿分为真菌性足菌肿和放线菌性足菌肿两种。马杜拉分支菌是真菌性足菌肿最常见的致病菌,已知的致病菌种有两种:足菌肿马杜拉分支菌和灰色马杜拉分支菌。足菌肿马杜拉分支菌在过去一直被认为是同质的,不存在多态现象。但是,随着分子生物学的发展,越来越多的证据表明足菌肿马杜拉分支菌和灰色马杜拉分支菌的异质现象非常明显,很有可能存在其它菌种。系统进化分析甚至显示足菌肿马杜拉分支菌和灰色马杜拉分支菌的进化距离很远,极大可能不属于一个种属。
     本课题报道了重庆地区一例罕见的发生在下颌部的真菌性足菌肿,研究该病例的意义不仅在于它发病部位的特殊性和地域的罕见性,更重要的是我们从患者下颌部黑色颗粒中分离到一株国内罕见的暗色真菌,常规真菌学无法判知其种属。经ITS区测序发现,该真菌与足菌肿马杜拉分支菌有最大的相似性,但相似性小于95%,极大可能是马杜拉分支菌属一新的菌种,菌株编号为TMMU3956。
     鉴于马杜拉分支菌混乱的分类学范畴,本研究的目的在于获得TMMU3956详尽的形态学、理化特性、药物敏感性、动物致病性和分子生物学等方面的资料,为证明它是马杜拉分支菌属一新的菌种提供证据,并对马杜拉分支菌的进化起源和分类学进行探讨。
     我们以TMMU3956为研究对象,将菌株接种在沙堡氏培养基(SDA)、马铃薯培养基(PDA)、脑心浸膏培养基(BHIA)、察氏培养基(CDA)和玉米培养基(CMA)上行平皿培养和玻片培养,8周后观察菌落宏观形态和光镜、扫描电镜下微观形态。行温度试验、同化试验观察其理化特性。采用改良的美国临床实验室标准化协会(CLSI)M-38A方案对TMMU3956进行体外药敏试验,测试药物包括氟康唑、氟胞嘧啶、伊曲康唑、两性霉素B、特比萘芬和伏立康唑。玻璃珠-盐析法提取TMMU3956的DNA,使用通用引物和足菌肿马杜拉分支菌特异性引物扩增真菌的ITS1、ITS2、D1/D2、18S和ITS1+2区,测序后进行BLAST,并选取有代表性的40种真菌性足菌肿致病菌行系统进化分析。最后用TMMU3956感染免疫正常的和免疫抑制的BALB/c小鼠和新西兰大白兔,观察动物致病性。
     结果显示:光镜与电镜下,该真菌至少观察到两种无性繁殖方式:瓶梗产孢和孢子囊孢子产孢。最佳生长温度为37℃,最高耐热温度为42℃。能同化葡萄糖、阿拉伯糖、木糖、纤维二糖、麦芽糖、海藻糖。对伊曲康唑、两性霉素B、伏立康唑高度敏感,特比萘芬中度敏感,对氟胞嘧啶和氟康唑耐药。未检测到BALB/c小鼠和新西兰大白兔致病性。18S和ITS1+2区与足菌肿马杜拉分支菌的相似性分别为100%和93%,足菌肿马杜拉分支菌特异性探针无法扩增TMMMU3956。系统进化分析显示TMMU3956与足菌肿马杜拉分支菌遗传距离最近,同属于子囊菌门核菌纲;而灰色马杜拉分支菌属于子囊菌门腔菌纲,与TMMU3956相去甚远。
     根据TMMU3956的形态学、理化特性、rDNA的序列分析及系统进化分析,我们认为该菌株有别于足菌肿马杜拉分支菌和灰色马杜拉分支菌,支持该菌株为马杜拉分支菌属一新的致病菌种。
Mycetoma is a chronic granulomatous subcutaneous infection caused by true fungi (eumycetoma) or bacterial actinomycetes (actinomycetoma). The pathogens involved are found in the environment in certain types of soil and are directly inoculated into the subcutaneous tissues, commonly in the foot, through minor trauma or a thorn prick. Mycetoma has a prolonged, progressive, and indolent course and, if untreated, ultimately leads to destruction of deeper tissues and bone, resulting in deformity and disability which may necessitate amputation. The triad of a subcutaneous painless mass, sinuses, and grains discharged through the sinuses is the hallmark of mycetoma.
     Mycetoma has a worldwide but uneven distribution. The disease is endemic in tropical and subtropical regions and the African continent has the highest prevalence. Eumycetoma prevails in the mycetoma belt that stretches between the latitudes of 15? south and 30? north. The belt includes Sudan, Somalia, Senegal, India, Yemen, Mexico, Venezuela, Columbia, Argentina, and other countries. In Sudan, An admission of 1231 mycetoma cases to outpatient clinics throughout the country within a period of 2~5 years was observed. The disease has also been extensively reported in India. But it is seldom encountered in Western countries. Most of the imported cases involved immigrants who probably contracted the infection in their home countries. This complicates the clinical diagnosis since it is frequently unexpected. Reports on mycetoma have come from the USA, Ceylon, Germany, Egypt, Turkey, Philippines, Japan, Lebanon, Thailand, Iran, Netherlands, and Saudi Arabia. What is more, the disease didn’t spare China. Between the decades of 1960~2009, 18 cases have been reported in China, of which 9 are eumycetoma and 9 are actinomycetoma.
     Mycetoma can affect any part of the body, and lesions are not restricted to the limbs only. Most cases are usually seen in the feet (70%), followed by hands (12%), then legs and knee joints. In highly endemic areas, other parts of the body might become affected as well. These include the arm, head and neck, thighs, and the perineum. Rarely, the chest and abdominal walls, facial bones, mandible, paranasal sinuses, eyelid, vulva, orbit, scrotum, and old surgical incisions might also be affected. The incidence of mycetoma infections of the head and neck is 3.75%. For unexplained reasons 80% craniofacial mycetoma was due to actinomycetes. Although the craniofacial mycetoma is rare, when affected it is the most difficult to treat. They can lead to serious complications arising from extension of swelling through the cranium that puts pressure on the brain. If the patient does not seek early medical care, the disease may run a rapidly fatal course.
     This study presents an extraordinary case of craniofacial eumycetoma extending from gum to lower jaw in a 27-year-old Chinese male. Our case is worth reporting not only by its rareness in China but also by its unusual affected site. Moreover, we have isolated a distinctive dematiaceous fungus from clinical specimens of this patient. By sequencing of the internal transcribed spacer (ITS) region, we found that it had maximum sequence identity with Madurella mycetomatis, one of the main microorganisms causing black-grain fungal mycetoma, but the similarity was less than 95%. It is proposed that the fungus is probably a novel species of genus Madurella and coded as TMMU3956 tentatively.
