橙汁中酵母菌的分离鉴定及其快速分子检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橙汁是最重要的柑橘加工品,其国际贸易额已占柑橘贸易总额的1/3以上。我国的柑橘种植面积和产量均居世界第一,但橙汁产量只占世界总产量的1%左右。为满足快速增加的橙汁消费量,减少对进口的依赖,我国正逐渐从优化柑橘产业布局、增加汁用甜橙栽培面积和降低原料成本等方面促进橙汁产业发展。伴随着这种发展,我国急需建立和完善橙汁的质量和安全保障体系。由酵母菌污染引起的橙汁腐败是产业长期面临的主要问题之一,更是不添加防腐剂的NFC橙汁生产中亟待解决的关键问题之一。与致病菌的检测相比,国内针对食品中酵母菌检测的研究较少。目前,我国食品和饮料中的酵母菌检测仍采用传统的平板培养法,所需时间长、检测结果滞后,不能及时指导生产。因此,为有效控制酵母菌污染,建立一套快速、有效的酵母菌检测方法对我国橙汁的安全生产和消费都具有重要意义。
     本论文采用平板法分离橙汁中的酵母菌,通过形态观察、5.8S rDNA及其ITS间隔区序列RFLP分析和26S rDNA D1/D2区序列测定相结合的方法鉴定分离菌株。并且在改进DNA提取方法、优化PCR扩增体系的基础上建立了酵母菌PCR快速检测体系。主要研究结果如下:
     1.以63份腐败橙汁为材料,利用平板法进行微生物分离计数,测得腐败橙汁中酵母菌的浓度在104CFU/mL~107CFU/mL。进一步分析表明,104CFU/mL酵母菌使橙汁呈现出胀瓶和变清等腐败特征,106CFU/mL-107CFU/mL酵母菌能使橙汁产品出现明显的胀瓶现象。
     2.对橙汁中主要的酵母菌进行了形态观察。Pichia fermentans在YPD培养基上生长,菌落表面呈现辐射分布的精致的条纹,可用于快速识别该种酵母。对菌株Y17-2和Y19菌落形态进行连续观察,发现酵母菌落形态是动态变化的,可通过特定时期出现的明显特征识别酵母菌。Pichia属的7株酵母菌可根据菌落形态差异分为6组,与核糖体DNA序列聚类分析的结果一致。也对Clavispora lusitaniae、Candida sake、Hanseniaspora uvarum和τCandida parapsilosis等主要酵母污染菌在WL培养基上的菌落特征进行观察,这些菌落在颜色和形态上都有差异。研究结果表明:酵母在菌落特征上的差异与其核糖体DNA序列差异的结果一致。因此,采用菌落特征观察来鉴别橙汁中主要的腐败酵母菌是行之有效的快速鉴定方法之一。
     3.以107CFU/mL和104CFU/mL的Saccharomyces cerevisiae菌液为材料,对细胞破碎方式进行比较后选择最佳破壁方法,并对研磨破壁时提取液的用量进行了优化。优化后的DNA提取方法如下:
     1.5mL样品在13000rpm离心3min收集菌体;80gL提取液、90mg石英砂研磨3min,加320μL提取液;水浴10min,加250μL6mol/L NaCl溶液和等体积的氯仿:异戊醇(24.1)去除杂质,然后无水乙醇沉淀DNA,最后用50μL ddH2O溶解。
     4.以提取自104CFU/mL菌液的DNA为模板优化PCR扩增体系。对PCR各组分进行优化的结果是:‘INTP0.2mmol/U引物浓度各0.4μmol/L, rTaq酶15U/25μL—g2+1.5mmol/L,或者rTaq酶1U/25μL—g2+2.5mmol/L有利于检测低浓度酵母菌。
     5.以8株代表酵母菌为材料比较5.8S-ITS区RFLP分析、5.8S-ITS区测序分析和26S rDNAD1/D2区测序分析对酵母菌的鉴定效果。3种鉴定法方法的鉴定结果一致,表明5.8S-ITS区RFLP分析与D1/D2区序列测定结合可快速准确地鉴定酵母菌。从橙汁分离菌中鉴定出分属于17属的26种酵母,主要的酵母菌及其出现的频率如下Clavispora lusitaniae (13%)、Candida sake (11%)、Saccharomyces cerevisiae (11%)、Hanseniaspora uvarum(7%)、Candida parapsilosis (6%)和Meyerozyma guilliermondii (6%)。分离菌中有10种酵母菌在橙汁中少见报道,表明橙汁中酵母菌的种类多,值得进一步分析。
     6.以106CFU/mL~101CFU/mL菌液和接种橙汁为材料,用常规PCR、热启动PCR和荧光定量PCR进行检测。常规PCR可检测接种橙汁中104CFU/mL酵母菌,表明检测灵敏度比原有的常规PCR检测106CFU/mL酵母菌提高了100倍,比原有的DNA经纯化后检测105CFU/mL酵母菌的灵敏度提高了10倍;使用热启动PCR可检测103CFU/mL酵母菌,是提高检测灵敏度的方法之一。以真菌通用引物NL1/NL4为引物,荧光定量PCR可检测40fg酵母菌DNA,能检测菌液中101CFU/mL酵母,但只能检测接种橙汁中104CFU/mL的酵母菌,这表明荧光定量PCR检测灵敏度高于常规PCR,但仍受橙汁中的某些物质的抑制而无法检测低浓度的酵母菌。
     7.以7种已鉴定的橙汁分离酵母菌为材料,进行5.8S-ITS区熔解曲线分析,以考察能否用通过5.8S-ITS区熔解温度鉴别橙汁中的酵母菌。7种酵母菌5.8S-ITS区的熔解温度如下:Candida parapsilosis (80.10±0.0℃)、Rhodotorula glutinis (80.95±0.05℃)、Debarryomyces hansenii (81.70±0.0℃)、Meyerozyma guilliermondii Y56(82.60±0.0℃)、Candida intermedia (83.80±0.0℃)、Hanseniaspora sp.(84.20±0.0℃)、Pichia kluyvero(84.23±0.047℃),结果表明熔解曲线分析结果准确,可用于区分熔解温度相差0.2℃的酵母菌。
Orange juice is the most important processed citrus product, and its international trade value accounts for one third of the total citrus trade value. Although both the cultivation area and outputs of citrus in China now rank the first in the world, the orange juice production of China occupies only~1%of the world. To meet the increasing domestic demand for orange juice, and to reduce the dependence on imports, the development of orange juice industry in China is promoted gradually by optimizing the cultivation area of citrus, increasing the ratio of processing orange, and reducing the raw material cost.
