用于高压脉冲电场杀菌的IGBT串联型高压脉冲发生器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对国内在应用于高压脉冲电场(Pulsed Electric Fields, PEF)杀菌技术中高压脉冲发生器研制水平较为落后的现状,采用IGBT串联技术,研究了IGBT串联型高压脉冲发生器的设计方法;结合PEF杀菌应用中脉冲及共线型处理室特征,设计了64只1200V IGBT串联的耐压30kV的固态开关;将该固态开关应用于高压脉冲发生器,能输出峰值30kV、频率及脉宽可调的准方波脉冲。主要研究内容和结论如下:
     (1)设计了基于DSP控制的、光纤耦合传输的、以M57962L为驱动器的64只IGBT的驱动电路及短路保护电路,其中驱动电路的信号最大延迟时间差不超过100ns,短路保护时间约为6.5μs。
     (2)分析了IGBT的开关过程及功率损耗,拟合了IGBT等效热时间常数τj与等效热阻Rjc的关系,证明IGBT在工作中存在结温叠加;通过散热分析,得到散热器热阻为Rfa=1.7℃/W
     (3)以IGBT Hefner模型为研究基础,提取了该模型的IGBT物理参数,建立了IGW60T120的PSpice仿真模型;通过对比IGBT开关暂态过程中的实验波形与仿真波形,证明所建立的模型具有较好的仿真精度,可应用于IGBT串联电路仿真分析,
     辅助IGBT串联电路的设计,预测IGBT串联电路的工作状态。
     (4)通过对IGBT串联电路的开关延时分析,证明IGW60T120在平均工作电压为600V时,安全延迟时间不超过70ns;对IGW60T120的栅极特性进行数学及仿真分析,表明栅极电阻每增加5Ω,相当于驱动信号增加27.5ns的延迟,而栅极电压在较小范围内的波动对IGBT的开关过程影响较小。
     (5)以RCD电路经验公式为参考,通过数学及仿真分析,得到缓冲电容和缓冲电阻新的算法:
     (6)结合共线型处理室,对高压脉冲发生器放电回路进行分析,证明PEF杀菌过程中,准方波的能量利用率高于指数波;准方波和指数波工作时,食品的温升分别为:和ΔT=U02··Ce/0.82。将该结论应用到负载为共线型处理室的回路中,得出准方波和指数波的工作效率分别为和86.3%。
     (7)最后通过实验证明本文所设计的基于64只IGBT串联的高压固态开关可承受30kV高压,所设计的高压脉冲发生器能够为PEF杀菌实验提供波形较为稳定的准方波脉冲。
In order to improve the development of high-voltage pulse generator used in pulsed electric fields (PEF) sterilization technologies, a solid state high-voltage pulse generator was developed based on series connected IGBTs. Moreover, combined with the characteristics of pulses and collinear treatment chamber used in PEF sterilization, a solid-state was constructed that can handle more than30kV. And it can also output a adjustable pulse width and frequency quasi-square wave pulse with30kV voltage when utilized in high-voltage pulse generator.
     The results and conclusions were listed as follows:
     (1) Driver circuit and protective circuit of IGBTs were designed based on DSP、fiber optic transmission and M57962L. Experiments demonstrated that a protective circuit system had a response time of6.5μs, and its overall protective time was less than the short-circuit time of IGBT15μs. On this basis, a drive circuit based on optical fiber was designed to drive64series IGBTs (with the block voltage of1200V) and the series fault feedback circuit. Moreover, the drive signal can obtain a maximum delay time difference less than100ns.
     (2) The switching process and power loss of IGBTs were analyzed. And the curve fitting of IGBTs was acquired between equivalent thermal time constant and equivalent transient thermal resistance, which proved that there exist junction temperatures while IGBTs were working and need for thermal design. By thermal analysis, the thermal resistance of radiator was1.7℃/W.
     (3) The parameters of IGBTs were extracted from Hefner model, and a relative simulation model was established. Compared with the experimental and simulation results of IGBTs switching transient process, it can be demonstrated that the simulation model can be utilized to analyze the series connected IGBTs, to help designing IGBTs'series circuit and to predict the work state of IGBTs.