     Madurella species are well known agents responsible for eumycetoma. Two species are recognized, M. mycetomatis and M. grisea. The homogeneity of M. mycetomatis has been reported previously, at least in Sudan. By sequencing the ITS region with the ITS4 and ITS5 primers and using large-scale random amplification of polymorphic DNA(RAPD), those authors suggested that this fungus had a clonal origin. However, the same group that suggested a clonal origin of M. mycetomatis strains from Sudan has recently reported polymorphism within this species by using amplified fragment length polymorphism (AFLP). Those authors even suggested a possible relationship with clinical data such as lesion size. In the present study, the genus Madurella has been proven to be heterogeneous on the basis of rDNA small subunit (SSU) and ITS sequencing data. de Hoog et al. found that the ITS1+2 sequences of four M. mycetomatis clinical strains, CBS201.38, from Indonesia, CBS248.48, from New Mexico, USA, CBS216.29, from Italy, and CBS217.55, from Argentina, have significant difference (average 5.3%) and supposed that the sequence variability at ITS locus of‘M. mycetomatis’might be related to the geographical area and the climatic environment. In addition, another investigation showed that 7 out of 15 M. mycetomatis strains diverged significantly from the type strain such as IP582.60, IP584.78, IP592.74 and IP1137.76 by comparison of the ITS2 regions. These strains were tentatively identified as Madurella sp. In fact, the CBS collection holds a number of strains from other climatic zones which showed more than 5% ITS difference and thus are likely to be a separate species. On the other hand, Madurella grisea were demonstrated to be more heterogeneous and closer to some Pyrenochaeta romeroi strains than to type M. grisea strains by comparison of the ITS sequences. Sequencing of the SSU rDNA gene of the authentic strain of M. mycetomatis (CBS247.48) and M. grisea (CBS331.55) revealed that M. mycetomatis was close to the genera Neurospora, Sordaria and Podospora, which all belong to the order Sordariales of ascomycetes, whereas M. grisea clustered with species of the genera Leptosphaeria, Cucurbidothis, Westerdykella and Sporormia, which are members of the order Pleosporales belong to ascomycetes. These data prove that‘Madurella’has been currently applied as an umbrella term covering partly unrelated species. The taxonomic positions of M. grisea need improvement, and the identification of new species responsible for eumycetoma is warranted.
     In this study, we try to provide evidences for demonstrating that our strain is different from M. mycetomatis and M. grisea and to facilitate the timely administration of effective therapy by elucidating the morphological and physiological characteristics, antifungal susceptibility, experimental animal pathogenicity and rRNA gene sequence of M. TMMU3956. In concrete, we inoculated M. TMMU3956 onto plate and slide culture of different medium. Both gross morphological and microscopic observations were made in addition to scanning electron microscopy. The temperature test between 25~42℃and assimilation assay with API AUX 20C was carried out. Antifungal susceptibility test with itraconazole, voriconazole, amphotericin B, terbinafine, fluconazole and flucytosine was performed according to a modified CLSI 38-A method. Finally, the DNA extraction was conducted by the glass beads-salting out procedure and rDNA sequences were amplified with ITS, 18S and 28S primers. A Phylogenetic analysis tree was constructed based on the ITS1+2 sequences. In addition, an animal experiment with BALB/C mice and New Zealand white rabbits was attempted.
     The results showed that at least two ways of asexual multiplication, the phialospores and sporangiospores, were observed. The fungus could tolerate 42°C. Assimilation of glucose, arabinose, xylose, cellose, maltose and trehalose was positive. Antifungal susceptibility test indicated that it was highly susceptible to itraconazole, voriconazole and amphotericin B, moderately susceptible to terbinafine, and resistant to fluconazole and flucytosine. No characteristic black grains or detectable infection were observed in BALB/C mice and New Zealand white rabbits. The analyses of the ITS region and the 18S ribosomal gene sequences support a new species designation.
     In conclusion, the new strain is different from M. mycetomatis and M. grisea. It is suggested that this strain is a novel species of Madurella responsible for eumycetoma.
引文
[1] McGinnis MR. Mycetoma. Dermatol Clin, 1996, 14(1): 97-104.
    [2] Ahmed AO, van Leeuwen W, Fahal A, et al. Mycetoma caused by Madurella mycetomatis: a neglected infectious burden. Lancet Infect Dis, 2004, 4(9): 566-574.
    [3] Fahal AH. Mycetoma: a thorn in the flesh. Trans R Soc Trop Med Hyg, 2004, 98(1): 3-11.
    [4] Ahmed AO, Desplaces N, Leonard P, et al. Molecular detection and identification of agents of eumycetoma: detailed report of two cases. J Clin Microbiol, 2003, 41(12): 5813–5816.
    [5] de Hoog GS, Buiting A, Tan CS, et al. 1993. Diagnostic problems with imported cases of mycetoma in The Netherlands. Mycoses, 36(3-4): 81–87.
    [6] Lynch JB. Mycetoma in the Sudan. Ann R Coll Surg Engl, 1964, 35: 319-340.
    [7]程运乾,刘树德,刘辅仁,等.足菌肿1例报告.中华医学杂志, 1962, 48: 647-649.
    [8]罗汉超.足菌肿1例报告.中华皮肤科杂志, 1964, 10: 54-55.
    [9]李运亚,廖信鸿,郑庸.足菌肿1例.中华皮肤科杂志, 1965, 11:22.
    [10]王端礼,徐参,王光超.足菌肿帚霉引起足菌肿1例报告.中华皮肤科杂志, 1984, 17: 212-214.
    [11]石玉辉.足分枝菌病1例报告.中华放射学杂志, 1990, 24: 390.
    [12]王金燕,王端礼.豚鼠奴卡氏菌引起足菌肿1例报告(附药敏测定).临床皮肤科杂志, 1993, 22(6): 305-306.
    [13]张品南.足菌肿2例.临床与实验病理学杂志, 1996, 12(1): 18.
    [14]夏修蛟,许爱娥,李若瑜,等.镰形支顶孢所致的足菌肿1例.中华皮肤科杂志, 2001, 34(6):463-464.
    [15]钱坚革,沈异,余爱如,等.奴卡氏菌性足菌肿1例.临床皮肤科杂志, 2002, 31(5):312-313.
    [16]刘玲,郑曼妮,周俊,等.骨盆马杜拉病一例报告.中华骨科杂志, 2004, 24(9):575-576.
    [17]李若瑜.足菌肿及其致病真菌//王端礼.医学真菌学-实验室检验指南.北京:人民卫生出版社, 2005, 439-447.
    [18]金辉,左壮,刘阳.巴西奴卡氏菌致足菌肿1例.中国误诊学杂志, 2005, 5(18): 3591.