     With the rapid development of China's citrus industry, a quality safety and supervision system for orange juice is badly needed in China. The spoilage caused by yeast is one of the main problems of orange juice industry, especially to the Not from Concentrate Orange Juice (NFCOJ), in which preservative is not allowed. Compared with the detection of disease-causing bacteria, few studies have been carried out for the yeast. Up till now, traditional plate count method is still widely used in detection of yeast in food and beverage in China. Traditional method takes time and can not give in-time information for the production. To effectively control yeast contamination of orange juice, a rapid and effective detection method for detection of yeast in orange juice is of great importance to the consumption and production safety of orange juice in China.
     In the present study, plate count method was used to isolate yeasts from orange juice. Then the isolates were identified based on morphology, restriction enzyme digestion analysis of the internal transcribed spacers (ITS) and5.8S rRNA gene, and sequence analysis of the D1/D2domain of26S rRNA gene. A molecular rapid detection system was established for the spoilage yeast in orange juice on the basis of a modification of DNA extraction method and optimization of PCR reaction system. The main results obtained were as follows:
     1.63samples of spoiled orange juice were analyzed by plate count method. Yeast in spoiled juice was103CFU/ml-107CFU/ml. Further analysis shows that104CFU/ml yeast concentration caused the phenomenon of "bottle-swelling" and spoilage of the juice, and106CFU/ml-107CFU/ml yeast caused significant "bottle-swelling" phenomenon.
     2. The colony morphology of yeast on YPD agar was observed. The surface of Pichia fermentans was characterized by wrinkle with stripes radiated from center to edge, which can be used to identify this strain. The dynamic change of colony morphology of strain Y17-2and Y19was observed. It is found that colony morphology of yeast at different development stages was different, and their morphological characteristics can be used to identify the yeast strains. Based on the morphological data obtained,7isolates of the genus Pichia can be divided into6groups, which was consistent to the result of cluster analysis based on ribosome DNA sequence. The colony morphology of Clavispora lusitaniae, Candida sake, Hanseniaspora uvarum, and Candida parapsilosis on WL medium was also observed. These colonies showed different color and shape. The results indicated that the difference of colony morphology of yeast is consistent with difference of ribosomal DNA sequence. Therefor, the morphology of yeast on WL medium is an effective and rapid method to identify the main spoilage yeasts in orange juice.