     (4) Turn on and turn off delays was analyzed by circuit simulation method, showed that the average work voltage of IGW60T120was600V and the safety delay time was less than70ns. Additionally, through analyzing the gate characteristics of IGW60T120by both simulation and mathematical methods, the results showed that each additional5Ω of gate resistance was equivalent to add27.5ns for driver signal delay and the gate voltage fluctuations on a small scale has a little influence on IGBTs switching processes.
     (5) Based on the experience formula of RCD snubber circuit, new methods for calculating snubber capacitor and snubber resistor were obtained by simulation. According to combine these methods with equivalent model of collinear sterilization treatment chamber, the range of snubber capacitor and snubber resistor of IGBTs series circuit were and, respectively.
     (6) The discharge circuit of high-voltage pulse generator was analyzed based on collinear treatment chamber. Results proved that, in PEF sterilization, energy utilization of quasi-square wave pulses was larger than exponential wave pulses, the food temperature rise caused by quasi-square wave pulses and exponential wave pulses were and ΔT=U02·Ce-0.82, respectively, and the temperature rise was relatively small. When applied these results to collinear treatment chamber, the efficiencies of quasi-square wave pulses was, and exponential wave pulses was86.3%.
     (7) Finally, through high-voltage texts, the results proved that the designed solid-state can handle30kV voltages, and the high-voltage pulse generator can provide relatively stable quasi-square wave pulses for PEF sterilization. Thus, the methods for series connection of IGBTs are feasible.
引文
[1]廖小军,胡小松.果蔬的“最少加工处理”及研究现状.食品与发酵工业,1998,24(6):39-41.
    [2]Mertens B, Knorr D. Developments of nonthermal processes for food preservation. Food Technology.1992,46(5): 124-133.
    [3]Cheftel J C. Review:High-pressure, microbial inactivation and food preservation. Food Science and Technology International.1995,1(2-3):75-90.
    [4]Zhilyaev A P, Langdon T G, San Martin M F, et al. Using high-pressure torsion for metal processing:Fundamentals and applications. Progress in Materials Science.2008,53(6):627-893.
    [5]Castro A J, Barbosacanovas G V, Swanson B G, et al. Microbial inactivation of foods by pulsed electric-fields. Journal of Food Processing and Preservation.1993,17 (1):47-71.
    [6]Raso J, Barbosa-Canovas G V, Qin B L, et al. Nonthermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition.2003,43(12):255-265.
    [7]Yeom H W, Streaker C B, Zhang Q H, et al. Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. Journal of Agricultural and Food Chemistry.2000,485(5):4547-4597.
    [8]段鑫,欧杰,李柏林.辐照技术在肉制品杀菌保鲜中的应用.食品科学.2010,31(1):278-282.
    [9]励建荣,于平,邓刚,等.辐照技术在果蔬保鲜中的应用研究进展.食品工业科技.2000,21(6):1-5.
    [10]Kuldiloke J, Eshtiaghi M, Zenker M, et al. Inactivation of lemon pectinesterase by thermosonication. International Journal of Food Engineering.2007,3(2):3-8.
    [11]栗星,包海蓉.超声波在食品杀菌中的研究现状.农业工程技术(农产品加工业).2008,1(6):25-28.
    [12]高梦祥,马海乐,郭康权.脉冲磁场杀菌在牛奶杀菌中的应用研究.食品工业科技.2004,1(7):76-78.
    [13]杨巧绒,高梦祥,马海乐.强脉冲磁场的杀菌效果及对食品品质的影响.微波学报.2004,20(3):82-85.
    [14]仇农学,陈颖.臭氧溶解特性及对耐热菌非热杀菌的研究.农业工程学报.2004,20(4):157-159.
    [15]胡立新,崔朝亮,程新华,等.利用膜分离技术对牛初乳进行除菌浓缩的研究.食品科技.2007,1(3):90-92.
    [16]Jeyamkondan S, Jayas D S, Holley R A. Pulsed electric field processing of foods:A review. Journal of Food Protection.1999,62(9):1088-1096.
    [17]Sale A, Hamilton W A. Effects of high electric fields on microorganisms:Ⅰ. Killing of bacteria and yeasts. Biochimica et Biophysica Acta.1967,148(3):781-788.
