嵌段聚酰亚胺薄膜与荧光性聚酰亚胺—纳米粒子复合薄膜的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Synthesis and Characterization of the Block Copolyimides and Nanocomposite Photoluminescent Polyimide Films
  • 作者:Shafiq ; urRehman
  • 论文级别:博士
  • 学科专业名称:Applied Chemistry
  • 学位年度:2013
  • 导师:Chen ChunHai
  • 学科代码:081704
  • 学位授予单位:吉林大学
  • 论文提交日期:2013-06-01
  • 答辩委员会主席:杨德才
摘要
本论文工作介绍了嵌段聚酰亚胺薄膜与荧光性聚酰亚胺-纳米粒子复合薄膜的制备与表征.芳香性聚酰亚作为一种重要的聚合物材料具有优异的综合性能,包括较高的玻璃化转变温度,耐化学腐蚀和耐辐射特性,较低的介电常数和优异的机械性能.由于这些优异的特性聚酰亚胺已经在高性能材料与复合材料领域得到了广泛的应用.芳香性聚酰亚胺较为广泛的应用包括微电子,光电子,汽车,空间工程,先进纺织品和膜技术等领域.近年来的研究趋势是开发能够同时满足多重应用需求的多功能聚酰亚胺材料.
     在本论文的第一部分,以刚性较强的二胺单体2-(4-氨基苯基)-5-氨基苯并咪唑(APBI),含有柔性基团醚键的二胺单体4,4’-二氨基二苯醚(ODA)和3,3’,4,4’-联苯四甲酸酐合成(s-BPDA)为聚合原料,合成了一系列的嵌段和无归共聚聚酰亚胺薄膜并对其进行表征.在嵌段共聚物中,刚性棒状的芳杂环二胺APBI形成刚性的链段,而含有醚键的ODA形成了柔性较高的链段.通过调节嵌段长度和刚性/柔性嵌段的含量,制备了六种嵌段聚酰亚胺薄膜.通过控制嵌段长度和嵌段含量,将嵌段聚合物薄膜的热性能与机械性能进行优化.在嵌段聚酰亚胺的制备上,分别合成酸酐基团封端的聚酰胺酸预聚体和氨基封端的聚酰胺酸预聚体,再将二者混合反应以得到长链高分子.APBI在共聚聚酰亚胺中的摩尔含量在10%-60%.聚酰胺酸经过涂膜和高温下热亚胺化的过程得到聚酰亚胺薄膜.为进行对比,合成了与嵌段聚酰亚胺成分相同的无归共聚聚酰亚胺和均聚聚酰亚胺.对制备得到的聚酰亚胺薄膜进行热机械分析(TMA),动态机械分析(DMA),热重分析(TGA),时差扫描量热分析(DSC),广角X-光衍射分析(WAXD),红外分析(FTIR),拉伸测试,吸水率测试和介电常数的测试,以此评估聚合物的热性能,机械性能和电性能.具有分子间氢键键合能力的刚性杂环二胺APBI的引入,可以使聚酰亚胺具有低的热膨胀系数(CTE),较高的玻璃化转变温度,优异的耐热性和机械性能.同时,嵌段共聚聚酰亚胺相比于无归共聚聚酰亚胺具有更好的热性能和机械性能.含APBI60%mol的嵌段共聚聚酰亚胺具有较优异的综合性能,包括低达4.7ppm/K的CTE值,377℃的玻璃化转变温度(Tg),562℃的5%热失重温度(Td5)和198MPa的拉伸强度.这是由于嵌段共聚物中较高的分子链取向导致的,尤其是其较低的CTE值是嵌段聚合物中的局部有序微区导致的.这些局部有序微区并不是结晶的相结构,而是APBI链段参与形成的高度取向和有序的结构.随着APBI链段长度的增加,有序结构的尺寸会随之而增加.与无归共聚聚酰亚胺相比,嵌段共聚物中的高度取向和有序的结构会显著的提高分子链的取向程度.苯并咪唑基团较高的刚性和耐热性导致共聚聚酰亚胺具有更好的热稳定性.TGA分析表明嵌段聚酰亚胺与无归共聚聚酰亚胺相比有更高的Tσ5.这可能是因为刚性APBI链段的形成有助于分子链的堆砌,进而使其耐热性更好.共聚物的Tg随着APBI链段的增长和含量的增加而提高.向聚酰亚胺主链中引入APBI的成分会增加分子链的刚性进而提高分子链段运动的能量势垒,使得Tg得以提高.聚合物机械性能测试结果表明薄膜的拉伸强度和模量随着APBI摩尔含量的增加而增加APBI成分的存在会明显提升聚合物的机械性能.另外,聚苯并咪唑类聚合物(PBIs)由于Π电子的大范围离域而具有良好的机械性能.APBI成分较高的共聚聚酰亚胺薄膜具有稍高的吸水率,这是由于亲水性的咪唑N-H成分更高导致的.共聚聚酰亚胺的介电常数为2.67-3.05,与传统的聚酰亚胺相比较低,但是高于含氟和含有纳米孔的聚酰亚胺.总体来讲,我们所合成的嵌段聚酰亚胺与无归聚酰亚胺相比具有更好的热性能,机械性能和电性能.基于APBI的嵌段聚酰亚胺薄膜作为微电子工业中的基材薄膜具有很大的潜在应用价值.