     3. In order to choose the optimum cell disruption method,5cell wall disruption methods were compared using107and10CFU/ml diluents of S. cerevisiae. The volume of extraction buffer for grinding was optimized. Details of the optimized DNA extraction method is as follows:1.5ml specimen were centrifuged at13000rpm for3min;80μl extraction buffer and80-100mg quartz sand were added for grinding3min with pestle by hand, then320μl extraction buffer was added. The suspension of disrupted cells was incubated at65℃for10min, and purified with250μl6mol/L NaCl solution and equal volume of chloroform-isoamyl alcohol (24:1), followed by alcohol precipitation; finally, DNA was dissolved in50μl ddH2O.
     4. The PCR amplification system was optimized for detecting yeast at low concentration using DNA extracts of water containing104CFU/ml yeast cells. The results obtained were as follows:0.2mmol/L dNTP and0.4μmol/L each primer,1.5U/25μl rTaq enzyme with1.5mmol/L Mg2+, or1U/25μl rTaq enzyme with2.5mmol/L Mg2+
     5. Three molecular identification methods, RFLP analysis of5.8S-ITS region,5.8S-ITS region sequencing, and26S rDNA D1/D2sequence analysis, were tested using8yeast strains. Consistent results were obtained by these three methods. Our results indicated that RFLP analysis of5.8S-ITS region combined with D1/D2sequence analysis obtained accurate identification.68yeast strains were identified as26yeast species, which belonged to17genera according to D1/D2domain sequencing. The dominant yeasts species are as follows:Clavispora lusitaniae (13%), Candida sake (11%), Saccharomyces cerevisiae (11%), Hanseniaspora uvarum (7%), Candida parapsilosis (6%) and Meyerozyma guilliermondii (6%).10yeast species were firstly reported in this study, therefore, there might be more unknown yeast species in orange juice.10yeast species in this study were firstly detected in orange juice in this study. This result implied that there might be more unknown yeast species existing in orange juice.
     6. DNA was extracted from water and orange juice containing106-101CFU/ml yeast cell using the improved DNA extraction method. Conventional PCR, hot-start PCR and real-time fluorescence quantitative PCR were used, respectively, to detect yeast. Conventional PCR could detect104CFU/ml yeast in orange juice, which means that the detection limit was improved100times comparing to the current limit of106CFU/ml yeast and10times comparing to the limit of105CFU/ml yeast with purified DNA. Furthermore, the detection limit of Hot-start PCR reached103CFU/ml, so Hot-start PCR is also one of the methods to improve detection sensitivity.40fg yeast DNA, DNA extracted from101CFU/ml yeast diluent, and DNA from104CFU/ml yeast inoculated orange juice were all able to be detected by real-time PCR using fungi universal primer NL1/NL4. This result suggested that the real-time PCR has higher detection sensitivity than conventional PCR. Unfortunately, this method failed to detect yeast at low concentration in samples due to the inhibition of some substances in orange juice.
     7. Melting curve analysis of5.8S-ITS region from7identified yeast isolates from orange juice was performed. Their melting temperature were as follows:Candida parapsilosis (80.10±0.0℃), Rhodotorula glutinis (80.95±0.05℃), Debarryomyces hansenii (81.70±0.0℃), Meyerozyma guilliermondii Y56(82.60±0.0℃), Candida intermedia (83.80±0.0℃), Hanseniaspora sp.(84.20±0.0℃), and Pichia kluyveri (84.23±0.047℃). The Tm value of PCR products from the5.8-ITS region of5yeasts isolates differed by more than0.8℃, thus, allowing the differentiation of them by melting peak analysis.
引文
[1]United States Department of Agriculture. Citrus:World Markets and Trade [J].2012.
    [2]吴厚玖.我国橙汁加工业发展的主要瓶颈及解决方法[M]//中国柑橘学会.柑橘产业结构优化暨中国柑橘学会2012年学术年会.重庆;中国柑橘学会.2012:50-51.
    [3]全国食品工业标准化技术委员会.橙汁及橙汁饮料[S].北京;中国标准出版社.2008:1.
    [4]Ghanim H, Sia C L, Upadhyay M, et al. Orange juice neutralizes the proinflammatory effect of a high-fat, high-carbohydrate meal and prevents endotoxin increase and Toll-like receptor expression [J]. The American Journal of Clinical Nutrition,2010,91(4):940-949.
    [5]Cesar T B, Aptekmann N P, Araujo M P, et al. Orange juice decreases low-density lipoprotein cholesterol in hypercholesterolemic subjects and improves lipid transfer to high-density lipoprotein in normal and hypercholesterolemic subjects [J]. Nutrition research,2010,30(10):689-694.
    [6]Morand C, Dubray C, Milenkovic D, et al. Hesperidin contributes to the vascular protective effects of orange juice:a randomized crossover study in healthy volunteers [J]. The American Journal of Clinical Nutrition,2011,93(1):73-80.
