混合菌种生物技术(MCB)光合产氢的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源的日益紧张以及环境污染的日益严重,作为清洁能源的氢能的研究逐渐受到重视。相对于传统的制氢方法,生物产氢由于低能耗、高效率、无污染以及可再生等优点而备受关注。其中光合生物产氢集太阳能利用、可再生资源利用、有机废弃物处理以及产氢相联合,将成为最有潜力的产氢技术。认识光合微生物产氢的规律,能动地利用这些客观规律指导能源工作,同时也是地球生态平衡、物质循环极为重要的一个环节。
     混合菌种是值得重视并需要加强研究和利用的微生物资源。混合菌种多种类细菌间发生协同效应,使代谢产物不易积累,相互创造有利的生存环境,使各菌种的代谢活性充分发挥,从而提高了混合菌种的产氢能力。混合菌种生物技术(MCB,mixed culturebiotechnology)可以成为超越基于传统单一纯菌株生产化学产物或者/和生物能源的生物技术的一种新的选择。与工业化生物技术的纯菌株相对比,利用混合菌种生物技术(MCB)光合产氢具有以下优点:不需要灭菌;由于微生物的多样性具有很强的适应能力;对于多种底物具有适应能力以及持续生产过程的可能性。
     本文对从沼气池活性污泥富集培养出以多种光合细菌为主的混合菌种进行了光合产氢的实验研究,同时以纯菌种沼泽红假单胞菌Rh.Palustris Z02作了相应的对比试验,并利用修正的Gompertz方程进行产氢动力学分析。结果表明,混合菌种比纯菌种的光合细菌表现出更好的产氢能力和更高的稳定性。尤其在对蔗糖和可溶性淀粉的利用上,混合菌种对这两种碳源的利用比较充分,产氢率分别为3.47 mol H_2/mol蔗糖和6.68 mmol H_2/g可溶性淀粉,氢气含量分别为83.30%和76.06%,且气相中没有甲烷气产生。此外,对各种参数,如pH、温度、接种量以及光强等对产氢率的影响进行了研究。表明混合菌种的产氢条件较Rh.Palustris Z02更为宽松。同时利用Arrhenius模型较好地反映混合菌种产氢速率与反应温度的关系。
     本文同时对影响光合细菌产氢的固氮酶的三大调控因素:气相条件、NH_4~+、二价铁系金属离子对混合菌种生物技术(MCB)光合产氢影响进行了试验研究。结果表明气相中大量的O_2对固氮酶以及氢酶的毒害导致无法产氢,而微量O_2的存在却能对产氢有促进作用,尤其是在Ar与微量O_2的混合气相条件下,产氢率达到最高的2.38molH_2/mol乙酸钠,且产氢延迟期最短。同时发现气相条件对混合菌种产氢较纯菌种Rh.Palustris Z02的影响小。通过pH值的控制与不控制时不同NH_4~+浓度的对比产氢试验,发现不控制pH值时,NH_4~+对混合菌种光合产氢的抑制作用显著;而控制pH=7.0时,适当低浓度的NH_4~+可以提高混合菌种的光合产氢率以及产氢速率。无论是否控制pH值,只有NH_4~+被菌体的生长所消耗掉,才开始产氢,这表明NH_4~+对产氢的抑制作用在一定范围内是可恢复的。同时通过混合菌种与纯菌株Rh.Palustris Z02的对比试验发现,无论对于生长还是产氢,NH_4~+对混合菌种的影响均小于对纯菌株Rh.Palustris Z02的影响。二价铁系金属离子Fe~(2+)、Co~(2+)和Ni~(2+)作为金属酶的辅基对光合细菌的生长和产氢有重要的作用。通过对不同浓度的Fe~(2+),Co~(2+)和Ni~(2+)对光合细菌的生长与产氢的影响实验研究发现,适当浓度的二价铁系离子对产氢具有一定的促进作用,Fe~(2+),Co~(2+)和Ni~(2+)最佳产氢浓度分别为9μmol/L、0.45μmoI/L和0.1μmol/L。对产氢的影响作用大小顺序为:Fe~(2+)>Ni~(2+)>Co~(2+)。二价铁系离子在适当的浓度范围内可提高生长速率,其中Co~(2+)对生长的促进作用最大。pH值影响二价铁系离子对固氮酶活性的作用,当pH=7.0时,Fe~(2+)浓度的变化对产氢的影响最显著。随着pH值偏离7.0,Fe~(2+)浓度的变化对产氢的影响逐渐减小。
     碳源与氮源的种类和数量也是影响产氢活性的重要因素。通过对混合菌种利用不同氮源和碳源进行的产氢试验,确定了适合混合菌种光合产氢的氮源和碳源,并进一步确定了产氢最佳的C/N浓度比。本文最后通过对模拟含淀粉废水进行光合产氢的试验研究,确定了淀粉产氢的影响因素。结果发现淀粉浓度是影响光合产氢的一个主要因素,虽然淀粉是混合菌种光合产氢的非抑制性底物,即提高淀粉浓度可以提高产氢量,但对于产氢率来说则是随着淀粉浓度的增高而逐渐减小的,所以产氢过程中如何确定淀粉浓度,还需要综合考虑产氢速率、产氢延迟期等相关参数。结果表明混合菌种利用含淀粉废水光合产氢是可行的。本文同时对反应的菌液进行了DNA提取、纯化以及PCR扩增,通过对DGGE图谱分析,发现混合菌种利用淀粉光反应和暗反应产氢的样品条带在数量和亮度上都存在一定的差异,说明暗反应条件下产氢的优势菌群要略多于光合反应的菌群。
Fossil fuel depletion and pollutant emission led to serious energy crisis and environmental problems. Hydrogen gas was considered as an ideal alternative energy because of high energy yield and nonpolluting. Compared with conventional hydrogen production methods, biohydrogen production has received considerable attention in recent years owing to the advantage of renewable, high efficiency and clean. And phototrophic biohydrogen production technology combined solar energy utilization, organic wastes treatment and energy production together, which will be the most competitive power technology of hydrogen production. Research on phototrophic hydrogen production was very important.
     Mixed culture is a kind of microorganism resource which deserves pay more attention and carefully studied. Mixed culture biotechnology (MCB) could become an attractive addition or alternative to traditional pure culture based biotechnology for the production of bioenergy. Compared with pure culture based industrial biotechnology, specific advantages of MCB include: no sterilization requirements, adaptive capacity owing to microbial diversity, the capacity to use mixed substrates, and the possibility of a continuous process.
     In this paper, phototrophic hydrogen production was carried out in batch experiment using mixed cultures extracted from active sludge of marsh gas tank, and the contrastive test was using pure culture Rh.Palustris Z02. The modified Gompertz model was used for kinetic analysis of hydrogen production. The experimental result showed that hydrogen yield of mixed cultures was higher than that of pure culture Rh.Palustris Z02, especially using sugar and soluble starch as substrate. Mixed cultures utilized these two carbon sources more sufficiently; hydrogen yield was 3.47mol H_2/mol sugar and 6.68mmol H_2/g soluble starch respectively, hydrogen content was 83.30% and 76.06% respectively, and no methane gas was detected. Moreover, effects of various parameters, initial pH, temperature, inoculums concentration, light intensity etc, were examined with respect to maximum hydrogen yield. The conditions of hydrogen production using mixed cultures are not strict as using pure cultures. Temperature affected the hydrogen production rate according to the Arrhenius equation.
     The effects of three influencing factors (gas phase, ammonia and iron group ion) on phototropic hydrogen production using MCB were studied. The results showed that a large amount of O_2 in gas phase was toxic for nitrogenase and hydrogenase, which resulted in no hydrogen gas produced. However, a small quantity of O_2 can promote hydrogen production. When Argon gas and a small quantity of O_2 mixed together, the highest hydrogen yield of 2.38mol/mol acetate was achieved, and the lag phase was shortest. Furthermore, the effects of various gas phases on hydrogen production of mixed cultures were fewer than that of pure culture. Contrast test of pH controlled and uncontrolled was carried out. The result showed that the inhibitory effect of NH_4~+ was obvious when pH was uncontrolled. And appropriate low NH_4~+ concentration could enhance hydrogen yield and hydrogen production rate when pH was controlled at 7.0. The depletion of NH_4~+ triggered hydrogen production whenever pH controlled or uncontrolled. The effect of NH_4~+ concentration on growth and hydrogen production of mixed cultures were lesser than those of pure culture Rh.Palustris Z02. Fe~(2+), Co~(2+) and Ni~(2+) as the prosthetic group of metalloenzyme are important for phototrophic bacterial growth and hydrogen production. The experimental results indicated that appropriate concentration of Fe~(2+), Co~(2+) and Ni~(2+) promoted hydrogen production and increased cell growth. The optimal concentration of Fe~(2+), Co~(2+) and Ni~(2+) for hydrogen production was 9μmol/L, 0.45μmol/L and 0.1μmol/L, respectively. The effect on hydrogen production of iron group ion followed the order of Fe~(2+) > Ni~(2+) > Co~(2+). For cell growth, Co~(2+) was the most important ion than the others two. The effect of Fe~(2+) concentrations on hydrogen production at various pH values was investigated. The result showed that the effect of Fe~(2+) concentration on hydrogen production was conspicuous when pH was controlled at 7.0. As pH value diverged from 7.0, the effect of Fe~(2+) concentration on hydrogen production was decreased gradually.
     The classes and amount of carbon source and nitrogen source are the important factors for hydrogen production. The effects of carbon and nitrogen on hydrogen phototropic production were examined by mixed cultures. Appropriate carbon source and nitrogen source of hydrogen production and the optimum C/N mass ratio of hydrogen production were determined. The experiments of phototrophic hydrogen production from simulated starch wastewater by mixed cultures were conducted. The results showed that starch concentration was the main influencing factor. The cumulative hydrogen production increased and hydrogen yield decreased with the starch concentration increasing. Therefore, the starch concentration, hydrogen production rate and lag time should be considered carefully. The results indicated that it is feasible for phototrophic hydrogen production from starch wastewater by mixed cultures. Finally, PCR-DGGE method was applied to determine the relative genetic complexity of microbial communities in mixed cultures. Analysis of DGGE profile showed that the quantity and brightness of bands were different under light and dark condition during hydrogen production from starch, predominant microbial population of dark condition was more in quantity.
引文
[1] 张全国,尤希凤,张军合.生物制氢技术研究现状及其进展[J].生物质化学工程,2006, 40(1):27-31.
    