    [19]梁洁,杨慧兰,刘仲荣,等.星形诺卡菌性足菌肿.临床皮肤科杂志, 2006, 35(10): 650-651.
    [20]孔维云,王宇飞,陆晓涛.放线菌足菌肿一例.海南医学, 2007, 18(11): 186-187.
    [21] Gumaa, SA, Mahgoub ES, el Sid MA. Mycetoma of the head and neck. Am J Trop Med Hyg, 1986, 35: 594-600.
    [22] Arbab MA, el Hag IA, Abdul Gadir AF, et al. Intraspinal mycetoma: report of two cases. Am J Trop Med Hyg, 1997, 56(1): 27-29.
    [23] Morino G, Giaccardi GC, Brundisini R, et al. A unique case of bladder mycetoma. Trop Doct, 2002, 32(1): 43-44.
    [24] Lampert RP, Hutto JH, Donnelly WH, et al. Pulmonary and cerebral mycetoma caused by Curvularia pallescens. J Pediatr, 1977, 91(4): 603-605.
    [25] Gumaa SA, Satir AA, Shehata AH, et al. Tumor of the mandible caused by Madurella mycetomil. Am J Trop Med. Hyg, 1975, 24:471-474.
    [26] Ahmed AO, Mukhtar MM, Kools-Sijmons M, et al. Development of a species-specific PCR-restriction fragment length polymorphism analysis procedure for identification of Madurella mycetomatis. J Clin Microbiol, 1999, 37(10): 3175-3178.
    [27] Ahmed AO, van de Sande WJ, Verbrugh H, et al. Madurella mycetomatis strains from mycetoma lesions in Sudanese patients are clonal. J Clin Microbiol, 2003, 41(10): 4537-4541.
    [28] Lopes MM, Freitas G, Boiron P. Potential utility of random amplified polymorphic DNA (RAPD) and restriction endonuclease assay (REA) as typing systems for Madurella mycetomatis. Curr Microbiol, 2000, 40(1):1-5.
    [29] Ahmed A, Adelmann D, Fahal A, et al. Environmental occurrence of Madurella mycetomatis, the major agent of human eumycetoma in Sudan. J Clin Microbiol. 2002, 40(3):1031-1036.
    [30] van de Sande WW, Gorkink R, Simons G, et al. Genotyping of Madurella mycetomatis by selective amplification of restriction fragments (amplified fragment length polymorphism) and subtype correlation with geographical origin and lesionsize. J Clin Microbiol, 2005, 43(9): 4349–4356.
    [31] De Hoog GS, Adelmann D, Ahmed AO, et al. Phylogeny and typification of Madurella mycetomatis, with a comparison of other agents of eumycetoma. Mycoses, 2004, 47(3-4): 121-130.
    [32] Desnos-Ollivier M, Bretagne S, Dromer F, et al. Molecular identification of black-grain mycetoma agents. J Clin Microbiol, 2006, 44(10): 3517-3523.
    [33] Fahal AH, Hassan MA. Mycetoma. Br J Surg, 1992, 79(11):1138-1141.
    [34] Gugnani HC, Ezeanolue BC, Khalil M, et al. Fluconazole in the therapy of tropical deep mycoses.Mycoses, 1995, 38(11-12): 485-488.
    [35] Mahgoub ES, Gumaa SA. Ketoconazole in the treatment of eumycetoma due to Madurella mycetomii. Trans R Soc Trop Med Hyg, 1984, 78(3): 376-379.
    [36] Degavre B, Joujoux JM, Dandurand M, et al. First report of mycetoma caused by Arthrographis kalrae: successful treatment with itraconazole. Am cad Dermatol, 1997, 37(2 pt 2): 318-320.
    [37] N'diaye B, Dieng MT, Perez A, et al. Clinical efficacy and safety of oral terbinafine in fungal mycetoma. Int J Dermatol, 2006, 45(2): 154-157.
    [38] Lacroix C, de Kerviler E, Morel P, et al. Madurella mycetomatis mycetoma treated successfully with oral voriconazole. Br J Dermatol, 2005, 152(5): 1067-1068.
    [39] Negroni R, Tobón A, Bustamante B, et al. Posaconazole treatment of refractory eumycetoma and chromoblastomycosis. Rev Inst Med Trop Sao Paulo, 2005, 47(6): 339-346.
    [40] Ameen M, Arenas R. Developments in the management of mycetomas. Clin Exp Dermatol, 2009, 34(1): 1-7.
    [41]王端礼.现代真菌学鉴定方法//王端礼.医学真菌学-实验室检验指南.北京:人民卫生出版社, 2005, 439-447.
    [42] Segretain G. The phialides and phialospores produced by Madurella mycetomi. C R Hebd Seances Acad Sci, 1958, 247(1): 130-132.
    [43] Rajendran C, Baby A, Kumari S, et al. An evaluation of straw-extract agar media for the growth and sporulation of Madurella mycetomatis. Mycopathologia, 1999, 115(1): 9-12.
    [44] Vilela R, Duarte OM, Rosa CA, et al. A case of eumycetoma due to Madurella grisea in northern Brazil. Mycopathologia, 2004, 158(4): 415-418.
    [45] Espinel-Ingroff A, Kerkering TM, Shadomy HJ. Isolation of dematiaceous pathogenic fungi from a feed and seed warehouse. J Clin Microbiol, 1982, 15(4): 714-719.
    [46] Mok WY. Nature and identification of Exophiala werneckii. J Clin Microbiol, 1982, 16(5): 976-978.
    [47] Honbo S, Padhye AA, Ajello L. The relationship of Cladosporium carrionii to Cladophialophora ajelloi. Sabouraudia, 1984, 22(3): 209-218.
    [48] Steadham JE, Geis PA, Simmonak JL. Use of carbohydrate and nitrate assimilation in the identification of dematiaceous fungi. Diagn Microbiol Infect Dis, 1986, 5(1): 71-75.
    [49] Kane J, Summerbeil RC. Sodium chloride as aid in identification of Phaeoannellomyces werneckii and other medically important dematiaceous fungi. J Clin Microbiol, 1987, 25(5): 944-946.
    [50] Espinel-Ingroff A, Goldson PR, McGinnis MR, et al. Evaluation of proteolytic activity to differentiate some dematiaceous fungi. J Clin Microbiol, 1988, 26(2): 301-307.
    [51] Valiente C, Quesada E. Morphologic and physiologic characteristics of Costa Rica pathogenic fungi (Dermatiaceae). Rev Biol Trop, 1991, 39(1): 103-106.
    [52] Dixon DM, Polak-Wyss A. The medically important dematiaceous fungi and their identification. Mycoses, 1991, 34(1-2): 1-18.