    [18]Hamilton W A, Sale A. Effects of high electric fields on microorganisms:Ⅱ. Mechanism Of Action Of Lethal Effect. Biochimica et Biophysica Acta.1967,148(3):789-800.
    [19]Benz R, Zimmermann U, Zimmermann U, et al. Pulse-length dependence of the electrical breakdown in lipid bilayer-membranes. Biochimica et Biophysica Acta.1980,597(3):553-637.
    [20]Zimmermann U, Vienken J, Pilwat G. Development of drug carrier systems-electrical-field induced effects in cell-membranes. Bioelectrochemistry and Bioenergetics.1980,7(3):553-574.
    [21]Grahl T, Markl H, Zhang Q H, et al. Killing of microorganisms by pulsed electric fields. Applied Microbiology and Biotechnology.1996,45(2):148-261.
    [22]Zhang Q H, Barbosacanovas G V, Swanson B G. Engineering aspects of pulsed electric-field pasteurization. Journal of Food Engineering.1995,25(2):261-281.
    [23]陈秀伟.高电压脉冲杀菌技术的研究进展.食品与机械.1994,1(4):13.
    [24]殷涌光,殷锦捷,孙东升.用高压脉冲电场杀细菌孢子.农业工程学报.1997,13(1):190-193.
    [25]李艺琳,李钢,国忱.高压脉冲电场杀菌电力系统的研究.包装与食品机械.2003,21(3):10-12.
    [26]周丽珍,李冰,李琳,等.高压脉冲电场杀菌机理及影响因素研究新进展及相关问题探讨.食品研究与开发.2006,27(7):213-216.
    [27]Sale A, Gould G W, Hamilton W A. Inactivation of bacterial spores by hydrostatic pressure. Journal of General Microbiology.1970,1(60):323-334.
    [28]Crowley J M. Electrical breakdown of biomolecular lipid-membranes as an electromechanical instability. Biophysical Journal.1973,13(7):711-724.
    [29]Zemlan F P, Ward I L, Crowley W R, et al. Activation of lordotic responding in female rats by suppression of serotonergic activity. Science.1973,179(4077):1010-1011.
    [30]Benz R, Beckers F, Zimmermann U. Reversible electrical breakdown of lipid bilayer membranes-charge-pulse relaxation study. Journal of Membrane Biology.1979,48(2):181-204.
    [31]Ho S Y, Mittal G S. Electroporation of cell membranes:A review. Critical Reviews in Biotechnology.1996,16(4): 349-362.
    [32]方婷.高压脉冲电场杀菌动力学及处理室改进研究:[博士学位论文].福州:福建农林大学,2008.
    [33]赵伟.高压脉冲电场在液态蛋杀菌中的应用及其对微生物和蛋白质的作用机制:[博士学位论文].无锡:江南大学,2009.
    [34]廖小军.高压脉冲电场系统设计及其杀菌灭酶效果与对苹果汁品质影响研究:[博士学位论文].北京:中国农业大学,2004.
    [35]Samtech Ltd. http://www.samtech.co.uk/.
    [36]North Star Power Engineering.http://www.northstar-powerengineering.com/.
    [37]Directed Energy.http://www.directedenergy.com/.
    [38]HV Pulse Technologies.www.hvpulse.com.
    [39]Pysique & Industrie.http://www.physiqueindustrie.com/.
    [40]Maxwell Technologies.http://www.maxwell.com/.
    [41]PULSE MC2. http://www.pulsemc2.com.
    [42]Services Eletronique UTC. http://www.utc.fr/se/se_fr.htm.
    [43]de Haan S W H, Willcock P R. Comparison of the energy performance of pulse generation circuits for PEF. Innovative Food Science & Emerging Technologies.2002,3(4):349-356.
    [44]李静,廖小军,钟葵,等.高压脉冲电场对酿酒酵母钝化机理研究.农业工程学报.2011,27(4):335-360.
    [45]廖小军,钟葵,王黎明,等.高压脉冲电场对酵母和大肠杆菌的杀灭效果.食品与发酵工业.2003,29(10):19-22.
    [46]Donsi G, Ferrari G, Pataro G. Inactivation kinetics of Saccharomyces cerevisiae by pulsed electric fields in a batch treatment chamber:The effect of electric field unevenness and initial cell concentration. Journal of Food Engineering.2007,78(3):784-792.