    [7]牛丽影,吴继红,廖小军.不同类型橙汁挥发性风味成分的测定与比较[J].中国食品学报,2008,8(1):119-124.
    [8]陆胜民.世界柑橘生产、贸易、加工的历史、现状与发展趋势[M]//中国柑橘学会.柑橘产业结构优化暨中国柑橘学会2012年学术年会.重庆;中国柑橘学会.2012:47.
    [9]韦群.中国橙汁加工产业的发展战略与成本控制问题研究[D].重庆;西南大学,2006.
    [10]吴厚玖.中国汁用甜橙的生产和橙汁加工业的发展前景[J].中国南方果树,2005,34(6):27-28.
    [11]Stratford M. Food and beverage spoilage yeasts [M]//Amparo Querol, Fleet G H. Yeasts in food and beverages. Berlin; Springer-Verlag.2006:335-379.
    [12]Tournas V H, Heeres J, Burgess L. Moulds and yeasts in fruit salads and fruit juices [J]. Food Microbiology,2006,23(7):684-688.
    [13]Arias C R, Burns J K, et al. Yeast Species Associated with Orange Juice:Evaluation of Different Identification Methods [J]. Applied and enviromental microbiology,2002,68(4):1955-1961.
    [14]Ros-Chumillas M, Egea-Cortines M, Lopez-Gomez A, et al. Evaluation of a rapid DNA extraction method to detect yeast cells by PCR in orange juice [J]. Food Control,2007,18(1):33-39.
    [15]吴治海,蒲彪.引起果蔬汁变质的微生物概述[J].四川食品与发酵,2005,41(2):40-42.
    [16]胡斌.用预测微生物学控制橙汁中酿酒酵母的研究[D].无锡;江南大学,2008.
    [17]胡斌,钱和.酿酒酵母菌含量对控制橙汁腐败的影响[J].食品工业科技,2009,30(1):186-188.
    [18]Eiroa M N, Junqueira V C, Schmidt F L. Alicyclobacillus in orange juice:occurrence and heat resistance of spores [J]. Journal of Food Protection,1999,62(8):883-886.
    [19]Munoz N, Diaz-Osorio M, Moreno J, et al. Development and Evaluation of a Multiplex Real-Time Polymerase Chain Reaction Procedure to Clinically Type Prevalent Salmonella enterica Serovars [J]. Journal of Molecular Diagnostics,2010,12(2):220-224.
    [20]Smit Y, Cameron M, Venter P, et al. Alicyclobacillus spoilage and isolation--a review [J]. Food Microbiol,2011,28(3):331-349.
    [21]Kurtzman C P, Fell J W, Boekhout T. Definition, Classification and Nomenclature of the Yeasts [M]. 5th ed. Amsterdam Elsevier Science,2011,3-5.
    [22]Pitt J I. Fungi and food spoliage [M].2 ed. London:Blackie,1997.
    [23]Las Heras-Vazquez F J, Mingorance-Cazorla L, Clemente-Jimenez J M, et al. Identification of yeast species from orange fruit and juice by RFLP and sequence analysis of the 5.8S rRNA gene and the two internal transcribed spacers [J]. Ferns Yeast Research,2003,3(1):3-9.
    [24]Uhitil S, Hadina S, Granic K, et al. Prevalence of Candida Species in the Fresh Fruit Juices [J]. Archives of Industrial Hygiene and Toxicology 2009,60(4):443-447.
    [25]Gupta T P, Ehrinpreis M N. Candida-associated diarrhea in hospitalized patients[J]. Gastroenterology. 1990,98(3):780-785.
    [26]Fleet G H, Balia R. The public health and pobiotic significance of yeasts in foods and beverages [M]//Amparo Querol, Fleet G. Yeasts in food and beverages. Berlin; Springer-Verlag.2006:381-397.
    [27]Kajikazawa T, Sugita T, Takashima M, et al. Detection of pathogenic yeasts from processed fresh edible sea urchins sold in a fish market [J]. Japanese Journal of Medical Mycology,2007,48(4): 169-172.
    [28]Makino H, Fujimoto J, Watanabe K. Development and evaluation of a real-time quantitative PCR assay for detection and enumeration of yeasts of public health interest in dairy products [J]. International Journal of Food Microbiology,2010,140(1):76-83.
    [29]Fleet G H. Yeasts in foods and beverages:impact on product quality and safety [J]. Current Opinion in Biotechnology,2007,18(2):170-175.
