新型光激放电测量装置研制及典型聚合物PSD谱
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间电荷行为在工程电介质电老化击穿过程中起着极其重要的作用,绝缘介质中的空间电荷问题已经成为工程电介质向高压电力设备发展的一个重要的制约因素。同时,随着机电传感应用的迅速发展,机电传感器中由于聚合物驻极体中空间电荷稳定存储的重要性,迫切需要研究清楚空间电荷的长期保持机理。近些年来,聚合物中的空间电荷在上述两方面的作用都一直是相关研究人员关注的焦点问题。而空间电荷往往是各类陷阱俘获造成的,陷阱的性质决定着电荷的存储和输运。因此,准确表征聚合物电介质材料中的电荷陷阱能谱分布对于改进与提高聚合物电介质材料的性质和应用水平具有重要的科学意义和实用价值。
     本论文研究了利用光激放电(Photo-stimulated discharge-PSD)原理测量聚合物材料中的陷阱能谱分布,并完成如下工作:
     设计制作了国内外第一台基于激光泵浦光参量振动器(Optical Parametric Oscillator-OPO)作为激发光源的PSD测量谱仪。其工作波长范围从长波到短波为2300-210nm,陷阱能量测量范围约为0.50-5.90eV,精度为±0.01eV。同时在全波段范围内输出光子通量密度可达3.0×10 24 cm ?2 s?1以上。该谱仪能很好地满足对聚合物电介质材料陷阱的测试要求。
     在新型PSD谱仪中所采用的光源是激光光源,激光辐照在聚合物材料上可能会对材料结构产生破坏作用,针对这一问题,借助傅里叶红外光谱以及拉曼光谱证证实了新型PSD谱仪与被测样品作用后,并没有破坏被测材料的化学结构,从而不会因激光辐照而带来附加的新的电荷陷阱、产生光侵蚀或光降解作用。
     利用新型PSD谱仪对光激放电方法进行了较为细致的研究。这里包括对于同一被测样品,在不同的实验条件下(例如没有电荷注入、不同电荷注入方式、不同注入剂量以及不同扫描次数等)的陷阱分布进行较深入的研究。
     提出了PSD谱能量校正方法。通过对原始PSD谱影响因素的分析,明确了原始PSD谱中不但包含了陷阱电荷的释放因素,还有激发光源能量变化的影响。为了消除这种影响,提出了能量归一化的PSD谱。经过能量校正后的PSD电流谱能够更真实地反映出电介质中电荷陷阱的分布状态,并给出了在不发生电荷再入陷情况下的陷阱态密度的获取方法。开发了基于Labview的测控软件,可以与硬件系统相配合,实现能量归一化PSD谱的测量。
     利用新型的PSD谱仪测试了聚酯、聚酰亚胺、聚丙烯以及聚乙烯等几种典型聚合物材料的PSD谱。发现聚酯中电荷陷阱主要分布在4.10-5.20eV的范围内,聚酰亚胺的陷阱分布在3.10-4.10eV之间,这两种材料的陷阱都与羰基有关,其数值差异也许与羰基所处的微观环境有关;聚丙烯的陷阱在4.80-5.90eV范围内,而聚乙烯的陷阱为4.80eV以上。这两种材料陷阱的最有可能的来源是聚合过程中引发剂的残留。
     利用所研制的新型光激放电谱仪结合TSC技术与电声脉冲法PEA详细研究了聚乙烯材料中的载流子陷阱的分布。一般认为,TSC方法由于材料本身耐热温度的限制,只能测量浅陷阱,而PSD方法适合测量较深陷阱。但经过研究发现,由于热运动对陷阱的侵蚀作用,在TSC方法中所测得的结果仅仅是陷阱深度的视在表观值,实际上陷阱电荷的热激发与光激发是来源于同一个陷阱。热激发不但使受陷电荷受到激发,同时也使陷阱深度本身因受到热侵蚀而变浅了。所以,光激发方法更真实地反映了聚合物材料陷阱的本征特性。
Space charge plays an important role in electrical aging and breakdown of engineering dielectrics, and it has becoming an important factor for restricting the development of high electric field of power cable. Meanwhile, with the rapid development of electromechanical sensing applications, the long-term charge-storage mechanisms urgently need to be researched clearly because of the importance of space charge storage stability in polymer electret of electromechanical sensors. In recent years, space charge effects mentioned above in polymer are always the focus problems that are concerned by relevant researchers. Space charge is often captured by the trap, and the trap characteristics decide charge storage and transport. Therefore it has important scientific meaning and practical value to accurately characterize energy distribution of charge trap in polymer dielectric materials in order to improve their properties and application.