    [53] Kaufman L, Standard P, Padhye AA. Exoantigen tests for the immunoidentification of fungal cultures. Mycopathologia, 1983, 82(1): 3-12.
    [54] Espinel-Ingroff A, Shadomy S, Dixon D, et al. Exoantigen test for Cladosporium bantianum, Fonsecaea pedrosoi, and Phialophora verrucosa. J Clin Microbiol, 1986, 23(2): 305-310.
    [55] Sekhon AS, Standard PG, Kaufman L, et al. Reliability of exoantigens for differentiating Blastomyces dermatitidis and Histoplasma capsulatum from Chrysosporium and geomyces species. Diagn Microbiol Infect Dis, 1986, 4(3): 215-221.
    [56] Romero H, Mackenzie DW. Studies on antigens from agents causing black grain eumycetoma. J Med Vet Mycol, 1989, 27(5): 303-311.
    [57] Zaini F, Moore MK, Hathi D, et al. The antigenic composition and protein profiles of eumycetoma agents. Mycoses, 1991, 34(1-2): 19-28.
    [58] Vidal MS, de Castro LG, Cavalecate SC, et al. Immunoprecipitation techniques and Elisa in the detection of anti-Fonsecaea pedrosoi antibodies in chromoblastomycosis. Rev Inst Med Trop Sao Paulo, 2003, 45(6): 315-318.
    [59] Espinel-Ingroff A, McGinnis MR, Pincus DH, et al. Evaluation of the API 20C yeast identification system for the differentiation of some dematiaceous fungi. J Clin Microbiol, 1989, 27(11): 2565-2569.
    [60] Masuda M, Naka W, Tajima S, et al. Deoxyribonucleic acid hybridization studies of Exophiala dermatitidis and Exophiala jeanselmei. Microbiol Immunol, 1989, 33(8): 631-639.
    [61] Ishizaki H, Kawasaki M, Nishimura K, et al. Mitochondrial DNA analysis of Exophiala spinifera. Mycopathologia, 1995, 131(2): 67-70.
    [62] Karuppayil SM, Peng M, Mendoza L, et al. Identification of the conserved coding sequences of three chitin synthase genes in Fonsecaea pedrosoi. J Med Vet Mycol, 1996, 34(2): 117-125.
    [63] Yamagishi Y, Kawasaki K, Ishizaki H. Mitochondrial DNA analysis of Phialophora verrucosa. Mycoses, 1997, 40(9-10): 329-334
    [64] Abliz P, Fukushima K, Takizawa K, et al. Rapid identification of the genus fonsecaea by PCR with specific oligonucleotide primers. J Clin Microbiol, 2003, 41(2): 873-876.
    [65] Abliz P, Fukushima K, Takizawa K, et al. Identification of pathogenic dematiaceous fungi and related taxa based on large subunit ribosomal DNA D1/D2 domain sequence analysis. FEMS Immunol Med Microbiol, 2004, 40(1): 41-49.
    [66] Tanabe H, Kawasaki M, Mochizuki T, et al. Species identification and strain typing of Fonsecaea pedrosoi using ribosomal RNA gene internal transcribed spacer regions. Nippon Ishinkin Gakkai Zasshi, 2004, 45(2): 105-112.
    [67] Li RY, Li DM, Yu J, et al. Application of molecular biology techniques in the identification of pathogenic fungi and the diagnosis of fungal infection. Beijing Da Xue Xue Bao, 2004, 36(5): 536-539.
    [68] Ohori A, Endo S, Sano A, et al. Rapid identification of Ochroconis gallopava by a loop-mediated isothermal amplification (LAMP) method. Vet Microbiol, 2006, 114(3-4): 359-365.
    [69] de Andrade TS, Cury AE, de Castro LG, et al. Rapid identification of Fonsecaea by duplex polymerase chain reaction in isolates from patients with chromoblastomycosis. Diagn Microbiol Infect Dis, 2007, 57(3): 267-272.
    [70] Chen YC, Eisner JD, Kattar MM, et al. Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. J Clin Microbiol, 2001, 39(11): 4042-4051.
    [71] Chen YC, Eisner JD, Kattar MM, et al. Identification of medically important yeasts using PCR-based detection of DNA sequence polymorphisms in the internal transcribed spacer 2 region of the rRNA genes. J Clin Microbiol, 2000, 38(6): 2302-2310.
    [72] Rakeman JL, Bui U, Lafe K, et al. Multilocus DNA sequence comparisons rapidly identify pathogenic molds. J Clin Microbiol, 2005, 43(7): 3324-3333.
    [73] Clinical and Laboratory Standards Institute/National Committee for Clinical Laboratory Standards. 2002. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard. Document M38-A. Clinical and Laboratory Standards Institute/National Committee for Clinical Laboratory Standards, Wayne, PA.
    [74]李厚敏,刘伟,李若瑜.美国临床实验室标准化委员会2003年版产孢丝状真菌药敏试验方案简介.中华检验医学杂志, 2005, 28(1): 121-123
    [75] Fernadez-Torres B, Inza I, Guarro J. Comparison of in vitro antifungal susceptibilities of conidia and hyphae of dermatophytes with thick-wall macroconidia. Antimicrob Agents Chemother, 2003, 47(10): 3371-3372.
    [76] Fernandez-Torres B, Carrillo AJ, Martin E, et al. In vitro activities of 10 antifungal drugs against 508 dermatophyte strains. Antimicrob Agents Chemother, 2001, 45(9): 2524-2528.
    [77] Vanden Bossche H, Ausma J, Bohets H, et al. The novel azole R126638 is a selective inhibitor of ergosterol synthesis in Candida albicans, Trichophyton spp., and Microsporum canis. Antimicrob Agents Chemother, 2004, 48(9): 3272-3278.
    [78] Meletiadis J, Mouton JW, Meis JF, et al. In vitro drug interaction modeling of combinations of azoles with terbinafine against clinical Scedosporium prolificans isolates. Antimicrob Agents Chemother, 2003, 47(1): 106-117.
    [79] Ortoneda M, Capilla J, Pastor FJ, et al. In vitro interactions of approved and novel drugs against Paecilomyces spp. Antimicrob Agents Chemother, 2004, 48(7): 2727-2729.
    [80] Mukherjee PK, Leidich SD, Isham N, et al. Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrob Agents Chemother, 2003, 47(1): 82-86.
    [81] Ahmed AO, van de Sande WW, van Vianen W, et al. In vitro susceptibilities of Madurella mycetomatis to itraconazole and amphotericin B assessed by a modified NCCLS method and a viability-based 2, 3-bis(2- methoxy-4-nitro-5- sulfophenyl)-5- [(phenylamino)carbonyl]-2H-tetrazo-qlium hydroxide (XTT) assay. Antimicrob Agents Chemother, 2004, 48(7): 2742–2746.