     在论文的第二部分,制备合成了荧光性CdS量子点-聚酰亚胺纳米复合薄膜.在水溶液中合成了高质量的荧光CdS量子点并将其掺杂至聚合物基体中.通常,量子点都是在有机溶剂中合成的.但是,由于有机溶剂法涉及到有毒性的金属有机物的降解,因而方法复杂并并环境有害.所以,在本论文的研究中,我们在水相中制备了CdS量子点,这一方法相对于有机溶剂法更加简便和环境友好.这种方法是在水溶液中直接合成了高质量的水溶性荧光量子点.据此,同时在水相中合成的聚酰亚胺的前驱体,即聚酰胺酸盐,进而制备聚酰亚胺.相比之下,传统的经由聚酰胺酸制备聚酰亚胺的方法有固有的缺陷,比如有机溶剂的使用对环境污染,亚胺化需要高温,聚酰胺酸前驱体的水解稳定性很差.为了避免这些缺陷,我们使用了水相合成的方法.选择水相合成聚合物的另一个重要原因是便于将水溶性的CdS量子点掺杂到聚合物基体中.实验结果表明,CdS量子点均匀的分散与聚酰胺酸盐中.CdS量子点的性能使用XRD,荧光光谱和紫外-可见光谱进行表征.CdS量子点的尺寸为3-5纳米,其具有很好的稳定性和较好的荧光效果.再将水溶性的CdS量子点分散在聚合物基体,即聚酰胺酸盐中.使用PMDA/ODA作为构成聚合物主链的单体,通过添加三乙胺将聚酰胺酸转变为聚酰胺酸盐.将聚酰胺酸盐在丙酮中析出并在真空下烘干,干燥后的粉末可以在水中溶解.纳米复合薄膜通过溶液铺膜和300℃亚胺化制得.使用荧光光谱,XRD,TEM,热机械分析对复合薄膜进行表征.荧光光谱结果表明复合薄膜具有荧光性,相对于CdS量子点水溶液,复合薄膜的光谱有轻微的蓝移和更宽的发射峰.这可能是由聚合物基体的存在和残余的有机溶剂导致的.TEM结果显示CdS量子点均匀分散在薄膜中,尺寸为3-5nm.WAXD结果也证明聚合物基体为无定形状态,而CdS量子点有结晶峰.对纳米复合薄膜的机械性能和热性能进行表征的结果表明CdS能影响材料的热性能和机械性能.随着CdS量子点含量的增加,玻璃化温度有所提高,热稳定性也得到提升.这一现象与无机物填充的聚合物复合材料的性能是相似的.这部分的工作表明,我们成功制备了荧光性CdS量子点/聚酰亚胺纳米复合薄膜.该复合薄膜具有良好的热性能.这种在水相中制备CdS量子点和聚酰亚胺前驱体,进而制备CdS/聚酰亚胺复合薄膜的独特方法可以在光电设备中得到应用.
This dissertation describes the synthesis and characterization of the block copolyimide films and nanocomposite photoluminescent polyimide films. Aromatic polyimides are an important class of polymers used extensively in a variety of high performance materials and composites because of their outstanding physical properties considerably high glass transition temperatures, high resistance to chemicals and radiations, comparatively low dielectric constants, and superior mechanical properties. Some wide-ranging applications of aromatic polyimides include microelectronics, optoelectronics, automotive, aerospace engineering, advance textiles, and membranes technology. The recent trend is the development of multifunctional aromatic polyimides that will attain all desired application-dependent properties simultaneously.