    [47]Raso J, Calderon M L, Gongora M, et al. Inactivation of Zygosaccharomyces bailii in fruit juices by heat, high hydrostatic pressure and pulsed electric fields. Journal of Food Science.1998,63(6):1042-1044.
    [48]廖小军,钟葵,王黎明,等.高压脉冲电场对橙汁大肠杆菌和理化性质的影响效果.食品科学.2003,24(6):59-61.
    [49]Amiali A, Ngadi M O, Smith J P, et al. Synergistic effect of temperature and pulsed electric field on inactivation of Escherichia coli 0157:H7 and Salmonella enteritidis in liquid egg yolk. Journal of Food Engineering.2007,79(2): 689-694.
    [50]李静,肖健夫,陈杰,等.高压脉冲电场对苹果汁中大肠杆菌与金黄色葡萄球菌的钝化效果.食品与发酵工业.2010,1(8):41-45.
    [51]Hermawan N, Evrendilek G A, Dantzer W R, et al. Pulsed electric field treatment of liquid whole egg inoculated with Salmonella enteritidis. Journal of Food Safety.2004,24(1):71-85.
    [52]李英梅,杜颜.高压脉冲电场杀菌技术在紫菜食品加工中的应用.包装与食品机械.2010,1(5):60-63.
    [53]李立祥.液态食品高压脉冲电场灭菌效应.食品研究与开发.2002,23(3):59-61.
    [54]Jia M, Howard Zhang Q, Min D B. Pulsed electric field processing effects on flavor compounds and microorganisms of orange juice. Food Chemistry.1999,65(4):445-451.
    [55]Garde-Cerdan T, Arias-Gil M, Marselles-Fontanet A R, et al. Effects of thermal and non-thermal processing treatments on fatty acids and free amino acids of grape juice. Food Control.2007,18(5):473-479.
    [56]B. L. Qin G V B B. A continuous treatment system for inactivating microorganisms with pulsed electric fields. Thirtieth Industry Applications Annual Conference. Orlando:1995,1345-1352.
    [57]Qin B L, Barbosa-Canovas G V, Swanson B G, et al. Inactivating microorganisms using a pulsed electric field continuous treatment system. IEEE Transactions on Industry Applications.1998,34(1):43-50.
    [58]Changjiang W, Zhang Q H, Streaker C. A 12 kV solid state high-voltage pulse generator for a bench top PEF machine. The Third International Power Electronics and Motion Control Conference. Beijing:2000,1347-1352.
    [59]Alkhafaji S R, Farid M. An investigation on pulsed electric fields technology using new treatment chamber design. Innovative Food Science & Emerging Technologies.2007,8(2):205-212.
    [60]Rocher E G, Palomares R A, Sanchez P B. High-voltage pulse generator for pulsed electric field pasteurization.20th International Conference on Electronics Communications and Computers. New York:IEEE,2010,276-280.
    [61]Prins H A, Beurskens R H S H, Creyghton Y L M, et al. Solid state pulsed power source for pulsed electric field and plasma treatment of food products. Pulsed Power Plasma Science.2001,1(2):1294-1297.
    [62]Liang Z, Cheng Z, Mittal G S. Inactivation of spoilage microorganisms in apple cider using a continuous flow pulsed electric field system. LWT-Food Science and Technology.2006,39(4):351-357.
    [63]Donsi G, Ferrari G, Pataro G. Inactivation kinetics of Saccharomyces cerevisiae by pulsed electric fields in a batch treatment chamber:The effect of electric field unevenness and initial cell concentration. Journal of Food Engineering.2007,78(3):784-792.
    [64]Baek J, Ryoo M, Kim J H, et al.50kVA regenerative active load for power test system.2007 European Conference on Power Electronics and Applications. Aalborg:2007,1-8.
    [65]闫克平,邓官垒,刘振,等.基于传输线变压器耦合多开关驱动变阻线的脉冲功率系统.中国专利,201110072045.6,2011-08-17.
    [66]杨景红,郑新,钱锰.加法器结构的大功率固态脉冲调制器的研究.现代雷达.2009(4):63-65.