    [30]Graumlich T R. Survival and recovery of thermally stressed yeast in orange juice [J]. Journal of Food Science,1981,46(5):1410-1411.
    [31]Loureiro V, M. Malfeito-Ferreira, Agronomia I S D, et al. Detecting spoliage yeasts [M].//Steele R. Understanding and Measuring the Shelf Life of Food. Cambridge; Woodhead Publishing Limited. 2004.
    [32]Kreger-van Rij N J W. The Yeasts:a Taxonomic Study [M]. Amsterdam:Elsevier Science Publishers B V,1984.
    [33]Barnett J A, Payne R W, Yarrow D. Yeasts:Charactersistics and Identifiction [M]. Cambridge: Cambridge University Press,2000.
    [34]Sams T, Sneppen K, Jensen M H, et al. Morphological instabilities in a growing yeast colony: experiment and theory [J]. The American Physical Society,1997,79(2):313-316.
    [35]Tornai-Lehoczki J, Peter G, Dlauchy D. CHROMagar Candida medium as a practical tool for the differentiation and presumptive identification of yeast species isolated from salads [J]. International Journal of Food Microbiology,2003,86(1-2):189-200.
    [36]Green S R, Gray P P. A differential procedure for bacteriological studies useful in the fermentation industry [J]. Archives of Biochemistry and Biophysics,1951,32(1):59-69.
    [37]Christina L. Pallmann, James A. Brown, Luca Cocolin, et al. Use of WL medium to profile native flora fermentations [J]. American Journal of of Enology and Viticulture,2001,52(3):198-203.
    [38]杨莹,徐艳文,薛军侠,等.WL营养琼脂对葡萄酒相关酵母的鉴定效果验证[J].微生物学杂志,2007,27(5):75-78.
    [39]李艳,卢君,张利中.沙城龙眼葡萄园土壤中酵母菌多样性研究[J].食品科学,2010,31(19):313-316.
    [40]朱丽霞,李红梅,郭东起,等.新疆慕萨莱思自然发酵过程中酵母菌表型多样性及优势菌分析[J].食品科学,2012,33(7):142-147.
    [41]Kobayashi T. Strategies to maintain the stability of the ribosomal RNA gene repeats [J]. Genes& Genetic Systems,2006,81(3):155-161.
    [42]刘宁,刘延琳.核糖体RNA基因在酵母分类鉴定中的应用[J].中国农业科学,2010,43(22):4701-4708
    [43]Hassouna N, Michot B, Bachellerie J-P. The complete nucleotide sequence of mouse 28S rRNA gene: implications for the process of size increase of the large subunit rRNA in higher eukaryotes [J]. Nucleic Acids Research,1984,12(8):3563-3583.
    [44]Kurtzman C P., Robnett C J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences [J]. Antonie van Leeuwenhoek,1998, 73(4):331-371.
    [45]Fell J W, Boekhout T, Alvaro Fonseca, et al. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis [J]. International Journal of Systematic and Evolutionary Microbiology,2000,50(3):1351-1371.
    [46]Linton C J, Borman A M, Cheung G, et al. Molecular identification of unusual pathogenic yeast isolates by large ribosomal subunit gene sequencing:2 years of experience at the United kingdom mycology reference laboratory [J]. J Clin Microbiol,2007,45(4):1152-1158.
    [47]李金霞,刘光全,程池.酿酒酵母26S rDNAD1/D2区域序列分析及其系统发育研究[J].酿酒,2007,34(1):37-39.
    [48]张晓娟,王柱,周光燕,等.西南菌种站20株酵母菌种基于26S rDNA D1/D2区序列分析研究 [J].四川食品与发酵,2008,44(3):1-4.
    [49]Esteve-Zarzoso B., Belloch C, F. U, et al. Identification of yeasts by RFLP analysis of the 5.85 rRNA gene and the two ribosomal internal transcribed spacers [J]. International Journal of Systematic Bacteriology,1999,49(1):329-337.
    [50]Dlauchy D, Tornai-Lehoczki J, Peter G. Restriction enzyme analysis of PCR amplified rDNA as a taxonomic tool in yeast identification [J]. Systematic and Applied Microbiology,1999,22(3): 445-453.
    [51]De Llanos Frutos R, Fernandez-Espinar M T, Querol A. Identification of species of the genus Candida by analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers [J]. Antonie van Leeuwenhoek,2004,85(3):175-185.
    [52]Fernandez-Espinar M T, Esteve-Zarzoso B, Querol A, et al. RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces:a fast method for species identification and the differentiation of flor yeasts [J]. Antonie van Leeuwenhoek,2000, 78(1):87-97.