    [82] van de Sande WW, Luijendijk A, Ahmed AO, et al. Testing of the in vitro susceptibilities of Madurella mycetomatis to six antifungal agents by using the Sensititre system in comparison with a viability-based 2,3-bis(2-methoxy-4-nitro- 5-sulfophenyl)-5- [(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) assay and a modified NCCLS method. Antimicrob Agents Chemother, 2005, 49(4): 1364-1368.
    [83] Murray JG, Spooner ET, Walker J. Experimental infection of mice with Madurella mycetomi. Trans. R. Soc. Trop. Med. Hyg, 1960, 54: 335-341.
    [84] Murray JG. Skin sensitivity to Madurella mycetomi in guineapigs. Trans R Soc Trop Med Hyg, 1961, 55: 209-215.
    [85] Avram A. Experimental granules of maduromycosis and actinomycosis from Cephalosporium falciforme, Monosporium apiospermum, Madurella mycetomi, and Nocardia asteroids. Mycopathol Mycol Appl, 1967, 32(4): 319-336.
    [86] Cavanagh, LL. Attempts to induce mycetoma in monkeys and mice using Madurella mycetomi. Sabouraudia, 1974, 12(2): 258-262.
    [87] Mahgoub ES. Experimental infection of athymic nude New Zealand mice, nu nu strain with mycetoma agents.Sabouraudia, 1978, 16(3): 211-216.
    [88] Ahmed AO, van Vianen W, ten Kate MT, et al. A murine model of Madurella mycetomatis eumycetoma. FEMS Immunol Med Microbiol, 2003, 37(1): 29-36.
    [89] Zlotnik H, Buckley HR. Experimental production of actinomycetoma in BALB/c mice. Infect Immun, 1980, 29(3): 1141-1145.
    [90] Ximénez C, Melendro EI, González-Mendoza A, et al. Resistance to Nocardia brasiliensis infection in mice immunized with either Nocardia or BCG. Mycopathologia, 1980, 70(2): 117-122.
    [91] Gumaa SA, Abu-Samra MT. Experimental mycetoma infection in the goat. J Comp Pathol, 1981, 91(3): 341-346.
    [92] Conde C, Melendro EI, Fresán M, et al. Nocardia brasiliensis: mycetoma induction and growth cycle. Infect Immun, 1982, 38(3): 1291-1295.
    [93] Conde C, Mancilla R, Fresan M, et al. Immunoglobulin and complement in tissues of mice infected with Nocardia brasiliensis. Infect Immun, 1983, 40(3): 1218-1222.
    [94] Unaogu IC, Gugnani HC, Ikerionwu, SE. Experimental actinomycetoma due to Nocardia transvalensis in laboratory mice. Mycoses, 1990, 33(2): 99-102.
    [95] Rodriguez M, Torres JA, Zlotnik H. Investigation of the temporal humoral immune response in a murine model of actinomycetoma. P R Health Sci J, 1996, 15(2): 91-95.
    [96] Boiron P, Locci R, Goodfellow M, et al. Nocardia, nocardiosis and mycetoma. Med Mycol, 1998, 36 Suppl 1: 26-37.
    [97] Salinas-Carmona MC, Torres-Lopez E, Ramos AI, et al. Immune response to Nocardia brasiliensis antigens in an experimental model of actinomycetoma in BALB/c mice. Infect Immun, 1999, 67(5): 2428-2432.
    [98] Salinas-Carmona MC. Nocardia brasiliensis : from microbe to human and experimental infections. Microbes Infect, 2000, 2(11): 1373-1381.
    [99] Salinas-Carmona MC, Castro-Corona MA, Sepúlveda-Saavedra J, et al. Monoclonal antibodies to P24 and P61 immunodominant antigens from Nocardia brasiliensis. Clin Diagn Lab Immunol, 1997, 4(2): 133-137
    [100] Licón-Trillo A, Angeles Castro-Corona M, Salinas-Carmona MC. Immunogenicity and biophysical properties of a Nocardia brasiliensis protease involved in pathogenesis of mycetoma. FEMS Immunol Med Microbiol, 2003, 37(1): 37-44.
    [101] Salinas-Carmona MC, Pérez-Rivera I. Humoral immunity through immunoglobulin M protects mice from an experimental actinomycetoma infection by Nocardia brasiliensis. Infect Immun, 2004, 72(10): 5597-5604
    [102] Salinas-Carmona MC, Ramos AI, Pérez-Rivera I. Immunogenicity is unrelated to protective immunity when induced by soluble and particulate antigens from Nocardia brasiliensis in BALB/c mice. Microbes Infect, 2006, 8(9-10): 2531-2538.
    [103] Castro-Matteotti B, Vera-Cabrera L, Ocampo-Candiani J, et al. Immune response to Nocardia brasiliensis extracellular antigens in patients with mycetoma. Mycopathologia, 2008, 165(3): 127-134.
    [1] Lynch JB. Mycetoma in the Sudan. Ann R Coll Surg Engl, 1964, 35: 319-340.
    [2] Green R, Bolton TC, Woolsey CI. Mycetoma-madura foot : A case of mycetoma pedis in Chicago. Ann Surg, 1948, 128(5): 1015-1022.
    [3] Ahmed AO, van Leeuwen W, Fahal A, et al. Mycetoma caused by Madurella mycetomatis: a neglected infectious burden. Lancet Infect Dis, 2004, 4(9): 566-574.
    [4] Fahal AH. Mycetoma: a thorn in the flesh. Trans R Soc Trop Med Hyg, 2004, 98(1): 3-11.
    [5]程运乾,刘树德,刘辅仁,等.足菌肿1例报告.中华医学杂志, 1962, 48: 647-649.
    [6]罗汉超.足菌肿1例报告.中华皮肤科杂志, 1964, 10: 54-55.
    [7]李运亚,廖信鸿,郑庸.足菌肿1例.中华皮肤科杂志, 1965, 11:22.
    [8]王端礼,徐参,王光超.足菌肿帚霉引起足菌肿1例报告.中华皮肤科杂志, 1984,17: 212-214.
    [9]石玉辉.足分枝菌病1例报告.中华放射学杂志, 1990, 24: 390.
    [10]王金燕,王端礼.豚鼠奴卡氏菌引起足菌肿1例报告(附药敏测定).临床皮肤科杂志, 1993, 22(6): 305-306.
    [11]张品南.足菌肿2例.临床与实验病理学杂志, 1996, 12(1): 18.
    [12]夏修蛟,许爱娥,李若瑜,等.镰形支顶孢所致的足菌肿1例.中华皮肤科杂志, 2001, 34(6):463-464.