    [67]黄军,戴广明,田为.几种全固态刚管调制器的对比.现代雷达.2010(3):80-83.
    [68]但果,邹积岩,丛吉远,等.高精度高压脉冲电源原理与实验研究.大连理工大学学报.2003,43(5):623-626.
    [69]应雪正.基于计算机控制的高压脉冲发生器的研究:[硕士学位论文].杭州:淅江大学,2006.
    [70]张若兵,陈杰,肖健夫,等.高压脉冲电场设备及其在食品非热处理中的应用.高电压技术.2011,1(3):777-786.
    [71]Busatto G, Abbate C, Lannuzzo F, et al. High-voltage, high performance switch using series connected IGBTs.2008 IEEE Power Electronics Specialists Conference. New York:IEEE,2008,1606-1611.
    [72]Palmer P R, Githiari A N. The series connection of IGBTs with active voltage sharing. IEEE Transactions on Power Electronics.1997,12(4):637-644.
    [73]Palmer P R, Rajamani H S. Active voltage control of IGBTs for high power applications. IEEE Transactions on Power Electronics.2004,19(4):894-901.
    [74]Raciti A, Belverde C, Galluzzo A, et al. Control of the switching transients of IGBT series strings by high-performance drive units. IEEE Transactions on Industrial Electronics.2001,48(3):482-490.
    [75]Bauer F, Meysenc L, Piazzesi A. Suitability and optimization of high-voltage IGBTs for series connection with active voltage clamping. IEEE Transactions on Power Electronics.2005,20(6):1244-1253.
    [76]Tooker J F, Huynh P, Street R W. Solid-state high-voltage modulator and its application to rf source high-voltage power supplies. Fusion Engineering and Design.2009,84(7-11):1857-1861.
    [77]Ganuza D, Del Rr o J M, Garcr a I, et al.130 kV,130 A high-voltage switching mode power supply for neutral beam plasma heating:design issues. Fusion Engineering and Design.2003,66-68(0):615-620.
    [78]魏智著.发射机高压脉冲调制器的设计与实践.北京:电子工业出版社,2009,48-86.
    [79]J. G M P, Kempkes M A, Hawkey T J, et al. High power modulator.09/479,982.2000-1-10.
    [80]Zorngiebel V, Spahn E, Buderer G, et al. Compact High-voltage IGBT Switch for Pulsed Power Applications. IEEE Transactions on Magnetics.2009,45(2):531-535.
    [81]Zorngiebel V, Hecquard M, Spahn E, et al. Modular 50-kV IGBT switch for pulsed-power applications. IEEE Transactions on Plasma Science.2011,39(1):364-367.
    [82]Castagno S, Curry R D, Loree E. Analysis and comparison of a fast turn-on series IGBT stack and high-voltage-rated, commercial IGBTS. IEEE Transactions on Plasma Science.2006,34(1):1692-1696.
    [83]Redondo L M, Canacsinh H, Silva J F. Generalized solid-state marx modulator topology A-3078-2009. IEEE Transactions on Dielectrics and Electrical Insulation.2009,16(4):1037-1042.
    [84]戴广明,田为,黄军.新型大功率全固态调制器.电力电子技术,2004,38(5):63-65.
    [85]戴广明,田为,黄军,等.电流耦合型高压开关电源.电力电子技术,2007,41(4):71-73.
    [86]戴广明,田为,廖源.-100 kV/10MW全固态刚管调制器.现代雷达.2004,26(7):64-66.
    [87]窦好刚,廖源,赵培聪.高功率IGBT组件在雷达发射机中的应用.现代雷达.2008,30(2):85-87.
    [88]黄军,戴广明.-80 kV/8 kHz回旋管调制器的设计.电力电子技术.2011,45(2):75-77.
    [89]钮惠平,田为,张向辉.固态调制器应用实践.现代雷达.2007,29(7):8-10.
    [90]杨景红,郑新,钱锰,等.160MW大功率固态调制器的设计与实验.现代雷达.2011,1(9):72-75.
    [91]姚敏,刘欣.大功率全固态调制器结构设计.电子机械工程.2010,26(6):27-29.
    [92]黄军,谢英,王登峰.100kV/10 MW全固态刚管调制器驱动、保护和检测电路设计.电子工程师.2006,32(7):8-10.