    [53]崔志峰,杨霄,汪琨.基于5.8S rDNA-ITS区域的RFLP分析快速鉴定酵母菌株[J].浙江工业大学学报,2007,35(3):241-245,250.
    [54]刘树文,常亚维,胡廷,等.不同树龄葡萄自然发酵过程中酵母菌的研究[J].西北农林科技大学学报(自然科学版),2008,36(7):51-56.
    [55]徐艳文,杨莹,薛军侠,等26S rDNA-RFLP分析在非酿酒酵母菌分类研究中的应用[J].微生物学杂志,2007,27(4):23-26.
    [56]Pina C, Teixeiro P, Leite P, et al. PCR-fingerprinting and RAPD approaches for tracing the source of yeast contamination in a carbonated orange juice production chain [J]. Journal of Applied Microbiology,2005,98(5):1107-1114.
    [57]Ririe K M, Rasmussen R P, Wittwer C T. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction [J]. Analytical Biochemistry,1997,245(2):154-160.
    [58]刘丽琴,张海燕,王捷.高分辨率熔解曲线分析技术及其应用进展[J].现代生物医学进展,2011,11(24):5187-5189.
    [59]Casey G D, Dobson A D W. Potential of using real-time PCR-based detection of spoilage yeast in fruit juice—a preliminary study [J]. International Journal of Food Microbiology,2004,91(3): 327-335.
    [60]Renard A, Di Marco P G, Egea-Cortines M, et al. Application of whole genome amplification and quantitative PCR for detection and quantification of spoilage yeasts in orange juice [J]. International Journal of Food Microbiology,2008,126(1-2):195-201.
    [61]Arancia S, Sandini S, De Bernardis F, et al. Rapid, simple, and low-cost identification of Candida species using high-resolution melting analysis [J]. Diagnostic Microbiology and Infectious Disease, 2011,69(3):283-285.
    [62]DeaK T. Methods for the rapid detection and identification of yeasts in foods [J]. Trends in Food Science & Technology September,1995,6(9):287-292.
    [63]王华,刘斌.PCR技术在食品微生物检测中的应用[J].生物技术通报,2010,(2):63-67.
    [64]巢强国,杨学明,葛宇,等.PCR法检测食品中大肠杆菌0157:H7[J].食品科学,2010,31(8):212-215.
    [65]Wei J, Zhou X, Xing D, et al. Rapid and sensitive detection of Vibrio parahaemolyticus in sea foods by electrochemiluminescence polymerase chain reaction method [J]. Food Chemistry,2010,123(3): 852-858.
    [66]Sanz A, Martin R, Mayoral M B, et al. Development of a PCR-culture technique for rapid detection of yeast species in vacuum packed ham [J]. Meat Science,2005,71(2):230-237.
    [67]Mayoral M B, Martin R, Sanz A et al. Detection of Kluyveromyces marxianus and other spoilage yeasts in yoghurt using a PCR-culture technique [J]. International Journal of Food Microbiology, 2005,105(1):27-34.
    [68]国家认证认可监督管理委员会.食品中多种致病菌快速检测-PCR方法[S].北京;中国标准出版社.2007:1-12.
    [69]国家认证认可监督管理委员会.食品中常见致病菌检测PCR-DHPLC [S]北京;中国标准出版社.2010:1-9.
    [70]Omiccioli E, Amaqliani G, Brandi G, et al. A new platform for Real-Time PCR detection of Salmonella spp., Listeria monocytogenes and Escherichia coli O157 in milk [J]. Food Microbiology, 2009,26 (2009):8.
    [71]Tomas D, Rodrigo A, Hernandez M, et al. Validation of real-time PCR and enzyme-linked fluorescent assay-based methods for detection of Salmonella spp. in chicken feces samples [J]. Food Analytical Methods,2009,2(3):180.
    [72]Martorell P, Querol A, Ferndez-Espinar M T. Rapid identification and enumeration of Saccharomyces cerevisiae cells in wine by real-time PCR [J]. Applied and Environmental Microbiology,2005, 71(11):6823-6830.
    [73]Hierro N, Esteve-Zarzoso B, Gonzalez A, et al. Real-Time Quantitative PCR (QPCR) and Reverse Transcription-QPCR for detection and enumeration of total yeasts in wine [J]. Applied and Environmental Microbiology,2006,72(11):7148-7155.
    [74]Rawsthorne H, Phister T G. A real-time PCR assay for the enumeration and detection of Zygosaccharomyces bailii from wine and fruit juices [J]. International Journal of Food Microbiology, 2006,112(1):1-7.