    [2] 中国能源统计年鉴2004[M].中国统计出版社, 2005
    
    [3] BP世界能源统计2005[M].2006
    
    [4] 陈赓良.对我国天然气化工科技进步的看法与建议[J].石油与天然气化工,1999,28(4): 237-240.
    
    [5] Harriss.R.C, F. S.E. The sensitivity of methane emission from northern freshwater wetlands to global warming[A].Global climate change and fresh water ecosystems[C].New York:,[J]. 1992, 48-67.
    
    [6] 崔民选.2007中国能源发展报告[M].社会科学文献出版社, 2007
    
    [7] 傅秀梅,王亚楠,王长云等.生物制氢——能源、资源、环境与经济可持续发展策略[J].中 国生物工程杂志,2007,27(2):119-125.
    
    [8] 朱核光,史家.生物产氢技术研究进展[J].应用与环境生物学报,2002,8(1):98-104.
    
    [9] I. K. Kapdan, F. Kargi. Bio-hydrogen production from waste materials[J]. Enzyme and MicrobialTechnology, 2006, 38(5): 569-582.
    
    [10] J. J. Brey, R. Brey, A. F. Carazo et al. Designing a gradual transition to a hydrogen economy inSpain[J]. Journal of Power Sources, 2006, 152(2): 1231-1240.
    
    [11] I. Hussy, F. R. Hawkes, R. Dinsdale et al. Continuous fermentative hydrogen production fromsucrose and sugar beet[J]. International Journal of Hydrogen Energy, 2005, 30(5): 471-483.
    
    [12] S. Weil, S. Hamel, W. Krumm. Hydrogen energy from coupled waste gasification and cementproduction-a thermochemical concept study[J]. International Journal of Hydrogen Energy, 2006,31(12): 1674-1689
    
    [13] 刘江华.氢能源-未来的绿色能源[J].新疆石油科技,2007,17(1):72-77.
    
    [14] 张雪松.生物质秸秆利用化学--活性污泥法制取氢气的初步研究[D].2005
    
    [15] 郭烈锦,赵亮.基于可再生能源的分布式多目标供能系统(二)[J].西安交通大学学报,2002, 36(5):446-451.
    
    [16] T. Nejat Veziroglu. Quarter century of hydrogen movement 1974-2000[J]. International Journal ofHydrogen Energy, 2000, 25(12): 1143-1150.
    
    [17] K. Vijayaraghavan, M. Amin Mohd Soom. Trends in biological hydrogen production--areview[J]. International Journal of Hydrogen Energy, 2004, doi:10.1016/j.ijhydene.2004.10.007
    
    [18] D. Das, T. N. Veziroglu. Hydrogen production by biological processes: a survey ofliterature[J]. International Journal of Hydrogen Energy, 2001, 26(1): 13-28.
    
    [19] 李旭.有机废水生物制氢技术基础研究[D].2005.
    
    [20] 赵永丰,鲍德佑.制氢方法[J].太阳能学报,1994(4):14-15.
    
    [21] 王艳辉,吴迪镛,迟建.氢能及制氢的应用技术现状及发展趋势[J].化工进展,2001(1), 6-7.
    
    [22] 杨志祥,张岩,王永胜.生物制氢的研究进展和应用前景[J].山西建筑,2006,32(5):161-182.
    
    [23] C.-H. Wang, W.-B. Lu, J.-S. Chang. Feasibility study on fermentative conversion of raw and hydrolyzed starch to hydrogen using anaerobic mixed microflora [J]. International Journal of Hydrogen Energy, 2007, 32(16): 3849-3859.
    
    [24] M. G J. Janssen, P. Lindblad, E. W. J. van Niel et al. Biohydrogen 2002[J]. International Journal??of Hydrogen Energy, 2002, 27(11-12): 1123-1124.
    
    [25] A. Majizat, Y. Mitsunori, W. Mitsunori et al. Hydrogen gas production from glucose and itsmicrobial kinetics in anaerobic systems[J]. Water Science and Technology, 1997, 36(6-7):279-286.
    
    [26] J. R. Benemann. Feasibility analysis of photobiological hydrogen production[J]. InternationalJournal of Hydrogen Energy, 1997, 22(10-11): 979-987.
    
    [27] M. Tadashi, H. Tomoyuki, Y. Akiyo. Microaerobic Hydrogen production by photosyntheticbacteria in a double phase photobioreactor[J]. Biotechnology and Bioengineering, 2000, 68(6):
    
    [28] S. H. Jensen, P. H. Larsen, M. Mogensen. Hydrogen and synthetic fuel production fromrenewable energy sources[J]. International Journal of Hydrogen Energy, 2007, 32(15):3253-3257.
    
    [29] A. Demirbas. Progress and recent trends in biofuels[J]. Progress in Energy and CombustionScience, 2007, 33(1): 1-18.
    
    [30] HYDROGEN PRODUCTION BY ANAEROBIC MICROBIAL COMMUNITIES EXPOSEDTO REPEATED HEAT TREATMENTS [J]. Proceedings of the 2002 U.S. DOE HydrogenProgram Review, 2002,
    
    [31] Z. Du, H.Li, T.Gu. A state of the art review on microbial fuel cells: A promising technology forwastewater treatment and bioenergy[J]. Biotechnology Advances, 2007, 25(5): 464-482.
    
    [32] P. Yang, R. Zhang, J. A. McGarvey et al. Biohydrogen production from cheese processingwastewater by anaerobic fermentation using mixed microbial communities [J]. InternationalJournal of Hydrogen Energy, 2007, 32(18): 4761-4771.
    