    [93]黄军,戴广明,田为20 kV/30 A 40 kHz全固态刚管调制器.电力电子技术.2010,44(3):74-76.
    [94]蔡政平,曹湘军,徐旭哲,等.180 kW全固态高压脉冲调制器的设计.高电压技术.2007,33(3):167-170.
    [95]王传伟.全固态重复频率Marx发生器关键技术研究:[硕士学位论文].北京:中国工程物理研究院,2009.
    [96]吴彦龙.10 kV高压变频器中IGBT串联均压的研究:[硕士学位论文].沈阳:沈阳工业大学,2005.
    [97]Baliga B J. Trends in power semiconductor devices. IEEE Transactions on Electron Devices.1996,43(10):1717■ 1731.
    [98]赵芬.IGBT模型仿真研究:[硕士学位论文].合肥:合肥工业大学,2010.
    [99]Shammas N, Withanage R, Chamund D. Review of series and parallel connection of IGBTs. IEEE Proceedings-Circuits Devices and Systems.2006,153(1):34-39.
    [100]Withanage R, Crookes W, Shammas N. Novel voltage balancing technique for series connection of IGBTs.2007 European Conference on Power Electronics and Applications. Aalborg:2007,1481-1490.
    [101]Chen J F L J. The techniques of the serial and paralleled IGBTs. Process of IEEE IECON 22nd International Conference.1996,999-1004.
    [102]Consoli A M S O. Active voltage balancement of series connected IGBTs. Conference Record of the Industry Applications Conference. America:1995,2752-2758.
    [103]Gerster C. Fast high-power/high-voltage switch using series-connected IGBTs with active gate-controlled voltage-balancing. Applied Power Electronics.2001,1(2):469-472.
    [104]Raciti A, Belverde C, Galluzzo A, et al. Control of the switching transients of IGBT series strings by high-performance drive units. IEEE Transactions on Industrial Electronics.2001,48(3):482-490.
    [105]Hong S A L Y. Active gate control strategy of series connected IGBTs for high power PWM inverter. Conference on Power Electronics and Drive Systems.2007,27(2):646-652.
    [106]Baek J W, Yoo D W, Kim H G. High-voltage switch using series-connected IGBTs with simple auxiliary circuit. IEEE Transactions on Industry Applications.2001,37(6):1832-1839.
    [107]Sasagawa K, Abe Y, Matsuse K. Voltage balancing method for IGBTs connected in series. Conference Record Of the 2002 IEEE Industry Applications Conference. New York:IEEE,2002,2597-2602.
    [108]贾艳明.脉冲功率技术中IGBT串联技术的研究:[硕士学位论文].北京:中国科学院研究生院(电工研究所),2005.
    [109]Bruckmann M F M S. Series connection of high-voltage IGBT modules. Industry Applications Conference. America:1998,1067-1072.
    [110]Saiz J, Mermet M, Frey D, et al. Optimisation and integration of an active clamping circuit for IGBT series association. Conference Record of the 2001 IEEE Industry Applications Conference, New York:IEEE,2001, 1046-1051.
    [111]Piazzesi A, Meysenc L. Series connection of 3.3kV IGBTs with active voltage balancing.2004 IEEE 35th Annual Power Electronics Specialists Conference. New York:IEEE,2004,893-898.
    [112]Busatto G, Cascone B, Fratelli L, et al. Series connection of IGBTs in hard-switching applications. Conference Record of the 1998 IEEE Industry Applications Conference. New York:IEEE,1998,825-830.
    [113]Nakatake H, Iwata A. Series connection of IGBTs used multi-level clamp circuit and turn off timing adjustment circuit.IEEE 34th Annual Power Electronics Specialists Conference. New York:IEEE,2003,1910-1915.
    [114]Withanage R, ShammasN, Tennakoon S. Series connection of insulated gate bipolar transistors (IGBTs). European Conference on Power Electronics and Applications. Dresden:2005,1-10.
    [115]Bieniecki S, Hartman M, Iwaszkiewicz J. Driving circuits for high power IGBT applications. Proceedings of the IEEE International Symposium on Industrial Electronics. Warsaw:1996,525-530.