    [75]Hierro N, Esteve-Zarzoso B, Albert M, et al. Monitoring of Saccharomyces and Hanseniaspora population during alcoholic fermentation by real-time quantitative PCR [J]. Ferns Yeast Research, 2007,7(8):1340-1349.
    [76]Bleve G, Rizzotti L, Dellaglio F, et al. Development of Reverse Transcription (RT)-PCR and Real-Time RT-PCR assays for rapid detection and quantification of viable yeasts and molds contaminating yogurts and pasteurized food products [J]. Applied and Environmental Microbiology, 2003,69(7):4116-4122.
    [77]Tofalo R, Schirone M, Perpetuini G, et al. Development and application of a real-time PCR-based assay to enumerate total yeasts and Pichia anomala, Pichia guillermondii and Pichia kluyveri in fermented table olives [J]. Food Control,2012,23:356-362.
    [78]Muller F-M C, Werne K E, Kasai M, et al. Rapid extraction of genomic DNA from medically important yeasts and filamentous fungi by High-Speed cell disruption [J]. Journal of Clinical Microbiology,1998,36(6):1625-1629.
    [79]Haugland R A, Heckman J L, Wymer L J. Evaluation of different methods for the extraction of DNA from fungal conidia by quantitative competitive PCR analysis [J]. Journal of Microbiological Methods,1999,37(2):165-176.
    [80]Ramesh A, Padmapriya B P, Chandrashekar A, et al. Application of a convenient DNA extraction method and multiplex PCR for the direct detection of Staphylococcus aureus and Yersinia enterocolitica in milk samples [J]. Molecular and Cellular Probes,2002,16(4):307-314.
    [81]Rantakokko-Jalava K, Jalava J. Optimal DNA Isolation method for detection of bacteria in clinical specimens by Broad-Range PCR [J]. Journal of Clinical Microbiology,2002,40(11):4211-4217.
    [82]Jin J, Lee Y-K, Wickes B L. Simple Chemical Extraction Method for DNA Isolation from Aspergillus fumigatus and Other Aspergillus Species [J]. Journal of Clinical Microbiology,2004, 42(9):4293-4296.
    [83]Fredricks D N, Smith C, Meier A. Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR [J]. Journal of Clinical Microbiology,2005,43(10): 5122-5128.
    [84]Karakousis A, Tan L, Ellis D, et al. An assessment of the efficiency of fungal DNA extraction methods for maximizing the detection of medically important fungi using PCR [J]. Journal of Microbiological Methods,2006,65(1):38-48.
    [85]李旺军,方华,曹钰,等.不同破壁方法提取绍兴黄酒麦曲中的微生物总DNA[J].中国酿造,2007.169:17-20.
    [86]孙立夫,张艳华,裴克全.一种高效提取真菌总DNA的方法[J].菌物学报,2009,28(2):299-303.
    [87]Wong S, Mak J, Pook P. New mechanical disruption method for extraction of whole cell protein from Candida albicans [J]. Southeast Asian journal trop public health,2007,38(3):512-518.
    [88]Chi M-H, Park S-Y, Lee Y-H. A quick and safe method for fungal DNA extraction [J]. The Plant Pathology Journal,2009,25(1):108-111.
    [89]Psifidi A, Dovas C I, Banos G. A comparison of six methods for genomic DNA extraction suitable for PCR-based genotyping applications using ovine milk samples [J]. Molecular and Cellular Probes, 2010,24(2):93-98.
    [90]Miller S A, Dykes D D, Polesky H F. A simple salting out procedure for extracting DNA from human nucleated cells [J]. Nucleic Acids Research,1988,16(3):1215.
    [91]谭建明,谢桐,徐琴君,等.快速盐析法提取DNA在HLA基因分型中的应用[J].中华器官移植杂志,1996,17(1):9-11.
    [92]秦振宇,昊绍熙,Hopfer R L,等.玻璃珠-盐析法提取常见致病真菌的研究DNA[J].中华皮肤科杂志,2000,33(5):330-332.
    [93]Garcia T, Mayoral B, Gonalez I, et al. Enumeration of yeasts in dairy products:a comparison of immunological and genetic techniques [J]. Journal of Food Protection,2004,67(2):357-364.
    [94]Malacrino P, Zapparoli G, Torriani S, et al. Rapid detection of viable yeasts and bacteria in wine by flow cytometry [J]. Journal of Microbiological Methods,2001,45(2):127-134.
    [95]Wang Y, Hammes F, De Roy K, et al. Past, present and future applications of flow cytometry in aquatic microbiology [J]. Trends in Biotechnology,2010,28(8):416-424.