    [33] C.-Y. Lin, C.-Y. Lee, I. C. Tseng et al. Biohydrogen production from sucrose using base-enrichedanaerobic mixed microflora[J]. Process Biochemistry, 2006, 41(4): 915-919.
    
    [34] H. Yang, J. Shen. Effect of ferrous iron concentration on anaerobic bio-hydrogen production fromsoluble starch[J]. International Journal of Hydrogen Energy, 2006, 31(15): 2137-2146.
    
    [35] Steven V G, Sung S W , Lay JJ. Biohydrogen production as a function of pH and substrateconcentration[J]. Environmental Science and Technology, 2001, 35: 4726-4730.
    
    [36] K.-J. Wu, Y.-C. Lo, S.-D. Chen et al. Fermentative production of biofuels with entrappedanaerobic sludge using sequential HRT shifting operation in continuous cultures[J]. Journal of theChinese Institute of Chemical Engineers, 2007, 38(3-4): 205-213.
    
    [37] D.-Y. Cheong, C. L. Hansen. Feasibility of hydrogen production in thermophilic mixedfermentation by natural anaerobes[J]. Bioresource Technology, 2007, 98(11): 2229-2239.
    
    [38] 张全国,王素兰,尤希凤.光合菌群产氢量影响因素的研究[J].农业工程学报,2006,22(10): 181-185.
    
    [39] F. R. Hawkes, R. Dinsdale, D. L. Hawkes et al. Sustainable fermentative hydrogen production:challenges for process optimisation[J]. International Journal of Hydrogen Energy, 2002,27(11-12): 1339-1347.
    
    [40] K. K. Largus T. Angenent, Muthanna H. Al-Dahhan, Brian A. Wrenn, Rosa Domi'guez-Espinosa.Production of bioenergy and biochemicals from industrial and agriculturalwastewater[J]. TRENDS in Biotechnology, 2004, 22(9): 477-485.
    
    [41] Y.-K. Oh, E.-H. Seol, E. Y. Lee et al. Fermentative hydrogen production by a newchemoheterotrophic bacterium Rhodopseudomonas Palustris P4[J]. International Journal ofHydrogen Energy, 2002, 27(11-12): 1373-1379.
    
    [42] S. Ust'ak, B. Havrland, J. O. J. Munoz et al. Experimental verification of various methods forbiological hydrogen production [J]. International Journal of Hydrogen Energy, 2007, 32(12):??1736-1741.
    
    [43] M. Ni, M. K. H. Leung, K. Sumathy et al. Potential of renewable hydrogen production for energysupply in Hong Kong[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1401-1412.
    
    [44] S. V. Mohan, G Mohanakrishna, S. Veer Raghavulu et al. Enhancing biohydrogen productionfrom chemical wastewater treatment in anaerobic sequencing batch biofilm reactor (AnSBBR) bybioaugmenting with selectively enriched kanamycin resistant anaerobic mixedconsortia[J]. International Journal of Hydrogen Energy, 2007, 32(15): 3284-3292.
    
    [45] S. Venkata Mohan, Y. Vijaya Bhaskar, P. N. Sarma. Biohydrogen production from chemicalwastewater treatment in biofilm configured reactor operated in periodic discontinuous batchmode by selectively enriched anaerobic mixed consortia[J]. Water Research, 2007, 41(12):2652-2664.
    
    [46] H.-S. Shin, J.-H. Youn, S.-H. Kim. Hydrogen production from food waste in anaerobicmesophilic and thermophilic acidogenesis[J]. International Journal of Hydrogen Energy, 2004,29(13): 1355-1363.
    
    [47] 冉春秋,张卫,虞星炬等.解偶联剂CCCP对莱茵衣藻光照产氢过程的调控[J].高等学校 化学学报,2006,27(1):62-66.
    
    [48] 康铸慧,王磊,郑广宏等.微生物产氢研究的进展[J].工业微生物,2005,35(2):41-49.
    
    [49] 杨素萍,曲音波.光合细菌生物制氢[J].现代化工,2003,23(9):17-22.
    
    [50] 周汝雁,尤希凤,张全国.光合微生物制氢技术的研究进展[J].中国沼气,2006,24(2): 31-34.
    
    [51] G.H. Nature [J]. 1939, 143, 204-205.
    
    [52] P. C. Hallenbeck, J. R. Benemann. Biological hydrogen production; fundamentals and limiting processes[J]. International Journal of Hydrogen Energy, 2002, 27(11-12): 1185-1193.
    
    [53] 尤希凤.光合产氢菌群的筛选及其利用猪粪污水产氢因素的研究[D].2005
    
    [54] Z. L. Melis A, Forestier M, Ghirardi ML, Seibert M. Sustained photobiological hydrogen gasproduction upon reversible inactivation of oxygen evolution in the green alga Chlamydomonasreinhardtii[J]. Plant Physiol, 2000, 122, 127-35.
    
    [55] T. Flynn, M. L. Ghirardi, M. Seibert. Accumulation of O_2-tolerant phenotypes in H2-producingstrains of Chlamydomonas reinhardtii by sequential applications of chemical mutagenesis andselection[J]. International Journal of Hydrogen Energy, 2002, 27(11-12): 1421-1430.
    
    [56] J. K. Horner, M. A. Wolinsky. A power-law sensitivity analysis of the hydrogen-producingmetabolic pathway in Chlamydomonas reinhardtii[J]. International Journal of Hydrogen Energy,2002, 27(11-12): 1251-1255.
    
    [57] T. V. Laurinavichene, I. V. Tolstygina, R. R. Galiulina et al. Dilution methods to depriveChlamydomonas reinhardtii cultures of sulfur for subsequent hydrogenphotoproduction[J]. International Journal of Hydrogen Energy, 2002, 27(11-12): 1245-1249.
    
    [58] A. A. Tsygankov, S. N. Kosourov, I. V. Tolstygina et al. Hydrogen production by sulfur-deprivedChlamydomonas reinhardtii under photoautotrophic conditions[J]. International Journal ofHydrogen Energy, 2006, 31(11): 1574-1584.
    
    [59] T. R. Ghirardi ML, Seibert M. . Oxygen sensitivity of algal Hz-production[J]. Appl BiochenBiotechnol, 1997, 63(5): 141 - 151.
    
    [60] 魏琪,孙启玲,张兴宇.关于生物制氢[J].微生物学杂志,2002,22(6):52-54.
    
    [61] 李建昌,张无敌,宋洪川等.生物质产氢的研究现状与发展[J].能源工程,2001,615-19.
    
    [62] H.Gest , M.D.Kamen. Photoproduction of molecular hydrogen by Rhodospirillum rubrum[J]. Science, 1949, (109): 558-559.
    
    [63] 徐向阳,俞秀娥.固定化光合细菌利用有机物产氢的研究[J].生物工程学报,1994,10(4): 362-368.
    
    [64] 李冬敏,陈洪章,李佐虎.生物制氢技术的研究进展[J].生物技术通报,2003(4):41-5.
    
    [65] 汤桂兰,孙振钧.生物制氢技术的研究现状与发展[J].生物技术,2007,17(1):93-98.
    
    [66] 任南琪,李建政,林明等.产酸发酵细菌产氢机理探讨[J].太阳能学报,2002,23(1):124-128.
    
    [67] L. HONG, G STEPHEN, L. BRUCE. Electrochemically Assisted Microbial Production of Hydrogen from Acetate[J]. Environ. Sci. Technol, 2005, 39, 4317-4320.
    
    [68] Y.-K. Oh, E.-H. Seol, M.-S. Kim et al. Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4[J]. International Journal of Hydrogen Energy, 2004, 29(11): 1115-1121.
    
    [69] 马欢,李建昌,刘士清等.乙酸对发酵产氢过程的抑制影响[J].可再生能源,2005(4),423-25.
    
    [70] H. P. Fang, T. Zhang, H. Liu. Microbial diversity of mesophilic hydrogen producing sludge[J]. Appl Microbiol Biotechnol, 2002, 58, 112-118.
    
    [71] 王海宾,贾万利,柳耀辉.生物制氢的现状与发展趋势[J].生物技术,2005,15(4):90-93.
    