     In this dissertation, we measure the energy distribution of trap in polymer materials by photo-stimulated discharge (PSD), and finish the work as follows: Design and set up the first PSD measuring spectrum analyzer based on optical parametric oscillator (OPO) as exciting light source at home and abroad. The range of output wavelength is 2300-210nm. The range of trap energy measurement is about 0.50-5.90eV and an accuracy is of±0.01eV. At the same time the output photon flux density is up to 3.0×10 24 cm ? 2 s?1 or more in the whole band. The PSD spectrum is better able to meet the measurement requirements from respect of exciting light intensity, output wavelength range, output wavelength tunable properties and the measurement accuracy.
     Because the light source of new PSD spectrum analyzer is laser, the output light may damage the chemical structures of polymer materials. In view of such a problem, we prove the new PSD spectrum analyzer dose not has any the destructive action on chemical structures of tested materials by using Fourier infrared and Raman spectroscopy. The molecular chain structures of samples are not broken and they do not generate new free radicals. Therefore the laser irradiation does not generate additional charge trap and not cause either light erosion or photodegradation.
     Using the new PSD spectrum analyzer, PSD method is studied in detail. This includes the study of trap distribution in different experimental conditions for the same tested sample, such as no charge injection, different charge injection methods, different charge injection doses, different number of scans and so on. Put forward energy calibration method of PSD spectra. Through the analysis of the original PSD spectra, we identify the original PSD spectra contain the information of not only trap charge release but also exciting light energy change. In order to eliminate the influence of exciting light energy change, we propose energy normalized PSD spectra, which can really give the informations of the distribution of charge trap in dielectric. Based on the Labview, we develop control software, which can combine with the hardware system and achieve energy normalization of the PSD spectra.
     PSD spectra of typical polymer materials of polyester, polyimide, polypropylene, and cross-linked polyethylene were tested by the new PSD spectrometer. It was found that the charge traps in polyester is mainly in the range of 4.10-5.20eV, meanwhile 3.10-4.10 eV traps distribution in polyimide. The traps of these two materials are related with the carbonyl. There is a trap distribution of 4.80-5.90eV in polypropylene and trap more than 4.80eV in crosslinked polyethylene, which most likely come from residual catalyst during the polymerization process.
     Combine new PSD spectrum analyzer with TSC and PEA to study the distribution of charge trap in PE in detail. Generally speaking, TSC can only measure shallow trap because of the limit to heat-resistance temperature of material itself, while PSD is fit for measuring deep trap. Through our research we find the measurement result of TSC is only the apparent trap depth. In fact, the trap charges by the thermal and the optical excitation are from the same trap. Thermal stimulated method not only stimulates trap charges, but also makes trap depth become shallow due to thermal erosion. Therefore PSD really reflects the intrinsic properties of trap in polymer materials.
引文
[1]夏钟福.驻极体[M].北京:科学出版社,2001:154.
    [2] DISSADO L A, FOTHERGILL J C. Electrical Degradation and Breakdown in Polymers[M]. London: Peter Peregrinus Ltd., 1992.
    [3] DISSADO L A, MAZZANTI G, MONTANARI G C. The Role of Trapped Space Charges in the Electrical Aging of Insulating Materials. IEEE Trans. on DEI., 1997, 4(5): 496-506.
    [4] GRESSUS C LE, BLAISE G. Breakdown Phenomena Related to Trapping/Detrapping Processes in Wide Band Gap Insulators. 1992, 27(3): 472-481.
    [5] BAUMANN TH, FRUTH B. Field-enhancing Defects in Polymeric Insulators Causing Dielectric Aging. IEEE Trans. on EI., 1989, 24(6): 1071-1076.
    [6] MASAYUKI IEDA, Dielectric Breakdown Process of Polymers, IEEE Trans. on EI., 1980, 15(3): 206-224.