    [13]钱坚革,沈异,余爱如,等.奴卡氏菌性足菌肿1例.临床皮肤科杂志, 2002, 31(5):312-313.
    [14]刘玲,郑曼妮,周俊,等.骨盆马杜拉病一例报告.中华骨科杂志, 2004, 24(9):575-576.
    [15]李若瑜.足菌肿及其致病真菌//王端礼.医学真菌学-实验室检验指南.北京:人民卫生出版社, 2005, 439-447.
    [16]金辉,左壮,刘阳.巴西奴卡氏菌致足菌肿1例.中国误诊学杂志, 2005, 5(18): 3591.
    [17]梁洁,杨慧兰,刘仲荣,等.星形诺卡菌性足菌肿.临床皮肤科杂志, 2006, 35(10): 650-651.
    [18]孔维云,王宇飞,陆晓涛.放线菌足菌肿一例.海南医学, 2007, 18(11): 186-187.
    [19] Ameen M, Arenas R. Developments in the management of mycetomas. Clin Exp Dermatol, 2009, 34(1): 1-7.
    [20] Gumaa SA, Mahgoub ES, el Sid MA. Mycetoma of the head and neck. Am J Trop Med Hyg, 1986, 35(3): 594-600.
    [21] Arbab MA, el Hag IA, Abdul Gadir AF, et al. Intraspinal mycetoma: report of two cases. Am J Trop Med Hyg, 1997, 56(1): 27-29.
    [22] Morino G, Giaccardi GC, Brundisini R, et al. A unique case of bladder mycetoma. Trop Doct, 2002, 32(1): 43-44.
    [23] Lampert RP, Hutto JH, Donnelly WH, et al. Pulmonary and cerebral mycetoma caused by Curvularia pallescens. J Pediatr, 1977, 91(4): 603-605.
    [24] Fahal AH, el Hassan AM, Abdelalla AO, et al. Cystic mycetoma: an unusual clinical presentation of Madurella mycetomatis infection. Trans R Soc Trop Med Hyg, 1998, 92(1): 66-67.
    [25] Bonifaz A, González-Silva A, Albrandt-Salmerón A, et al. Utility of helical computed tomography to evaluate the invasion of actinomycetoma; a report of 21 cases. Br J Dermatol, 2008, 158(4): 698-704.
    [26] Sarris I, Berendt AR, Athanasous N, et al. MRI of mycetoma of the foot: two cases demonstrating the dot-in-circle sign. Skeletal Radiol, 2003, 32(3):179-183.
    [27] Kumar J, Kumar A, Sethy P, et al. The dot-in-circle sign of mycetoma on MRI. Diagn Interv Radiol, 2007, 13(4):193-195.
    [28] Fahal AH, Sheik HE, Homeida MM, et al. Ultrasonographic imaging of mycetoma. Br J Surg, 1997, 84(8): 1120-1122.
    [29] EL Hag IA, Fahal AH, Gasim ET. Fine needle aspiration cytology of mycetoma. Acta Cytol, 1996, 40(3): 461-464.
    [30] el Hassan AM, Fahal AH, Ahmed AO, et al. The immunopathology of actinomycetoma lesions caused by Streptomyces somaliensis. Trans R Soc Trop Med Hyg, 2001, 95(1): 89-92.
    [31] Gumaa SA, Mahgoub ES. Evaluation of the complement fixation test in diagnosis of actinomycetoma. J Trop Med Hyg, 1973, 76(6): 140-142.
    [32] Gumaa SA, Mahgoub ES. Counterimmunoelectrophoresis in the diagnosis of mycetoma and its sensitivity as compared to immunodiffusion. Sabouraudia, 1975, 13(3): 309-315.
    [33] Salinas-Carmona MC, Welsh O, Casillas SM. Enzyme-linked immunosorbent assay for serological diagnosis of Nocardia brasiliensis and clinical correlation with mycetoma infections. J Clin Microbiol, 1993, 31(11): 2901-2906.
    [34] Ahmed AO, Mukhtar MM, Kools-Sijmons M, et al. Development of a species-specific PCR-restriction fragment length polymorphism analysis procedure for identification of Madurella mycetomatis. J Clin Microbiol, 1999; 37(10): 3175-3178.
    [35] Ahmed AO, Desplaces N, Leonard P, et al. Molecular Detection and Identification of Agents of Eumycetoma: Detailed Report of Two Cases. J Clin Microbiol, 2003, 41(12): 1813-1816.
    [36] Ahmed AO, Adelmann D, Fahal A, et al. Environmental occurrence of Madurella mycetomatis, the major agent of human eumycetoma in Sudan. J Clin Microbiol, 2002, 40(3): 1031-1036.
    [37] De Hoog GS, Adelmann D, Ahmed AO, et al. Phylogeny and typification of Madurella mycetomatis, with a comparison of other agents of eumycetoma. Mycoses, 2004, 47(3-4): 121-130.
    [38] Ahmed AO, van de Sande WJ, Verbrugh H, et al. Madurella mycetomatis strains from mycetoma lesions in Sudanese patients are clonal. J Clin Microbiol, 2003, 41(10): 4537-4541.
    [39] Desnos-Ollivier M, Bretagne S, Dromer F, et al. Molecular identification of black-grain mycetoma agents. J Clin Microbiol, 2006, 44(10): 3517-3523.
    [40] Borman AM, Linton CJ, Miles SJ, et al. Molecular identification of pathogenic fungi. J Antimicrob Chemother, 2008, 61 (Suppl. 1): 7-12.
    [41] Zeng JS, Fukushima K, Takizawa K, et al. Intraspecific diversity of species of the Pseudallescheria boydii complex. Med Mycol, 2007, 45(6):547-558.
    [42] Murray JG, Spooner ET, Walker J. Experimental infection of mice with Madurella mycetomi. Trans R Soc Trop Med Hyg, 1960, 54: 335-341.
    [43] Murray IG. Skin sensitivity to Madurella mycetomi in guineapigs. Trans R Soc Trop Med Hyg, 1961, 55: 209-215.
    [44] Avram A. Experimental granules of maduromycosis and actinomycosis from Cephalosporium falciforme, Monosporium apiospermum, Madurella mycetomi, and Nocardia asteroids. Mycopathol Mycol Appl, 1967, 32(4): 319-336.
    [45] Cavanagh LL. Attempts to induce mycetoma in monkeys and mice using Madurella mycetomi. Sabouraudia, 1974, 12(2): 258-262.
    [46] Mahgoub ES. Experimental infection of athymic nude New Zealand mice, nu nu strain with mycetoma agents.Sabouraudia, 1978, 16(3): 211-216.