    [72] 王继华,赵爱萍.生物制氢技术的研究进展与应用前景[J].环境科学研究,2005,18(4): 129-135.
    
    [73] 杨素萍,赵春贵,曲音波等.生物产氢研究与进展[J].中国生物工程杂志,2002,22(4): 44-48.
    
    [74] 龙敏南,苏文金.光合细菌Chromatium Vinosum可溶性氢酶的某些理化性质[J].厦门大学 学报(自然科学版),2001,40(6):282-288.
    
    [75] 徐红,马淑华,沈玲玲.球形红假单胞菌反应中心中蛋白的量子化学研究[J].植物学报, 2001,43(6):565-570.
    
    [76] 任南琪,王宝贞.有机废水发酵法生物制氢技术-原理与方法[M].哈尔滨: 黑龙江科学技 术出版社, 1994
    
    [77] 王勇,任南琪,孙寓姣等.乙醇型发酵与丁酸型发酵产氢机理及能力分析[J].太阳能学报, 2002,22(3):366-373.
    
    [78] 任南琪,王宝贞,马放.有机废水产酸发酵的生理生态学分析[J].中国沼气,1995,13(1): 1-6.
    
    [79] 任南琪.产酸发酵细菌演替规律研究[J].哈尔滨建筑大学学报,1999,32(2):29-34.
    
    [80] 孙寓姣,任南琪,王勇.丁酸型产氢-产酸发酵细菌pH生态位探讨[J].太阳能学报,2004, 25(2):232-235.
    
    [81] 李白昆,吕炳南,任南琪.厌氧产氢细菌发酵类型和生态学的研究[J].中国沼气,1997, 15(2):3-7.
    
    [82] 李建政,任南琪.产酸相最佳发酵类型工程控制对策[J].中国环境科学,1998,18(5):398-402.
    
    [83] Nanqi REN, Xiaolei CHEN , Dan ZHAO. Control of fermentation types in continuous flow acidogenic reactors effects of pH and redox potential [J]. Journal of Harbin Institute of Technology (New Series), 2001, 8(2): 116-119.
    
    [84] 秦智,任南琪,李建政.丁酸型发酵产氢的运行稳定性[J].太阳能学报,2004,25(1):46-51.
    
    [85] 任南琪,秦智,李建政.不同产酸发酵菌群产氢能力的对比与分析[J].环境科学,2003, 24(1):70-74.
    
    [86] 李建昌,张无敌,宋洪川等.pH值调控对发酵产氢的影响[J].新能源及工艺,2004,(6): 28-31.
    
    [87] 洪天求,郝小龙,俞汉青.Na~+离子浓度对厌氧发酵产氢气影响的实验研究[J].水处理技术, 2004,30(5):270-275.
    
    [88] D.-H. Kim, S.-K. Han, S.-H. Kim et al. Effect of gas sparging on continuous fermentative??hydrogen production[J]. International Journal of Hydrogen Energy, 2006, 31(15): 2158-2169.
    
    [89] M. B. Salerno, W. Park, Y. Zuo et al. Inhibition of biohydrogen production by ammonia[J]. Water Research, 2006, 40(6): 1167-1172.
    
    [90] 徐向阳,俞秀娥,郑平等.固定化光合细菌产氢过程的基质利用动力学[J].生物工程学报, 1995,11(1):51-57.
    
    [91] 刘双江,孙燕,杨慧芳等.红假单胞菌H菌株生长细胞光照放氢条件的研究[J].微生物学 通报,1994,21(5):259-263.
    
    [92] H. Koku, I. Eroglu, U. Gunduz et al. Aspects of the metabolism of hydrogen production byRhodobacter sphaeroides[J]. International Journal of Hydrogen Energy, 2002, 27(11-12):1315-1329.
    
    [93] X.-Y. Shi, H.-Q. Yu. Response surface analysis on the effect of cell concentration and lightintensity on hydrogen production by Rhodopseudomonas capsulata[J]. Process Biochemistry,2005, 40(7): 2475-2481.
    
    [94] H. H. P. Fang, H. Liu. Effect of pH on hydrogen production from glucose by a mixedculture[J]. Bioresource Technology, 2002, 82(1): 87-93.
    
    [95] Y. J. Lee , T. Miyahara , T. Notice. Effect of iron concentration on hydrogenfermentation[J]. Bioresource Technology, 2001, 80(3): 227-231.
    
    [96] 龙敏南,龙传南,邬小兵等.高产氢耐热菌株的分离鉴定及其放氢特性[J].厦门大学学报: 自然科学版,2003,42(6):687-690.
    
    [97] 张军合,张全国,杨群发等.光照度对猪粪污水条件下红假单胞菌光合产氢的影响[J].农 业工程学报,2005,21(9):134-136.
    
    [98] 杨素萍,赵春贵,曲音波等.一株极端环境光合细菌的生理特性研究[J].水生生物学报, 2002,26(3):221-225.
    
    [99] 杏艳,赵金安,樊耀亭等.含纤维素类生物质的生物制氢[J].太阳能学报,2006,27(7): 656-660.
    
    [100] 张薇,左剑恶,崔龙涛等.中温和高温厌氧生物产氢反应器连续运行的研究[J].环境科学, 2006,27(1):63-68.
    
    [101] 吴薛明.Biolog鉴定产氢发酵细菌及其产氢能力的研究[J].应用化工,2006,35(7):491-493.
    
    [102] 林明,任南琪,王爱杰等.几种金属离子对高效产氢细菌产氢能力的促进作用[J].哈尔滨 工业大学学报,2003,35(2):147-151.
    
    [103] S.-H. Kim, S.-K. Han, H.-S. Shin. Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter[J]. Process Biochemistry, 2006, 41(1): 199-207.
    
    [104] 牛莉莉,刘晓黎,陈双雅等.一个新的高温产氢菌及产氢特性的研究[J].微生物学报,2006, 46(2):280-284.
    
    [105] 卢文玉,闻建平,陈宇等.激光诱变选育耐酸产氢菌产气肠杆菌[J].化工进展,2006,25(7): 799-802.
    
    [106] 陈双雅,东秀珠.一个新的产氢细菌的鉴定及产氢特性的研究[J].微生物学报,2004,44(4): 411-416.
    
    [107] 陈双雅,牛莉莉,东秀珠.厌氧细菌Acetanaerobacterium elongatum从葡萄糖的产氢特性研 究[J].微生物学报,2006,46(2):233-237.
    
    [108] 许丽英,任南琪,王兴祖等.产氢新种Ethanoligenens harbinese B49的氮素营养与代谢特征 [J].环境科学学报,2006,26(10):1643-1650.
    
    [109] 王相晶,任南琪,向文胜.影响产氢发酵细菌B49产氢的部分因子研究[J].东北农业大学 学报,2005,36(5):615-620.
    
    [110] 王相晶,任南琪,向文胜.发酵条件对发酵产氢细菌B49产氢的影响[J].太阳能学报,2005, 26(1): 99-103
    
    [111] A. Bisaillon, J. Turcot, P. C. Hallenbeck. The effect of nutrient limitation on hydrogen productionby batch cultures of Escherichia coli[J]. International Journal of Hydrogen Energy, 2006,31(11):1504-1508.
    
    [112] Y. Ozturk, M. Yucel, F. Daldal et al. Hydrogen production by using Rhodobacter capsulatusmutants with genetically modified electron transfer chains[J]. International Journal of HydrogenEnergy, 2006, 31(11): 1545-1552.
    
    [113] 李永峰,郑国香,张文启等.产氢菌的16S-23S rDNA间隔区的长度变异性分析[J].哈尔滨 商业大学学报(自然科学版),2005,21(3):279-281.
    
    [114] 李永峰,张文启,刘大伟等.活性污泥制氢系统中发酵细菌的分离与鉴定[J].哈尔滨商业 大学学报(自然科学版),2005,21(5):563-571.
    
    [115] 何德良,周舟,张小华等.几株荚膜红细菌变异体的光合制氢研究[J].2005,32(1):74-77.
    