    [7] LIU HUI, YUAN BAOHONG. Influence of Photocharge Properties on Space-charge Field in Photorefractive Polymers[J]. Acta Photonica Sinica, 2001, 30(8): 1036-1040.
    [8] MONTANARI G C, TEYSSEDRE G, LAURENT C. Investigating Charge Trapping Behaviour of Nanocomposite Isotactic and Syndiotactic Polypropylene Matrix[J]. International Conference on Solid Dielectrics. 2004: 836-839.
    [9] BLAISE G, GRESSUS C LE. Charge Trapping/Detrapping Processes and Related Breakdown Phenomena in HV Vacuum Insulation[M]. Basic Con. Tech. Prac., 1995: 330.
    [10] DISSADO L A, MAZZANTI G, MONTANARI G C. The Role of Trapped Space Charge in the Electrical Aging of Insulating Materials[J]. IEEE Trans. On DEI., 1997, 4(5):496.
    [11] CHEN R, KIRS Y H. Analysis of Thermally Stimulated Processes[M]. Pergamon Press, Oxford, 1981.
    [12] TARO H. Thermally Stimulated Characteristics in Solid Dielectrics[J]. EI., 1980, 15(3): 301.
    [13] GARTIA R K, SINGH S J. Determination of the Activation Energy of Thermally Stimulated Luminescence Peaks Obeying General-Order Kinetics[J]. Phys., 1989, 114(2), 407-411.
    [14] MEUNIER M, QUIRKE N, ASLANIDES A. Molecular Modeling of ElectronTraps in Polymer Insulators: Chemical Defects and Impurities[J]. Chem.Phys., 2001 (115): 2876-2881.
    [15] SEGGERN H VON. Isothermal and Thermally Stimulated Current Studies of Positively Corona Charged (Teflon FEP) Polyfluoroethylenepropylene[J]. Appl.Phys., 1981 (52): 4081-4085.
    [16] BRODRIBB J D, HUGHES D M. The Energy Spectrum of Traps in Insulators by Photon-induced Current Spectroscopy[M]. Electrets, 1972: 177-187.
    [17] YOSHIAKI TAKAI, KOJI MORI, TERUYOSHI MIZUTANI and MASAYUKI IEDA. Investigation of Traps inγ-Irradiated Polyethylene by Photostimulated Detrapping Current Analysis[J]. Appl. Phys., 1976, 15(12): 2341-2347.
    [18] ODA T, UTSUMI T, KUMANO T. Observation of Photo-stimulated Detrapping Currents of FEP Teflon Electrets[M]. IEEE 5th Intern. Conf. Electrets, G M Sessler and R Gerhard-Multhaupt, Eds., Piscataway, NJ, IEEE Service Center, 1985: 288-293.
    [19] ODA T, UTSUMI T, MATSUBARA G. Observation of UV Photo-stimulated Currents of Teflon Electrets[M]. IEEE 6th Intern. Sympos. Electrets, D. K. Das-Gupta and A. W. Pattullo, Eds., Piscataway, NJ, IEEE Service Center. 1988: 142-146.
    [20] AXEL MELLINGER, FRANCISCO CAMACHO GONZáLEZ. Photo-Stimulated Discharge in Electret Polymers: an Alternative Approach for Investigating Deep Traps[J]. IEEE Trans. on DEI., 2004, 11(2): 218-226.
    [21] CAMACHO GONZáLEZ F, MELLINGER A. Photo-Stimulated Discharge of Highly Insulaing Polymers(PTFE and PETP)[M]. IEEE-CEIDP, 2002: 590-593.
    [22] CAMACHO GONZáLEZ F, MELLINGER A, GERHARD-MULTHAUPT R. Energy Levels of Charge Traps in Polyethylene Terephthalate Films[R]. IEEE-ISCD 2004, Toulouse, France, 2004.
    [23] MELLINGER A, SINGH R, CAMACHO GONZáLEZ F. In Situ Observation of Optically and Thermal Induced Charge Depletion in Chromophoredoped Cyclic Olefin Copolymers[M]. IEEE-CEIDP 2004, Boulder, Colorado, USA,2004: 498-501.