    [96]张峻峰,刘道亮,赵占民,等.流式细胞术在微生物快速检测领域的研究进展[J].食品工程,2010,(3):19-22.
    [97]Pettipher G L. Preliminary evaluation of flow cytometry for the detection of yeasts in soft drinks [J]. Letters in Applied Microbiology,1991,12(4):109-112.
    [98]Laplace-Builhe C, Hahne K, Hunger W, et al. Application of flow cytometry to rapid microbial analysis in food and drinks industries [J]. Biology of the Cell,1993,78(1-2):123-128.
    [99]Comas-Riu J, Rius N. Flow cytometry applications in the food industry [J]. Joural of Industrial Microbiology Biotechnolology,2009,36(8):999-1011.
    [100]刘道亮,胡连霞,赵占民,等.流式细胞技术快速检测果汁中的霉菌、酵母菌[J].食品工业科技,2011,32(3):387-391.
    [101]沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社,1999.
    [102]Hays G L. The isolation, cultivation and identification of organisms which have caused spoliage in frozen concentrated orange juice [J]. Proceedings of the Florida State Horticultural Society,1951,64: 135-137.
    [103]郭冬琴,杨晓红,陈吉裕,等.两株橙汁酵母菌落发育的动态特征及鉴定意义[J].西南大学 学报(自然科学版),2009,31(10):73-78.
    [104]Palkova Z, Devaux F, Ricicova M, et al. Ammonia pulses and metabolic oscillations guide yeast colony development [J]. Molecular Biology of the Cell,2002,13(11):3901-3914.
    [105]Palkova Z, Forstova J. Yeast colonies synchronise their growth and development [J]. Journal of Cell Science,2000,113:1923-1928.
    [106]Palkova Z, Vachova L. Ammonia signaling in yeast colony formation [M]//Kwang W J. International Review of Cytology. Academic Press.2003,225:229-272.
    [107]Vopalenska I, Hulkova M, Blanka Janderova, et al. The morphology of Saccharomyces cerevisiae colonies is affected by cell adhesion and the budding pattern [J]. Research in Microbiology,2005, 156(9):921-931.
    [108]Kurtzman C P, Suzuki M. Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces [J]. Mycoscience,2010,51(1):2-14.
    [109]Sherman F. Getting started with yeast [J]. Methods Enzymol,2002,350:3-41.
    [110]Villa-Carvajal M, Querol A, Belloch C. Identification of species in the genus Pichia by restriction of the internal transcribed spacers (ITS1 and ITS2) and the 5.8S ribosomal DNA gene [J]. Antonie van Leeuwenhoek,2006,90(2):171-181.
    [111]Kurtzman C P, Robnett C J, Basehoar-Powers E. Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen.nov. and Wickerhamomyces gen. nov. [J]. FEMS yeast research,2008,8(6):939-954.
    [112]Kurtzman C P. Phylogeny of the ascomycetous yeasts and the renaming of Pichia anomala to Wickerhamomyces anomalus [J]. Antonie Van Leeuwenhoek,2011,99(1):13-23.
    [113]Stratford M, Hofman P D, Cole M B. Fruit juices, fruit drinks and soft drinks [M]. Gaithersburg: Aspen,2000.
    [114]Guillamon J M, Sabate J, Barrio E, et al. Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region [J]. Archives of Microbiology, 1998,169(5):387-392.
    [115]Loureiro V, Malfeito-Ferreira M. Spoilage yeasts in the wine industry [J]. International Journal of Food Microbiology,2003,86(1-2):23-50.
    [116]Kurtzman C P, Fell J W. The Yeasts, a Taxonomic Study [M]. Amsterdam:Elsevier Science B. V., 1998.
    [117]Anuradha S, Agarwal S K, Prakash A, et al. Candida sake-A Rare Cause of Fungal Endocarditis [J]. The Medical journal of Malaysia,2008,63(1):75-76.
    [118]Palmisano A, Benecchi M, De Filippo M, et al. Candida sake as the causative agent of spondylodiscitis in a hemodialysis patient [J]. The Spine Journal,2011,11(3):e12-e16.
    [119]冯再平.苹果浓缩汁中耐热菌PCR法定量检测技术研究[D].西安;陕西师范大学,2004.
    [120]Martinez N, Martin M C, Herrero A, et al. qPCR as a powerful tool for microbial food spoilage quantification:Significance for food quality [J]. Trends in Food Science & Technology,2011,22(7): 367-376.
    [121]Herrmann M G., Durtschi J D, Wittwer C T, et al. Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping [J]. Clinical Chemistry,2007,53(8): 1544-1548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700