    [47] Ahmed AO, van Vianen W, ten Kate MT, et al. A murine model of Madurella mycetomatis eumycetoma. FEMS Immunol Med Microbiol, 2003, 37(1): 29-36.
    [48] Zlotnik H, Buckley HR. Experimental production of actinomycetoma in BALB/c mice. Infect Immun, 1980, 29(3):1141-1145.
    [49] Gumaa SA, Abu-Samra MT. Experimental mycetoma infection in the goat. J Comp Pathol, 1981, 91(3): 341-346.
    [50] Unaogu IC, Gugnani HC, Ikerionwu SE. Experimental actinomycetoma due toNocardia transvalensis in laboratory mice. Mycoses, 1990, 33(2): 99-102.
    [51] Rodriguez M, Torres JA, Zlotnik H. Investigation of the temporal humoral immune response in a murine model of actinomycetoma. P R Health Sci J, 1996, 15(2): 91-95.
    [52] Salinas-Carmona MC, Torres-Lopez E, Ramos AI, et al. Immune response to Nocardia brasiliensis antigens in an experimental model of actinomycetoma in BALB/c mice. Infect Immun, 1999, 67(5): 2428-2432.
    [53] Salinas-Carmona MC. Nocardia brasiliensis : from microbe to human and experimental infections. Microbes Infect, 2000, 2(11): 1373-1381.
    [54] Fahal AH, Hassan MA. Mycetoma. Br J Surg, 1992, 79(11):1138-1141.
    [55] Gugnani HC, Ezeanolue BC, Khalil M, et al. Fluconazole in the therapy of tropical deep mycoses.Mycoses, 1995, 38(11-12): 485-488.
    [56] Mahgoub ES, Gumaa SA. Ketoconazole in the treatment of eumycetoma due to Madurella mycetomii. Trans R Soc Trop Med Hyg, 1984, 78(3): 376-379.
    [57] Degavre B, Joujoux JM, Dandurand M, et al. First report of mycetoma caused by Arthrographis kalrae: successful treatment with itraconazole. Am cad Dermatol, 1997, 37(2 pt 2): 318-320.
    [58] N'diaye B, Dieng MT, Perez A, et al. Clinical efficacy and safety of oral terbinafine in fungal mycetoma. Int J Dermatol, 2006, 45(2): 154-157.
    [59] Lacroix C, de Kerviler E, Morel P, et al. Madurella mycetomatis mycetoma treated successfully with oral voriconazole. Br J Dermatol, 2005, 152(5): 1067-1068.
    [60] Negroni R, Tobón A, Bustamante B, et al. Posaconazole treatment of refractory eumycetoma and chromoblastomycosis. Rev Inst Med Trop Sao Paulo, 2005, 47(6): 339-346.
    1. Ahmed, A., D. Adelmann, A. Fahal, H. Verbrugh, A. van Belkum, and S. de Hoog. 2002. Environmental occurrence of Madurella mycetomatis, the major agent of human eumycetoma in Sudan. J. Clin. Microbiol. 40:1031-1036.
    2. Ahmed, A. O., M. M. Mukhtar, M. Kools-Sijmons, A. H. Fahal, S. de Hoog, B. G. van den Ende, E. E. Zijlstra, H. Verbrugh, E. S. Abugroun, A. M. Elhassan, and A. van Belkum. 1999. Development of a species-specific PCR-restriction fragment length polymorphism analysis procedure for identification of Madurella mycetomatis. J. Clin. Microbiol. 37:3175–3178.
    3. Ahmed, A. O., N. Desplaces, P. Leonard, F. Goldstein, S. De Hoog, H. Verbrugh, and A. van Belkum. 2003. Molecular detection and identification of agents of eumycetoma: detailed report of two cases. J. Clin. Microbiol. 41:5813–5816.
    4. Ahmed, A. O., W. van Leeuwen, A. Fahal, W. van de Sande, H. Verbrugh, and A. van Belkum. Mycetoma caused by Madurella mycetomatis: a neglected infectious burden. Lancet Infect. Dis. 2004, 4:566-574.
    5. Ahmed, A., W. van de Sande, H. Verbrugh, A. Fahal, and A. van Belkum. 2003. Madurella mycetomatis strains from mycetoma lesions in Sudanese patients are clonal. J. Clin. Microbiol. 41:4537–4541.
    6. Ahmed, A. O., W. van Vianen, M. T. ten Kate, W. W. van de Sande, A. van Belkum, A. H. Fahal, H. A. Verbrugh, and I. A. Bakker-Woudenberg. 2003. A murine model of Madurella mycetomatis eumycetoma. FEMS Immunol. Med. Microbiol. 37:29-36.
    7. Ahmed, A. O., W. W. van de Sande, W. van Vianen, A. van Belkum, A. H. Fahal, H. A. Verbrugh, and I. A. Bakker-Woudenberg. 2004. In vitro susceptibilities of Madurella mycetomatis to itraconazole and amphotericin B assessed by a modified NCCLS method and a viability-based 2, 3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5- [(phenylamino)carbonyl]-2H-tetrazo-qlium hydroxide (XTT) assay. Antimicrob. Agents Chemother. 48:2742–2746.
    8. Alcoba-Flórez, J., S. Méndez-Alvarez, J. Cano, J. Guarro, E. Pérez-Roth, and M. del Pilar Arévalo. 2005. Phenotypic and molecular characterization of Candida nivariensis sp. nov., a possible new opportunistic fungus. J. Clin. Microbiol. 43:4107-4111.
    9. Arbab, M. A., I. A. el Hag, A. F. Abdul Gadir, and H. el-R. Siddik. 1997. Intraspinal mycetoma: report of two cases. Am. J. Trop. Med. Hyg. 56:27-29.
    10. Cavanagh, L. L. Attempts to induce mycetoma in monkeys and mice using Madurella mycetomi. 1974. Sabouraudia 12:258-262.
    11. Chen, Y. C., J. D. Eisner, M. M. Kattar, S. L. Rassoulian-Barrett, K. Lafe, S. L. Yarfitz, A. P. Limaye, and B. T. Cookson. 2000. Identification of medically important yeasts using PCR-based detection of DNA sequence polymorphisms in the internal transcribed spacer 2 region of the rRNA genes. J. Clin. Microbiol. 38:2302-2310.
    12. Chen, Y. C., J. D. Eisner, M. M. Kattar, S. L. Rassoulian-Barrett, K. Lafe, U. Bui, A. P. Limaye, and B. T. Cookson. 2001. Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. J. Clin. Microbiol. 39:4042-4051.
    13. Clinical and Laboratory Standards Institute/National Committee for Clinical Laboratory Standards. 2002. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard. Document M38-A. Clinical and Laboratory Standards Institute/National Committee for Clinical Laboratory Standards, Wayne, PA.