    [24] ZHU ZHIEN, ZHANG YEWEN, AN ZHENLIAN. Study on Charge Trap Distribution in LLDPE by Photo-Stimulated Discharge Current[M]. ICPADM2009, China, 2009: 930-933.
    [25] SOROKIN P P, LANKARD J R. Stimulated Emission Observed from an Organic Dye Chloroaluminium Phtalocyanine[J]. Res Develop, 1966, (10): 162-163.
    [26] SOFFER B H, FARLAND B B Mc. Continuously Tunable Narrowband Organic Dye Lasers[J]. Appl. Phys, Lett., 1967, (10): 266-267.
    [27] MOULTON P F. Pulse-Pumped Operation of Divalent Transition-Matal Laser[J]. 1982, (8).
    [28] GIORDMAINE J A, MILLER R C. Tunable Coherent Parametric Oscillation in LiNbO3 at Optical Frequencies[J]. Phys.Rev.Lett., 1965, (14): 973-976.
    [29] AKHMANOV S A, KOVRIGIN A I, KOSLOLV V A. Tunable Parametric Light Generation with KDP Crystal[J]. JETP Lett., 1966, (3): 241-245.
    [30] HARRIS S E, OSHMAN M K, BYER R L. Observation of Tunable Optical Parametric Fluorescence[J]. Phys. Rev. Lett., 1967, (18): 732-734.
    [31]姚建栓.非线性光学频率变换及激光调谐技术[M].科学出版社,1995.
    [32]柳强,王月珠.发展中的光学参量振荡器技术[J].激光杂志,1999,(20): 11.
    [33]宋春荣,赵建君.高效率可调谐光参量振荡器输出线宽的理论研究[J].激光杂志,2004,25(6).
    [34]耿优福,姚建铨,谭晓玲.波长可调谐准相位匹配光学参量振荡器[J].激光与红外,2006,36(9).
    [35]包照日格图,裴博. 1.57μm非临界相位匹配KTP参量振荡器[J].激光与红外,2001,31(5).
    [36] TSOYEE, HUANG C E, HUETAL B Q. Second Harmonic Generation and Accurate Index of Refraction Measurements in Flux-Grown KTi0PO4[J]. Applied Optics, 1987, 26(12): 2390-2394.
    [37] BAUMANN TH, FRUTH B. Field-Enhancing Defects in Polymeric Insulators Causing Dielectric Aging[J]. IEEE Trans. on EI., 1989, 24(6): 1071-1076.
    [38] STEVEN BOGGS. A Rational Consideration of Space Charge[J]. IEEE Trans. DEI., 2004, 20(4):22-27.
    [39] DAMAMME G, GRESSUS C LE, REGG A S DE. Space Charge Characterization for the 21th Century[J]. IEEE Trans. on DEI., 1997, 4(5): 558-583.
    [40]郑飞虎,张冶文,肖春.聚合物电介质的击穿与空间电荷的关系[J].材料科学与工程学报,2006,24(2): 316-320.
    [41]李景德,雷德铭.电介质材料物理和应用[M].广州:中山大学出版社,1992.
    [42] MEUNIER M, QUIRKE N, ASLANIDES A. Molecular Modeling of Electron Traps in Polymer Insulators: Chemical Defects and Impurities[J]. Chem. Phys., 2001, (115): 2876-2881.
    [43] IEDA M. Electrical Conduction and Carrier Traps in Polymeric Materials[J]. IEEE Trans. DEI., 1984, 19(3): 162-178.
    [44]雷清泉.高聚物的结构与电性能[M].华中理工大学出版社,1990: 214.
    [45]李晓吉,张冶文,夏钟福,等.空间电荷在聚合物老化和击穿过程中的作用[J].科学通报,2000,45(23): 2469-2475.
    [46] KANEKO K., Charge Transport and Space Charge Formation in Low-Density Polyethylene[J]. Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, 2000: 71-74.
    [47]黄昆.固体物理学[M].高等教育出版社,1998: 284.
    [48] DISSADO L A, MAZZANTI G, MONTANNARI G C. The Role of Trapped Space Charges in the Electrical Aging of Insulating Materials[J]. IEEE Trans. DEI., 1997, 4(5): 496-506.