    [116]Schwarzer U, De Doncker R W. Design and implementation of a driver board for a high power and high frequency IGBT inverter. Power Electronics Specialists on IEEE 33rd Annual Conference. Cairns:2002,1907-1912.
    [117]曹丰文,邓焰,何湘宁IGBT驱动模块特性研究.电源世界.2001,1(6):42-47.
    [118]Dulau L, Pontarollo S, Boimond A, et al. A new gate driver integrated circuit for IGBT devices with advanced protections. IEEE Transactions on Power Electronics.2006,21(1):38-44.
    [119]董兵,张庆海.IGBT专用驱动器M57962L.电子世界.2000,1(2):46.
    [120]范建伟M57959L/M57962L型IGBT厚膜驱动电路.国外电子元器件.1999,2(2):8-9.
    [121]蓝宏,胡广艳,张立伟,等.大电流高频IGBT用M57962L驱动能力解决方案研究.电气技术.2006,1(9):27-30.
    [122]贾贵玺,徐欣东IGBT缓冲电路的设计.电气传动.1998,1(3):54-55.
    [123]陈明,胡安,唐勇,等IGBT脉冲工作时结温特性及温度分布探测研究.西安交通大学学报.2012,46(4):1-8.
    [124]Rodriguez M P, Shammas N Y A, Plumpton A T, et al. Static and dynamic finite element modelling of thermal fatigue effects in insulated gate bipolar transistor modules. Microelectronics Reliability.2000,40(3):455■463.
    [125]张明元,沈建清,李卫超,等.一种快速IGBT损耗计算方法.船电技术.2009,(1):33-36.
    [126]耿莉,陈治明,Kruemmer R.,等.结温在线控制系统的IGBT功率模块热耦合模型.微电子学.2003,33(4):294-297.
    [127]Zhang H, Butler K L, Sarma N D R, et al. Analysis of tools for simulation of Shipboard Electric Power Systems. Electric Power Systems Research.2001,58(2):111-122.
    [128]于海泉,曹凤奎.电路仿真软件在电子线路中的应用.中国新技术新产品.2010,1(14):14.
    [129]Sheng K, Williams B W, Finney S J. A review of IGBT models. IEEE Transactions on Power Electronics.2000, 15(6):1250-1266.
    [130]Hefner A R. A dynamic electrothermal model for the IGBT. IEEE Transactions on Industry Applications.1994, 30(2):394-405.
    [131]Hefner A R, Blackburn D L. An analytical model for the steady-state and transient characteristics of the power insulated-gate bipolar-transistor. Solid-State Electronics.1988,31(10):1513-1532.
    [132]Hefner A R, Diebolt D M. An experimentally verified IGBT model implemented in the saber circuit simulator. IEEE Transactions on Power Electronics.1994,9(5):532-542.
    [133]R. Kraus P T A J. Physics-based models of power semicondutor devices for the circuit simulation SPICE.29th Annual IEEE Power Electronics Specialists Conference. Japan:1998,1726-1731.
    [134]Lu L Q, Bryant A, Hudgins J L, et al. Physics-based model of planar-gate IGBT including MOS side two-dimensional effects. IEEE Transactions on Industry Applications.2010,46(6):2556-2567.
    [135]Lu L, Bryant A, Santi E, et al. Physics-based model of IGBT including MOS side two-dimensional effects.41st IAS Annual Industry Applications Conference. New York:IEEE,2006,1457-1464.
    [136]李平.NPT型IGBT电气模型及参数提取:[硕士学位论文].杭州:浙江大学,2009.
    [137]Kraus R, Mattausch H J. Status and trends of power semiconductor device models for circuit simulation. IEEE Transactions on Power Electronics.1998,13(3):452-465.
    [138]Kang X, Santi E, Hudgins J L, et al. Parameter extraction for a physics-based circuit simulator IGBT model. Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition. New York:IEEE,2003,946-952.
    [139]Cotorogea M, Claudio A, Rodriguez M A. Parameter extraction method for the pspice model of the PT-and NPT-IGBTs by electrical measurements. IEEE International Power Electronics Congress, Technical Proceedings, New York:IEEE,2002,101-106.
    [140]Monfort S, Gayan E, Raso J, et al. Evaluation of pulsed electric fields technology for liquid whole egg pasteurization. Food Microbiology.2010,27(7):845-852.