    [116] Minnan L, Jinli H, Xiaobin W et al. Isolation and characterization of a high H2-producing strainKlebsialle oxytoca HP1 from a hot spring[J]. Res Microbiol, 2005, 156: 76-81.
    
    [117] L. Vasilyeva, M. Miyake, E. Khatipov et al. Enhanced hydrogen production by a mutant ofRhodobacter sphaeroides having an altered light-harvesting system[J]. Journal of Bioscience andBioengineering, 1999, 87(5): 619-624.
    
    [118] M.-S. Kim, J.-S. Baek, J. K. Lee. Comparison of H2 accumulation by Rhodobacter sphaeroidesKD131 and its uptake hydrogenase and PHB synthase deficient mutant[J]. International Journalof Hydrogen Energy, 2006, 31(1): 121-127.
    
    [119] T. Kondo, M. Arakawa, T. Hirai et al. Enhancement of hydrogen production by a photosyntheticbacterium mutant with reduced pigment[J]. Journal of Bioscience and Bioengineering, 2002,93(2): 145-150.
    
    [120] Chong Zhang, Xin-Hui Xing. Quantification of a specific bacterial strain in an anaerobic mixed culture for hydrogen production by the aerobic fluorescence recovery (AFR) technique[J]. Biochemical Engineering Journal, 2008, doi:10.1016/j.bej.2007.11.001.
    
    [121] Y. Ueno, S. Haruta, M. Ishii et al. Characterization of a microorganism isolated from the effluentof hydrogen fermentation by microflora[J]. Journal of Bioscience and Bioengineering, 2001,92(4): 397-400.
    
    [122] 刘斌,吴克,蔡敬民等.啤酒厂废水厌氧处理产氢研究[J].包装与食品机械,2006,24(1): 7-10.
    
    [123] 李永峰,任南琪,杨传平等.一株Clostridium属厌氧菌的分子鉴定与产氢特性[J].太刚能 学报,2006,27(2):208-211.
    
    [124] J.-J. Lay, Y.-J. Lee, T. Noike. Feasibility of biological hydrogen production from organic fraction of municipal solid waste[J]. Water Research, 1999, 33(11): 2579-2586.
    
    [125] A. T. Nielsen, H. Amandusson, R. Bjorklund et al. Hydrogen production from organic waste[J]. International Journal of Hydrogen Energy, 2001, 26(6): 547-550.
    
    [126] H. Yokoi, A. Saitsu, H. Uchida et al. Microbial hydrogen production from sweet potato starch residue[J]. Journal of Bioscience and Bioengineering, 2001, 91(1): 5 8-63.
    
    [127] 樊耀亭,李晨林,侯红卫等.天然厌氧微生物氢发酵生产生物氢气的研究[J].中国环境科 学,2002,22(4):370-374.
    
    [128]任保增,唐大惠,李扬等.厌氧发酵生物制氢试验研究[J].郑州大学学报(工学版),2004, 25(4):64-66.
    
    [129] 任南琪,唐婧,宫曼丽.生物载体强化的连续流生物制氢反应器的运行特性[J].环境科学,??2006,27(6):1176-1180.
    
    [130] 吕凡,何品晶,邵立明等.pH值对易腐有机垃圾厌氧发酵产物分布的影响[J].环境科学, 2006,27(5):991-997.
    
    [131] 赵青玲,杨继涛,李遂亮等.畜禽粪便资源化利用技术的现状及展望[J].河南农业大学学 报,2003,37(2):184-187.
    
    [132] M. Yetis, U. Gunduz, I. Eroglu et al. Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U. 001 [J]. International Journal of Hydrogen Energy, 2000, 25(11): 1035-1041.
    
    [133] H. Zhu, S. Ueda, Y. Asada et al. Hydrogen production as a novel process of wastewater treatment-studies on tofu wastewater with entrapped R. sphaeroides and mutagenesis[J]. International Journal of Hydrogen Energy, 2002, 27(11-12): 1349-1357.
    
    [134] 蔡木林,刘俊新.污泥厌氧发酵产氢的影响因素[J].环境科学,2005,26(2):98-101.
    
    [135] 张高生,李红卫,樊耀亭等.脱油芝麻饼厌氧发酵生物制氢[J].化学研究,2004,15(1): 1-4.
    
    [136] 卢怡,尹德升,张无敌等.牛粪、鸡粪发酵产氢潜力的研究[J].可再生能源,2004,(2): 37-39.
    
    [137] 左宜,左剑恶,张薇等.影响厌氧发酵生物产氢因素的试验研究[J].中国沼气,2003,21(3): 8-11.
    
    [138] 卢怡,张无敌,宋洪川等.猪粪发酵产氢潜力的研究[J].可再生能源,2003,(108):11-13.
    
    [139] 卢怡,张无敌,宋洪川等.稻草发酵产氢潜力的研究[J].新能源与工艺,2003,326-28.
    
    [140] 刘双江,孙燕.固定化光合细菌处理豆制品废水产氢研究[J].环境科学,1995,16(1):42-44.
    
    [141] E. Eroglu, U. Gunduz, M. Yucel et al. Photobiological hydrogen production by using olive millwastewater as a sole substrate source[J]. International Journal of Hydrogen Energy, 2004, 29(2):163-171.
    
    [142] H. Zhu, M. Beland. Evaluation of alternative methods of preparing hydrogen producing seedsfrom digested wastewater sludge[J]. International Journal of Hydrogen Energy, 2006, 31(14):1980-1988.
    
    [143] D. Li, H. Chen. Biological hydrogen production from steam-exploded straw by simultaneoussaccharification and fermentation[J]. International Journal of Hydrogen Energy, 2007, 32(12):1742-1748.
    
    [144] D. Evvyernie, K. Morimoto, S. Karita et al. Conversion of chitinous wastes to hydrogen gas byclostridium paraputrificum M-21 [J]. Journal of Bioscience and Bioengineering, 2001, 91(4):339-343.
    
    [145] S.-H. Kim, S.-K. Han, H.-S. Shin. Feasibility of biohydrogen production by anaerobicco-digestion of food waste and sewage sludge[J]. International Journal of Hydrogen Energy,2004, 29(15): 1607-1616.
    
    [146] F. Taguchi, N. Mizukami, K. Hasegawa et al. Effect of amylase accumulation on hydrogenproduction by Clostridium beijerinckii, strain AM21B[J]. Journal of Fermentation andBioengineering, 1994, 77(5): 565-567.
    
    [147] F. Taguchi, J. D. hang, S. Takiguchi et al. Efficient hydrogen production from starch by abacterium isolated from termites[J]. Journal of Fermentation and Bioengineering, 1992, 73(3):244-245.
    
    [148] B. JO'M. The origin of ideas on a hydrogen economy and its solution to theenvironment[J]. International Journal of Hydrogen Energy, 2002, 27731-740.
    
    [149] 张全国,原玉丰,李鹏鹏等.猪粪污水浓度对球形红假单胞菌光合制氢的影响[J].太阳能??学报,2005,26(6):808-810.
    
    [150] 张军合,张全国,师玉忠等.光合细菌高效产氢菌群在猪粪污水中产氢量的研究[J].河南 农业大学学报,2006,40(2):177-180.
    
    [151] 张全国,尤希凤,雷廷宙等.太阳能光合生物制氢光转化效率的影响因素研究[J].河南农 业大学学报,2004,38(1):96-99.
    
    [152] J. Miyake. T. Wakayama, J. Schnackenberg et al. Simulation of the daily sunlight illumination pattern for bacterial photo-hydrogen production[J]. Journal of Bioscience and Bioengineering, 1999, 88(6): 659-663.
    
    [153] 杨素萍,赵春贵,曲音波等.铁和镍对光合细菌生长和产氢的影响[J].微生物学报,2003, 43(2):257-263.
    
    [154] 杨素萍,赵春贵,刘瑞田等.沼泽红假单胞菌乙酸光合放氢研究[J].生物工程学报,2002, 18(4):486-491.
    
    [155] 朱核光,赵琦琳,史家梁.光合细菌Rhodopseudomonas产氢的影响因子实验研究[J].应用 生态学报,1997,8(2):194-198.
    