    [49] KWANGS, SCHETAL. Effects of Sample Preparation Conditions and Short Chains on Space Charge Formation in LDPE[J]. IEEE Trans. DEI., 1996, 3(2): 153-160.
    [50] ZELLER H R, PFLUGER P, BERNASCONI J. High-Mobility States and Dielectric Breakdown in Polymeric Dielectrics[J]. IEEE Transations on Electrical Insulationn, 1984, 19(3): 200-204.
    [51] STEVEN BOGGS. A Rational Consideration of Space Charge[J]. IEEE Trans. DEI., 2004, 20(4): 22-27.
    [52] ZHANG YEWEN, LEWINER J J, ALQUIE C, et al. Evidence of Strong Correlation between Space-charge Buildup and Breakdown in Cable Insulation[J]. IEEE Transaction on DEI., 1996, 3(6): 778-783.
    [53] LEGRESSUS C, VALIN F, HENRIOT M. Flashover in Wideband-gap High-purity Insulators: Methodology and Mechanisms[J]. Journal of Applied Physics, 1991, 69(9): 6325-6333.
    [54] STONEHAM A M. Electronic and Defect Processes in Oxides“The Polaron in Action”[J]. IEEE Transactions on DEI, 1997, 4(5): 604-613.
    [55] TANAKA T. Space Charge Injected via Interfaces and Tree Initiation in Polymers[J]. IEEE Transaction on DEI, 2001, 8(5): 733-743.
    [56] GRESSUS C LE, VALIN F. HENRIOT M1991 J. Appl. Phys. 69: 6325.
    [57] BLAISE G, GRESSUS C LE. Charge Trapping-detrapping Processes and Related Breakdown Phenomena, in HV Vacuum Insulation, Basic Concepts and Technological Practice[M]. New York: Academic Press, 1995: 330-368.
    [58] ZHENG F H, ZHANG Y W, XIAO C. An Z L 2008 IEEE Trans. On DEI. 15: 965.
    [59] AHMED N H, SRINIVAS N N. Review of Space Charge Measurements in Dielectrics[J]. IEEE Trans. On DEI., 1997, (5): 644.
    [60] TAKADA T, TANAKA Y, ADACHI N. Comparison between the PEA Method and the PWP Method for Space Charge Measurement in Solid Dielectrics[J]. IEEE Trans. on DEI., 1998, 5(6): 944.
    [61] LI Y, YASUDA M, TAKADA T. Pulsed Electroacoustic Method for Measurement of Charge Accumulation in Solid Dielectrics[J]. IEEE Trans. On DEI., 1994, 1(2): 188.
    [62] MAENO T. Calibration of the Pulsed Electroacoustic Method for Measuring Space Charge Density[M]. Trans. IEE Japan, 1999, 119A: 1119.
    [63] MAENO T, FUKUNAGA K. High Resolution PEA Charge Distribution Measurement System[M]. IEEE Trans. On DEI., 1996, 3: 754.
    [64] ALQUIéC, LEWINER J, DREYFUS G. Analysis of Laser Induced Acoustic Pulse Probing of Charge Distributions in Dielectrics[J]. Phys. Lett., 1983, 44(4): 171-178.
    [65]陈炯,尹毅,肖登明.电声脉冲法中脉冲对空间电荷分布测量的影响[J].高电压技术,2006,32(5):19-21.
    [66]吴超一,钟力生,王霞.脉冲电声法空间电荷测量中波形过冲的纠正[J].绝缘材料,2005,6:44-47.
    [67]郑飞虎,张冶文,吴长顺.用于固体介质中空间电荷的压电压力波法与电声脉冲法[J].物理学报,2003,52(5):1137-1143.
    [68]李吉晓,张冶文,彭宗仁.用Piezo-PWP法和TSD法研究交联聚乙烯中的空间电荷[J].科学快报,2001,7(4):504-505.
    [69] COELHO R, ALADENNIZE B, GUILLAUMOND F, Charge Buildup in Lossy Dielectrics with Induced Inhomogeneities, IEEE Trans. DEI., 1997, 4(5): 477-486.
    [70] CHAPEAU F, ALQUIK C, LEWINER J. The Pressure Wave Propagation Method for theAnalysis of Insulating Materials: Application to LDPE Used in HV cables[J]. IEEE Trans. on EI., 1986, 21(3): 405.