    14. Conde, C., E. I. Melendro, M. Fresán, and L. Ortiz-Ortiz. 1982. Nocardia brasiliensis: mycetoma induction and growth cycle. Infect. Immun. 38: 1291-1295.
    15. de Hoog, G. S., A. Buiting, C. S. Tan, A. B. Stroebel, C. Ketterings, E. J. de Boer, B. Naafs, R. Brimicombe, M. K. Nohlmans-Paulssen, G. T. Fabius, et al. 1993. Diagnostic problems with imported cases of mycetoma in The Netherlands. Mycoses 36:81–87.
    16. de Hoog, G. S., D. Adelmann, A. O. Ahmed, and A. van Belkum. 2004. Phylogeny and typification of Madurella mycetomatis, with a comparison of other agents of eumycetoma. Mycoses 47:121–130.
    17. Desnos-Ollivier, M., S. Bretagne, F. Dromer, O. Lortholary, and E. Dannaoui. 2006. Molecular identification of black-grain mycetoma agents. J. Clin. Microbiol. 44:3517-3523.
    18. Espinel-Ingroff, A., M. R. McGinnis, D. H. Pincus, P. R. Goldson, and T. M. Kerkering. 1989. Evaluation of the API 20C yeast identification system for the differentiation of some dematiaceous fungi. J. Clin. Microbiol. 27:2565-2569.
    19. Fahal, A. H. 2004. Mycetoma: a thorn in the flesh. Trans. R. Soc. Trop. Med. Hyg.98:3–11.
    20. Gumaa, S. A., A. A. Satir, A. H. Shehata, and E. S. Mahgoub. 1975. Tumor of the mandible caused by Madurella mycetomil. Am. J. Trop. Med. Hyg. 24:471-474.
    21. Gumaa, S. A., E. S. Mahgoub, and M. A. el Sid. 1986. Mycetoma of the head and neck. Am. J. Trop. Med. Hyg. 35:594-600.
    22. Lampert, R. P., J. H. Hutto, W. H. Donnelly, and S. T. Shulman. 1977. Pulmonary and cerebral mycetoma caused by Curvularia pallescens. J. Pediatr. 91: 603-605.
    23. Lopes, M. M., G. Freitas, P. Boiron. 2000. Potential utility of random amplified polymorphic DNA (RAPD) and restriction endonuclease assay (REA) as typing systems for Madurella mycetomatis. Curr. Microbiol. 40:1-5.
    24. Loulergue, P., A. Hot, E. Dannaoui, A. Dallot, S. Poirée, B. Dupont, and O. Lortholary. 2006. Successful treatment of black-grain mycetoma with voriconazole. Am. J. Trop. Med. Hyg. 75:1106-1107.
    25. Lynch, J. B. 1964. Mycetoma in the Sudan. Ann. R. Coll. Surg. Engl. 35:319-340.
    26. Mahgoub, E. S. Experimental infection of athymic nude New Zealand mice, nu nu strain with mycetoma agents. 1978. Sabouraudia 16:211-216.
    27. McGinnis, M. R. 1996. Mycetoma. Dermatol. Clin. 14:97–104.
    28. Miller, S. A., D. D. Dykes, and H. F. Polesky. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic. Acids. Res. 16:1215.
    29. Morino, G., G. C. Giaccardi, R. Brundisini, L. Ansaloni, and S. Giaccardi. 2002. A unique case of bladder mycetoma. Trop. Doct. 32:43-44.
    30. Murray, I. G. Skin sensitivity to Madurella mycetomi in guinea pigs. 1961. Trans. R. Soc. Trop. Med. Hyg. 55:209-215.
    31. Murray, J. G., E. T. Spooner, and J. Walker. Experimental infection of mice with Madurella mycetomi. 1960. Trans. R. Soc. Trop. Med. Hyg. 54:335-341.
    32. Muyunga-Kasengulu, C., J. P. Bastin, F. Gatti, and R. Vanbreuseghem. 1971. Invasion of paranasal sinuses by Madurella mycetomi in a Congolese child. Ann. Soc. Belges. Med. Trop. Parasitol. Mycol. 51:247-254.
    33. Qin, Z. Y., S. X. Wu, R. L. Hopfer, G. X. Lv, C. J. Yao, and N. R. Guo. 2000. Glass beads-salting out procedure for extracting DNA from common pathogenic fungi. Chin. J. dermatol. 33: 330-332.
    34. Rakeman, J. L., U. Bui, K. Lafe, Y. C. Chen, R. J. Honeycutt, and B. T. Cookson. 2005. Multilocus DNA sequence comparisons rapidly identify pathogenic molds. J. Clin. Microbiol. 43:3324-3333.
    35. Seo, K., H. Akiyoshi, and Y. Ohnishi. 1999. Alteration of cell wall composition leads to amphotericin B resistance in Aspergillus flavus. Microbiol.Immunol. 43:1017–1025.
    36. Sutton, D. A., S. E. Sanche, S. G. Revankar, A. W. Fothergill, and M. G. Rinaldi. 1999. In vitro amphotericin B resistance in clinical isolates of Aspergillus terreus, with a head-to-head comparison to voriconazole. J. Clin. Microbiol. 37:2343–2345.
    37. van de Sande, W. W., A. Luijendijk, A. O. Ahmed, I. A. Bakker- Woudenberg, and A. van Belkum. 2005. Testing of the in vitro susceptibilities of Madurella mycetomatis to six antifungal agents by using the Sensititre system in comparison with a viability-based 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl] -2H-tetrazolium hydroxide (XTT) assay and a modified NCCLS method. Antimicrob. Agents Chemother. 49:1364-1368.
    38. van de Sande, W. W., R. Gorkink, G. Simons, A. Ott, A. O. Ahmed, H. Verbrugh, and A. van Belkum. 2005. Genotyping of Madurella mycetomatis by selective amplification of restriction fragments (amplified fragment length polymorphism) and subtype correlation with geographical origin and lesion size. J. Clin. Microbiol. 43:4349–4356.
    39. Vilela, R., O. M. Duarte, C.A. Rosa, J. G. Castro, S. Lyon, R. L. Motta, and A. C. Moura. 2004. A case of eumycetoma due to Madurella grisea in northern Brazil. Mycopathologia. 158: 415-418.
    40. Yamagata, E., P. Kamberi, Y. Yamakami, A. Hashimoto, and M. Nasu. 2000. Experimental model of progressive disseminated trichosporonosis in mice with latent trichosporonemia. J. Clin. Microbiol. 38:3260-3266.
    41. Zlotnik, H., and H. R. Buckley. 1980. Experimental production of actinomycetoma in BALB/c mice. Infect. Immun. 29:1141-1145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700