    [156] H. Zhu, H. H. P. Fang, T. Zhang et al. Effect of ferrous ion on photo heterotrophic hydrogen production by Rhodobacter sphaeroides[J]. International Journal of Hydrogen Energy, 2007, 32(17): 4112-4118.
    
    [157] 李捷,杨大庆,朱章玉.胶质红假单胞菌J_2菌株光合产氢的研究[J].上海交通大学学报, 1994,28(2):76-82.
    
    [158] 宫曼丽,任南琪,邢德峰.丁酸型发酵生物制氢反应器的运行特性研究[J].环境科学学报, 2005,25(2):275-278.
    
    [159] 宫曼丽,任南琪,唐婧.pH5条件下生物制氢反应器的启动及运行特性[J].环境科学, 2005,26(2):1 77-180.
    
    [160] 刘光臻,张永芳,沈建权.厌氧产氢细菌连续生物制氢放大实验的研究[J].净水技术,2004, 23(6):7-9,48.
    
    [161] B. Uyar, I. Eroglu, M. Yucel et al. Effect of light intensity, wavelength and illumination protocolon hydrogen production in photobioreactors[J]. International Journal of Hydrogen Energy, 2007,32(18): 4670-4677.
    
    [162] E.-J. Kim, J.-S. Kim, M.-S. Kim et al. Effect of changes in the level of light harvesting complexesof Rhodobacter sphaeroides on the photoheterotrophic production of hydrogen[J]. InternationalJournal of Hydrogen Energy, 2006, 31(4): 531-538.
    
    [163] C.-Y. Chen, C.-M. Lee, J.-S. Chang. Hydrogen production by indigenous photosyntheticbacterium Rhodopseudomonas palustris WP3-5 using optical fiber-illuminatingphotobioreactors[J]. Biochemical Engineering Journal, 2006, 32(1): 33-42.
    
    [164] T. Wakayama, J. Miyake. Light shade bands for the improvement of solar hydrogen productionefficiency by Rhodobacter sphaeroides RV[J]. International Journal of Hydrogen Energy, 2002,27(11-12): 1495-1500.
    
    [165] S. Hoekema, M. Bijmans, M. Janssen et al. A pneumatically agitated flat-panel photobioreactorwith gas re-circulation: anaerobic photoheterotrophic cultivation of a purple non-sulfurbacterium[J]. International Journal of Hydrogen Energy, 2002, 27(11-12): 1331-1338.
    
    [166] I. Akkerman, M. Janssen, J. Rocha et al. Photobiological hydrogen production: photochemicalefficiency and bioreactor design[J]. International Journal of Hydrogen Energy, 2002, 27(11-12):1195-1208.
    
    [167] I. Eroglu, K.Asian, U. Gunduz et al. Substrate consumption rates for hydrogen production byRhodobacter sphaeroides in a column photobioreactor [J]. Journal of Biotechnology, 1999,??70(1-3):103-113.
    
    [168] 梁建光,吴永强.生物产氢研究进展[J].微生物学通报,2002,29(6):81-85.
    
    [169] N. Kumar, D. Das. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices[J]. Enzyme and Microbial Technology, 2001, 29(4-5): 280-287.
    
    [170] 冯树,张忠泽.混合菌--一类值得重视的微生物资源[J].世界科技研究与发展,2000, 22(3):44-47.
    
    [171] 管亚军,粱凤来,张心平等.混合菌群对原油的降解作用[J].南开大学学报(自然版),2001, 34(4):82-85,90.
    
    [172] 杨艳红,郑一敏,王伯初等.多菌种固体共发酵生物软化稻壳的研究[J].微生物学通报, 2004,31(4):15-18.
    
    [173] 谢丹平,尹华,彭辉等.混合菌对石油的降解[J].应用与环境生物学报,2004,10(2):210-214.
    
    [174] 李伟光,朱文芳,吕炳南.混合菌培养降解含油废水的研究[J].给水排水,2003,29(11): 42-44.
    
    [175] 处理城市污水的多功能混合菌研究[J].
    
    [176] 陈华,严莲荷,王瑛等.难降解有机废水的高效优势菌的研究进展[J].工业水处理,2005, 25(4):17-21.
    
    [177] 扬玉华,王子光,刘德海等.混合菌种发酵提高酱油产量和质量的研究[J].食品与发酵工 业,2001,28(3):80-82.
    
    [178] 林明,任南琪,王爱杰等.混合菌种在发酵法生物产氢中的协同作用[J].环境科学,2003, 24(2):54-59.
    
    [179] 李建政,任南琪,林明等.有机废水发酵法生物制氢中试研究[J].太阳能学报,2002,23(2): 252-256.
    
    [180] T. Zhang. H. Liu, H. H. P. Fang. Biohydrogen production from starch in wastewater under thermophilic condition[J]. Journal of Environmental Management, 2003, 69(2): 149-156.
    
    [181] S. K.Khanal, W. H. W.-H. Chen, L. Li et al. Biological hydrogen production: effects of pH and intermediate products[J]. International Journal of Hydrogen Energy, 2004, 29(11): 1123-1131.
    
    [182] G Liu, J. Shen. Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria[J]. Journal of Bioscience and Bioengineering, 2004, 98(4): 251-256.
    
    [183] 洪天求,郝小龙,俞汉青.有机废水厌氧发酵产氢技术的现状与发展[J].合肥工业大学学 报:自然科学版,2003,26(5):947-952.
    
    [184] 罗欢,黄兵,包云.固定化微生物制氢技术的研究进展[J].江西农业学报.2007,19(4): 89-93.
    
    [185] 杨素萍,赵春贵,曲音波等.光合细菌产氢研究进展[J].水生生物学报,2003,27(1):85-91.
    
    [186] R. Kleerebezem, M. C. M. van Loosdrecht. Mixed culture biotechnology for bioenergy production[J]. Current Opinion in Biotechnology, 2007, 18(3): 207-212.
    
    [187] 华玉妹,李文红,陈英旭等.不同接种量下生物沥滤去除污泥中重金属的研究[J].浙江大 学学报(农业与生命科学版),2005,31(1):47-51.
    
    [188] 凌雪峰,左剑恶,顾夏声.河底沉积物培养耐酸产甲烷颗粒污泥的试验研究[J].中国环境 科学,2003,23(6):587-591.
    
    [189] 韩向红,黄循吟,何滨等.几株红假单胞菌混菌培养条件的探讨[J].海南师范学院学报(自 然科学版),2004,17(3):274-277.
    
    [190] 李勤生.混合培养对光合细菌生长量的影响[J].水生生物学报,1998,22:101-105.
    
    [191] 叶旭红,盛侃,俞剑莹.提高光合细菌应用效果的技术发展[J].杭州医学高等专科学校学 报,2001,22(1):52-54.
    
    [192] 汪耀斌.HSB技术的特点及其在高难度废水处理中的应用[J].水资源保护,2001,(2):23-24.
    
    [193] 比嘉照夫,冯玉润..拯救地球大变革[M].北京:中国农业大学出版社,1997,10-30.
    
    [194] 孟范平,李桂芳,李科林.系统评价EM菌液在生活污水处理中的应用效果[J].城市环境 与城市生态,1999,12(5):4-7.
    
    [195] 熊海燕,王为国,王存文等.混合菌培养及其在工业上的应用[J].贵州化工,2004,29(3): 16-18.
    
    [196] 龚莉萍,张甲耀,罗宇煊.微生物在保护中的应用现状及发展趋势[J].重庆环境科学,2001, 23(2): 71-74.
    
    [197] 杨彬,雷乐成.混合培养微生物好氧降解对硝基苯胺的特性研究[J].环境工程,2003,21(3): 73-75.
    
    [198] 乔庆霞,陈中豪,萧锦等.高效降解多种氯化物优势混合菌的诱变筛选研究[J].水处理技 术,2003,29(3):138-146.
    
    [199] 安淼,周琪,李晖.混合菌降解氯苯酚类化合物[J].工业水处理,2003,23(8):23-25.
    