    [71] GERHARD-MULTHAUPT R. Analysis of Pressure-wave Methods for the Nondestructive Determination of Spatial Charge or Field Distributions in Dielectrics[J]. Phys. Rev. B, 1983, 27(4): 2494-2504.
    [72] MASUMI FUKUMA, KAORI FUKUNAGA, CHRISTIAN LAURENT. Two-dimensional Structure of Charge Packets in Polyethylene under High DC Fields, Appl. Phys. Lett., 2006, 88(25): 253110-1-253110-2
    [73] CéCILIEN THOMAS, GILBERT TEYSSEDRE, CHRISTIAN LAURENT. A New Method for Space Charge Measurements under Periodic Stress of Arbitrary Waveform by the Pulsed Electro-acoustic Method, IEEE Trans. DEI., 2008, 15(2): 554-559.
    [74] MAZZANTI G, MONTANARI G C, ALISON J M. A Space-Charge Based Method for the Estimation of Apparent Mobility and Trap Depth as Markers for Insulation Degradation-Theoretical Basis and Experimental Validation. IEEE Trans. on DEI, 2003, 10(2): 187-197.
    [75] FLEMING R J. Charge Trapping in Organic Polymers[J]. Radiat. Phys. Chem., 1990, 36(1): 59-68.
    [76] FLEMING R J. Space Charge in Polymer, Particularly Polyethylene[J]. Brazilian Journal of Physics, 1999, 29(2): 280-294.
    [77] CRINE J P. A Molecular Model to Evaluate the Impact of Aging on Space charges in Polymer Dielectrics[J], IEEE Trans. DEI, 1997, 4: 487-495.
    [78] DISSADO L A, MARRANTI G, MONTANARI G C. The Role of Trapped Space Charges in the Electrical Aging of Insulating Materials[J], IEEE Trans. DEI, 1997, 4: 496-506.
    [79] MASAYUKI IEDA, Dielectric Breakdown Process of Polymers[J], IEEE Trans.on EI., 1980, 15(3): 206-224.
    [80] TURNHOUT J V. Thermally Stimulatede Discharge of Polymer Electret[M]. Amsterdam: Elsevier Sci Pub Com, 1975.
    [81]王力衡.介质的热刺激理论及其应用.科学出版社,1988:41.
    [82] KRYSZEWSKI M, ULANSKI J, JEZKA J K. Chain and Carrier Mobility in Polymer Systems as Investigated by Thermally Stimulated Current Techniques[J]. Polymer Bull, 1982, 8: 187-192.
    [83] LEI Q Q, FAN Y. Effect of Inorgamic Filler on Thermally Stimulated Current in Low-density Polyethylene[J]. Materials Sci. & Technol., 1997, 13(3): 223-226.
    [84] SHIMIZU H, KITANO T, NATAYAMA K. An Application of Thermally Stimulated Current Technique to Molecular Motion Analysis of Polymers. Proc. SE9, 1996: 552-557.
    [85] LEI QING QUAN, WANG XUAN, FAN YONG. A New Method of Auto-separating Thermally Stimulated Current. J. Appl. Phys., 1992 (9): 4254-4257.
    [86] FAN Y, WANG X. Simultaneous Thermoluminescence and Thermally Stimulated Current in Polyamid[J].Mater, Sci. Technol., 1998, 14(2): 357-360.
    [87] BLAKE A E, CHARLESBY A, RANDLE K J. Simultaneous Thermoluminescence and Thermally Stimulated Current in Polyethylene[J]. Phys. D:Appl. Phys., 1976, 7(2): 759-770.
    [88] GLOWAEKI I, ULANSKI J. Simultaneous Measurement of Thermoluminescence and Thermally Stimulated Currents in Poly(IV-Vinglcarbazole)/Polycarbonate Blends[J]. Appl. Phys., 1995, 78(2): 1019-1025.
    [89]王暄.聚合物热发光与热激电流联合谱仪的研究[D].西安交通大学,1999.
    [90]高观志,黄维著,雷清泉译.固体中的电输运[M].科学出版社,1991: 169-203.
    [91] GUNDLACH, KADLEC J. Appl. Phys. Lett[J]. 1975, 27: 429-436.