    [141]Rodriguez M A, Claudio A, Cotorogea M, et al. Reconfigurable special test circuit of physics-based IGBT models parameter extraction. Solid-State Electronics.2010,54(11):1246-1256.
    [142]Angus T, Bryant, Xiaosong Kang, Enrico Santi. Two-step parameter extraction procedure with formal optimization for physics-based circuit simulator igbt and p-i-n diode models. IEEE transactions on power electronics.2006, 21(2):295-308.
    [143]Yong T, Ming C, Bo W. New methods for extracting field-stop IGBT model parameters by electrical measurements. IEEE International Symposium on Industrial Electronics. Korea:2009,1529-1534.
    [144]Yao S, Zhenfeng L, Shuang Z. Research on key technology of well-ground ERT transmitter. Procedia Engineering. 2012,29(0):1099-1106.
    [145]Buckow R, Schroeder S, Berres P, et al. Simulation and evaluation of pilot-scale pulsed electric field (PEF) processing. Journal of Food Engineering.2010,101(1):67-77.
    [146]Barbosa-Canovas G V, Gongora-Nieto M M, Pothakamury U R, et al. Preservation of Foods with Pulsed Electric Fields.1999,20-46.
    [147]Huang K, Wang J. Designs of pulsed electric fields treatment chambers for liquid foods pasteurization process:A review. Journal of Food Engineering.2009,95(2):227-239.
    [148]林渭勋.现代电力电子电路.杭州:浙江大学出版社,2006,53-58,316-317.
    [149]Warner R M, Grung B L. Semiconductor-Device Electronics. Beijing:Publishing House of Electronics Industry, 2005,100-130.
    [150]陈永军,翁惠辉,李俊杰.TLP250功率驱动模块在IRF840 MOSFET中的应用.今日电子.2005,1(1):61-63.
    [151]陈正涛.光纤HFBR-1414发射器的驱动电路设计.国外电子测量技术.2010,29(5):79-80.
    [152]章勇高,宋平岗,高彦丽,等.光纤连接在高压变频器中的应用研究.电力电子技术,2004,38(1):78-80.
    [153]赵俊丽,付志红,谢品芳.光纤隔离驱动在电磁发射机中的应用.电力电子技术.2008,42(7):53-54.
    [154]金高先.用于中高压电力电子装置的高压隔离驱动电源的研究:[硕士学位论文].杭州:浙江大学,2005.
    [155]杨仲望.中等功率高压隔离电源以及电流输入型稳压二次侧研究:[硕士学位论文].杭州:浙江大学,2007.
    [156]刘海顺,卢爱红,杨卫明,等著.非晶纳米晶合金及其软磁性能研究.北京:中国矿业大学出版社,2009,2-11.
    [157]陈思富,李欣,黄子平,等.国产非晶磁芯应用于感应加速组元的可行性研究.中国物理C.2008,32(1):187-190.
    [158]Bas J A, Calero J A, Dougan M J. Sintered soft magnetic materials:Properties and applications. Journal of Magnetism and Magnetic Materials.2003,254-255(0):391-398.
    [159]Jaeger H, Meneses N, Moritz J, et al. Model for the differentiation of temperature and electric field effects during thermal assisted PEF processing. Journal of Food Engineering.2010,100(1):109-118.
    [160]Zhao W, Yang R, Lu R, et al. Effect of PEF on microbial inactivation and physical-chemical properties of green tea extracts. LWT-Food Science and Technology.2008,41(3):425-431.
    [161]Walkling-Ribeiro M, Rodriguez-Gonzalez O, Jayaram S H, et al. Processing temperature, alcohol and carbonation levels and their impact on pulsed electric fields (PEF) mitigation of selected characteristic microorganisms in beer. Food Research International.2011,44(8):2524-2533.
    [162]刘锡三著.高功率脉冲技术.北京:国防工业出版社,2005,15-46.
    [163]周志敏,周纪海,纪爱华著.IGBT和IPM及其应用电路.北京:人民邮电出版社,2006,10-25.
    [164]华伟,周文定著.现代电力电子器件及其应用.北京:北方交通大学出版社,2002:172-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700