    [200] 陈翠柏,杨琦,尚海涛等.混合菌种对地下水中三氯乙烯的生物降解和吸附解吸的实验研 究[J].水文地质工程地质,2004,31(1):47-51.
    
    [201] 胡凌燕,孙东平,邵涛等.混合菌群的筛选及其与白腐真菌串联降解石油的效果初探[J].化 学与生物工程,2007,24(5):34-37.
    
    [202] Akcil. A., Ciftci, H., Deveci. H. Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate[J]. Minerals Engineering, 2007, 20(3): 310-318.
    
    [203] Savaporn Supaphol, Supamard Panichsakpatana, Savitr Trakulnaleamsai et al. The selection of mixed microbial inocula in environmental biotechnology: Example using petroleum contaminated tropical soils[J]. Journal of Microbiological Methods, 2006, 65(3): 432-441.
    
    [204] 王海磊,李宗义,于广丽等.利用生物强化技术处理造纸废水[J].水处理技术,2005,31(10): 42-44.
    
    [205] 贾省芬,杨彦希,黄志勇等.处理城市污水的多功能混合菌研究[J].环境科学,2000,21(3): 81-84.
    
    [206] 陈庆森,刘剑虹,潘建阳等.利用多菌种共发酵技术转化玉米秸秆的研究[J].食品与发酵 工业,1999,25(5):1-6.
    
    [207] 刘军义,李丽华.光合细菌与酵母菌综合处理柠檬废水的初步研究[J].微生物学地要志, 1998,18(3):30-33.
    
    [208] 徐抗震,宋纪蓉等.苹果渣混合菌发酵生产饲料蛋白的研究[J].饲料工业,2003,24(7): 35-37.
    
    [209] 臧晋,王冬梅,薛刚等.利用酒精糟开发生物酶高蛋白饲料的研究[J].饲料工业,2003, 24(7):38-39.
    
    [210] 郝晓地,朱景义,曹秀芹.利用混合茵群活性污泥法实现生物可降解塑料PHA的合成[J].生 态环境,2005,14(6):967-971.
    
    [211] F. H. Li CL. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures[J]. Crit Rev Environ Sci Technol, 2007, 37: 1-39.
    
    [212] 王国惠.污染控制中混合菌的研究[J].环境技术,2004,4(39):39-42.
    
    [213] C. C. Chen, Lin, J.S., Chang, J.S. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose and the limiting substrate[J]. Appl. Microbiol. Biotechnol., 2001, 57: 56-64.
    
    [214] 林明,任南琪,马汐平等.混合菌种非固定化技术制氢反应器产氢效能[J].哈尔滨工业大 学学报,2002,34(6):815-819,825.
    
    [215] 刘波,王海岩,赵静玫等.几株产氢微生物的产氢能力及协同作用[J].食品与发酵工业, 2003,29(8):23-26.
    
    [216] 任南琪,丁杰,丁兰等.Efleet of Cu^2+concentration on hydrogen fermentation by mixed culture[J].Journal of Harbin Institute of Technology(哈尔滨工业大学学报:英文版),2004, 11(1):11-16.
    
    [217] Y.Zhang, G Liu, J. Shen. Hydrogen production in batch culture of mixed bacteria with sucroseunder different iron concentrations[J]. International Journal of Hydrogen Energy, 2005, 30(8):855-860.
    
    [218] Y. Zhang, J. Shen. Effect of temperature and iron concentration on the growth and hydrogenproduction of mixed bacteria[J]. International Journal of Hydrogen Energy, 2006,31(4): 441-446.
    
    [219] Yoshiyuki Ueno, Seiji Otsuka and Masayoshi Morimoto. Hydrogen production from industrialwastewater by anaerobic microflora in chemostat culture[J]. J Ferment Bioeng, 1996, 82(2):194-197.
    
    [220] C. Y. Lin, R. C. Chang. Hydrogen production during the anaerobic acidogenic conversion ofglucose[J]. J Chem Technol Biotechnol, 1999, 74: 198-500.
    
    [221] S. Venkata Mohan, V. Lalit Babu, P. N. Sarma. Effect of various pretreatment methods onanaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater assubstrate[J]. Bioresource Technology, 2008, 99(1): 59-67.
    
    [222] 尤希凤,张全国,杨群发等.天然混合产氢红螺菌培养条件[J].太阳能学报,2006,27(4): 331-334.
    
    [223] 张全国,雷廷宙,尤希凤等.影响天然混合红螺菌产氢因素的实验研究[J].太阳能学报, 2005,26(2):248-252.
    
    [224] T. Kondo, M. Arakawa, T. Wakayama et al. Hydrogen production by combining two types ofphotosynthetic bacteria with different characteristics[J]. International Journal of HydrogenEnergy, 2002, 27(11-12): 1303-1308.
    
    [225] Nejat Veziroglu, T. Quarter century of hydrogen movement 1974-2000[J]. International Journalof Hydrogen Energy, 2000, 25(12): 1143-1150.
    
    [226] M. J. Barbosa, J. M. S. Rocha, J. Tramper et al. Acetate as a carbon source for hydrogenproduction by photosynthetic bacteria[J]. Journal of Biotechnology, 2001, 85(1): 25-33.
    
    [227] Toshihiko Kondo, Masayasu Arakawa, Tatsuki Wakayama e. al. Hydrogen production bycombining two types of photosynthetic bacteria with different characteristics[J]. InternationalJournal of Hydrogen Energy, 2002, 27(11-12): 1303-1308.
    
    [228] 朱章玉,俞吉安,林志新等.光合细菌的研究及其应用[M].上海:上海交大出版社,1991
    
    [229] 李博,李里特,辰巳英三等.豆腐(豆浆)中屎肠球菌生长的温度预测模型[J].中国农业大学 学报,2003,8(2):49-54.
    
    [230] 汤琳,曾光明,孙伟等.Logistic方程在微生物分批培养动力学中的应用[J].湖南大学学报(自 然科学版),2004,31(3):23-28.
    
    [231] Y. Mu, X.-J. Zheng, H.-Q. Yu et al. Biological hydrogen production by anaerobic sludge at various temperatures[J]. International Journal of Hydrogen Energy, 2006, 31(6): 780-785.
    
    [232] N. Y, Tsuzukim, U. R. Improved productivity by ruduction of the content of light harvesting pigment in chlamy domonos perigrannulata[J]. J Appl Phycol, 2001, (13): 95-101.
    
    [233] 刘艳玲,任南琪,刘敏等.气相色谱法厌氧反应器中的挥发性脂肪酸(Vfa)[J].哈尔滨建 筑大学学报,2000,33(6):31-34.
    
    [234] J.-J. LAY, Y.-Y. LI, T. NOIKE. DEVELOPMENTS OF BACTERIAL POPULATION AND METHANOGENIC ACTIVITY IN A LABORATORY-SCALE LANDFILL??BIOREACTOR[J]. Water Research, 1998, 32(12): 3673-3679.
    
    [235] Y. Mu, G Wang, H.-Q. Yu. Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures[J]. Bioresource Technology, 2006, 97(11): 1302-1307.
    
    [236] 田玮,徐尧润.Arrhenius模型与Z值模型的关系及推广[J].2000,4(1):1-6.
    
    [237] X.-Y. Shi, H.-Q. Yu. Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata[J]. International Journal of Hydrogen Energy, 2006, 31(12): 1641-1647.
    
    [238] 李白昆,吕炳南,任南琪.厌氧活性污泥与几株产氢细菌的产氢能力及协同作用研究[J].环 境科学学报,1997,17(4):459-463.
    
    [239] 杨素萍.光合细菌生物制氢研究[D].2002
    
    [240] J. Miyake, S. Kawamura. Efficiency of light energy conversion to hydrogen by the photosyntheticbacterium Rhodobacter sphaeroides[J]. International Journal of Hydrogen Energy, 1987, 12(3):147-149.
    
    [241] J. NAKADA, Y. ASADA, J. MIYAKE. Light penetration into cell suspensions of photosyntheticbacteria and relation to hydrogen production[J]. Journal of Ferment Bioenergy, 1995, 80(1):53-57.
    