    [92] KEPLER R G. Two-photon Transitions to Highly Excited States in Anthracene Crystals[J]. PHYSICAL REVIEW B, 1974, 9(10): 4468-4475 .
    [93] MUNSOO YUN, KATSUMI YOSHINO, YOSHIO INUISHI. Photoconduction in Polytetrafluroethylene Induced by Vacuum-Ultraviolet Light[J]. JJAP, 1982, 21(11): 1592-1595.
    [94] HOLZMAN P, MORRIS R, JARNAGIN R C. PhoTtocunductivity in Anthracene Crystals due to Excitation of Triplets[J]. Physical Review Letters,1967, 19(9): 506-508.
    [95] MEUNIER M, QUIRKE N, ASLANIDES A. Molecular Modeling of Electron Traps in Polymer Insulators: Chemical Defects and Impurities[J]. Chem.Phys., 2001, 115: 2876-2881.
    [96]秦莉娟,周志尧,包学诚.高功率可调谐激光器-光学参量振荡器的新进展[J].现代科学仪器,2000,1:31-32.
    [97]钱士雄,王恭明.非线性光学.上海:复旦大学出版社,2002: 94-99.
    [98]何京良,卢兴强,贾玉磊. BBO四倍频全固态Nd:YVO4紫外激光器[J].物理学报,2000,49(10):2106-2108.
    [99]王学军,王雅丽,黄骝. BBO-OPO高精度波长调谐控制系统[J].激光技术,2003,27(4):791-793.
    [100]王燕玲,李贤,周绪桂等. BBO晶体中级联非线性效应的实验研究[J].光学学报,2008,28(9):1761-1766.
    [101]邵敏,薛绍林,朱鹏飞等. BBO晶体II类型相位匹配光参量放大理论分析[J].中国激光,2004,31(9):1055-1060.
    [102]吴世康.高分子光化学导论-基础与应用[M].科学出版社,北京,2003,177-183.
    [103] QIN Z Y, HUANG X Y, WANG D K. Formation of Conducting Layers on Excimer-Laser-Irradiated Polymide Film Surface[J]. Surface and Interface Analysis. 2000, (29): 514-518.
    [104] LAURENS P, OULD BOUALI M, MEDUCIN F. Characterization of Modifications of Polymer Surfaces after Excimer Laser Treatments Below the Ablation Threshold[J]. Applied Surface Science, 2002, 154(55): 211-216.
    [105] WATANABE H. Chemical Structure Change of KrF-Laser Irradiated PET Fiber Surface[J]. Journal of Applied Polymer Science, 1999, (71): 2027-2031.
    [106] WONG W, CHAN K, YEUNG K W. Chemical Surface Modification of Poly(Ethylene Terephthalate) by Excimer Irradiation of High and Low Intensities[J]. Materials Research Innovations, 2001, (4): 344-349.
    [107] SHIRAKAWA H, IKEDA. Infrared S Spectra of Polyacetylene[J]. Polymer Journal, 1971, (2): 231-244.
    [108]朱诚身.聚合物结构分析[M].北京:科学出版社,2005.
    [109]王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989.
    [110]常建华,董绮功.波谱原理及解析[M].北京:科学出版社,2001. 113-118.
    [111] D.A.朗.拉曼光谱学[M].科学出版社,1983,242-252.
    [112]田国辉,陈亚杰,冯清茂.拉曼光谱的发展及应用[J].化学工程师,2008,148(1):34-36.
    [113] JOHNSON G W , RICHARD JENNINGS. Labview Graphical Programming(3 edition)[M]. Peking University Press, 2002.
    [114]杨乐平等. Labview程序设计与应用[M].电子工业出版社,2001.
    [115]祁景玉.现代分析测试技术[M].同济大学出版社,2006,386-423.
    [116]张正行.有机光谱分析[M].人民卫生出版社,2009,86-134.
    [117] LAFEMINA J P and ARJAVALINGAM G. Photophysics of Poly(Ethylene Terephthalate): Ultraviolet Absorption and Emission[J]. Phys. Chem., 1991, 95, 984-988.
    [118] BOASTEAD T, CHARLESBY A. Proc. Roy. Soc. A316, 1970, 291-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700