    [242] Y.-C. Lo, W.-M. Chen, C.-H. Hung et al. Dark H_2 fermentation from sucrose and xylose usingH2-producing indigenous bacteria: Feasibility and kinetic studies[J]. Water Research, 2008,42(4-5): 827-842.
    
    [243] 林明,任南琪,王爱杰等.高效产氢发酵细菌在不同气相条件下产氢[J].中国沼气,2002, 20(2):3-7,23.
    
    [244] 徐方成,洪华生,龙敏南.通气提高Klebsiella oxytoca HP1发酵产氢[J].厦门大学学报(自 然科学版),2006,45(6):832-835.
    
    [245] O. Mizuno, R. Dinsdale, F. R.Hawkes et al. Enhancement of hydrogen production from glucose by nitrogen gas sparging[J]. Bioresource Technology, 2000, 73(1): 59-65.
    
    [246] S. Tanisho, M. Kuromoto, N. Kadokura. Effect of CO2 removal on hydrogen production by fermentation[J]. International Journal of Hydrogen Energy, 1998, 23(7): 559-563.
    
    [247] 朱建良,冯有智.固氮类微生物产氢机理研究进展[J].南京工业大学学报:自然科学版, 2003,25(1):102-106.
    
    [248] 张明,史家良.光合细菌光合产氢机理研究进展[J].应用于环境生物学报,1999,5(增) 25-29.
    
    [249] 刘如林,刁虎欣,梁凤来等.光合细菌及其应用[M].北京: 中国农业科技出版社, 1991
    
    [250] 计红芳,陈锡时,王爱杰.光合细菌光合产氢的研究进展[J].微生物学杂志,2002,22(5): 44-46.
    
    [251] 吴永强,陈秉俭,仇哲.球红假单胞菌在暗处发酵生长时的固氮酶、吸氢酶以及放氢机制 的研究[J].微生物学通报,1991,18(2):71-75.
    
    [252] 刘如林,梁凤来,刁虎欣等.光合细菌及其应用[M].北京: 北京农业科技出版社, 1991
    
    [253] Hillmer P, G H. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata:H2 production by growing cultures[J]. Bacteriol, 1977, 129(2): 724-731.
    
    [254] H. H. P. Fang, H.Liu, T. Zhang. Phototrophic hydrogen production from acetate and butyrate inwastewater[J]. International Journal of Hydrogen Energy, 2005, 30(7): 785-793.
    
    [255] S.-K. Han, S.-H. Kim, H.-S. Shin. UASB treatment of wastewater with VFA and alcoholgenerated during hydrogen fermentation of food waste[J]. Process Biochemistry, 2005, 40(8):2897-2905.
    
    [256] X.Y.Shi, H.Q.Yu. Conversion of individual and mixed volatile fatty acids to hydrogen by??Rhodopseudomonas capsulata[J]. International Biodeterioration and Biodegradation, 2006.58(2): 82-88.
    
    [257] L. Jun, Z. Z. jia, L. Z. rong et al. Removal of organic matter and nitrogen from distillerywastewater by a combination of methane fermentation and denitrification/nitrificationprocesses[J]. Journal of Environmental sciences, 2006. 18: 654-659.
    
    [258] H. Takabatake, K. Suzuki, I.-B. Ko et al. Characteristics of anaerobic ammonia removal by amixed culture of hydrogen producing photosynthetic bacteria[J]. Bioresource Technology, 2004,95(2): 151-158.
    
    [259] H. Zhu, T. Wakayama, Y. Asada et al. Hydrogen production by four cultures with participation byanoxygenic phototrophic bacterium and anaerobic bacterium in the presence ofNH_4~+[J]. International Journal of Hydrogen Energy, 2001, 26(11): 1149-1154.
    
    [260] 贺逸秋,陈汉才,宋鸿遇.光合细菌Rhodopseudomonasa capsulata固氮酶合成的光诱导 [J].植物生理学报,1981,7(2):193-200.
    
    [261] 张立宏,周俊虎,陈明等.活性污泥分离混合菌的光合产氢特性分析[J].太阳能学报,2008, 29(2):145-151.
    
    [262] H. Zhu, T. Wakayama, T. Suzuki et al. Entrapment of Rhodobacter sphaeroides RV in cationic polymer/agar gels for hydrogen production in the presence of NH4+[J]. Journal of Bioscience and Bioengineering, 1999, 88(5): 507-512.
    
    [263] 王长辉.微量元素在厌氧生化处理中的应用[J].福建环境,1999,3(16):24-25.
    
    [264] 李亚新,杨建刚.微量金属元素对甲烷菌激活作用的动力学研究[J].中国沼气,1999,2(18): 8-16.
    
    [265] 肖本益,王瑞明,贾士儒.二价金属离子对UASB颗粒污泥的影响[J].中国给水排水,2002, 18(6):26-28.
    
    [266] 王勇,任南琪,孙寓姣.Fe对产氢发酵细菌发酵途径及产氢能力影响[J].太阳能学报,2003, 24(2):222-226.
    
    [267] 方一丰,林逢凯,陆柱.补加营养元素对活性污泥法处理工业废水的优化作用[J].水处理 技术,2006,32(9):15-18.
    
    [268] S. Jansen, G Gonzalez-Gil, H. P. van Leeuwen. The impact of Co and Ni speciation on methanogenesis in sulfidic media-Biouptake versus metal dissolution[J]. Enzyme and Microbial Technology, 2007, 40(4): 823-830.
    
    [269] 张建民,刘新宁,韩晓弟.氯化钴处理微藻的生物学效应初报[J].中国农学通报,2005, 2l(9):407-409.
    
    [270] 郑先君,陈志军,魏丽芳等.不同底物种类对厌氧发酵产氢的影响[J].河南化工,2005. 22(7): 12-14.
    
    [271] 李秋波,邢德峰,任南琪等.C/N比对嗜酸细菌X-29产氢能力及其酶活性的影响[J].环 境科学,2006,27(4):810-814.
    
    [272] HillmerP, G H. Bacteriol, 1977, 129(2): 724-731.
    
    [273] Y.-K. Oh, E.-H. Seol, M.-S. Kim et al. Photoproduction of hydrogen from acetate by achemoheterotrophic bacterium Rhodopseudomonas palustris P4[J]. Int J of Hydrogen Energy,2004, 29(11): 1115-1121.
    
    [274] 陈明,周俊虎,张立宏等.固定化光合细菌利用低分子有机酸的产氢特性[J].已录用.
    
    [275] 张立宏,周俊虎,陈明等.NH~(+4)对混合菌种的生长及光合产氢的影响[J].太阳能学报,已 录用.
    
    [276] 王勇,孙寓姣,任南琪等.C/N对细菌产氢发酵类型及产氢能力的影响[J].太阳能学报, 2004,25(3):375-378.
    
    [277] 李永峰,任南琪,郑国香等.碳氮质量比对发酵细菌产氢性能的影响[J].化学工程,2005, 33(4):41-43.
    
    [278] C. Y. Lin, C. H. Lay. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora[J]. International Journal of Hydrogen Energy, 2004, 29(1): 41-45.
    
    [279] 吴光学,管运涛,王剑秋等.碳源及氮源对紫色非硫光合细菌积累PHB的影响[J].环境科 学,2004,25(6):103-107.
    
    [280] A. Ike, T. Murakawa, H. Kawaguchi et al. Photoproduction of hydrogen from raw starch using ahalophilic bacterial community[J]. Journal of Bioscience and Bioengineering, 1999,88(1): 72-77.
    
    [281] S. P. Singh, S. C. Srivastava, K. D. Pandey. Hydrogen production by Rhodopseudomonas at theexpense of vegetable starch, sugarcane juice and whey[J]. International Journal of HydrogenEnergy, 1994, 19(5): 437-440.
    
    [282] H. H. P. Fang , C. Li , T. Zhang. Acidophilic biohydrogen production from riceslurry[J]. International Journal of Hydrogen Energy, 2006, 31(6): 683-692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700