     In the first part of this thesis, synthesis and characterization of a series of block and random copolyimide films synthesized from various molar ratios of two diamines, rigid2-(4-Aminophenyl)-5-aminobenzimidazole (APBI) and flexible4,4'-oxydianiline (ODA) by polycondensation with dianhydride3,3',4,4'-biphenyltetracarboxylic dianhydride (sBPDA), is reported. Rigid rod-like heterocyclic diamine APBI diamines produced to rigid blocks while flexible diamine ODA gave rise to relatively flexible segments in block copolyimides. Six block copolyimide films were prepared with systematic variation of block length and block contents of both rigid (APBI-sBPDA) and semi-flexible (ODA-sBPDA) blocks. Thermal and mechanical strength properties of block copolyimides were optimized by controlling block length and contents. Dianhydride-terminated poly(amic acid) oligomer and diamine-terminated poly(amic acid) oligomer were prepared separately and then combined together. The contents of APBI ranged from10to60mol%in copolyimides, Then polymer films were obtained by conventional solution casting method after thermal imidization at elevated temperatures. For comparison purpose, random copolyimides and homopolyimide were also prepared with monomer compositions corresponding to block copolyimides. The copolyimide films obtained by thermal imidization of poly(amic acid)(PAA) solutions, were characterized by-TMA, DMA, TGA, DSC, WAXD. FTIR. tensile testing, water uptake, and dielectric constant measurements, to evaluate their thermal, mechanical strength and electrical properties in details. Rigid heterocyclic diamine APBI with interchain hydrogen bonding capability, led to low CTE, high Tg. high thermal stability and better mechanical properties. Increasing the APBI mol%caused a gradual decrease in the CTE and increase in Tg, thermal stability and tensile strength properties of the copolyimides films. Moreover, significantly enhanced thermal and mechanical properties of the block copolyimides were also found as compared to random copolyimides. The block copolyimide with APBI content of60mol%, achieved excellent properties, i.e., a low CTE (4.7ppm/K), a high Tg at377℃,5%weight loss at562℃and a tensile strength at198MPa. This can be interpreted because of comparatively higher degree of molecular orientation in block copolyimides. The remarkably low CTE values of block copolyimides can be explained in terms of locally ordered microdomains in block copolyimides. These microdomains are not related to crystalline structure but based on highly oriented and well-ordered regions formed by rigid APBI blocks. Microdomains order increases with block length and become more random as block length decreases. The highly oriented and well-ordered block copolyimide structure efficiently promoted molecular orientation in block copolyimides as compared to random copolyimides. The combined effect of heat resistant benzimidazole units and high rigidity led to better thermal stability of copolyimides. TGA analysis indicates that block copolyimides showed slightly higher Tg5than corresponding random copolyimides. This may be due to rigid APBI segments formation, leading to better packing and therefore to higher thermal stability. Tg increased with increasing the rigid APBI block length and molar ratio. Addition of APBI would increase the chain rigidity and therefore increased the potential barrier to rotation, which would result in higher Tg values. Mechanical properties results indicate that tensile strength and tensile modulus increased linearly with increase in APBI mol%. APBI based rigid polymer structure plays a major role in the improvement of mechanical properties. Extensive delocalization of π electrons in PBIs is also well known for their outstanding mechanical properties. Water uptake in copolyimides with higher APBI contents exhibited slightly higher water absorption. This can be attributed to higher concentration of hydrophilic imidazole N-H. Dielectric constants of copolyimides range from2.67to3.05and relatively lower than those of conventional polyimides, but somewhat higher as compared to fluorinated and nanoporous polyimides having ultra-low dielectric constants. Overall, block copolyimides demonstrated better thermal, mechanical and electric properties as compared to simple random copolyimides. APBI based block copolyimide systems can be promising candidates for base film materials in microelectronics applications.
     In the second part of dissertation, photoluminescent CdS quantum dots/polyimide nanocomposite films are reported. High quality luminescent CdS quantum dots were synthesized in aqueous medium and then incorporated in polymer matrix. Generally, quantum dots are prepared in organic solvents. However, the organic solvent method is complicated and unsafe to the environment due to the pyrolysis of lethal organometallic reagents. Therefore, in our studies, we prepared water based CdS quantum dots which are simpler to prepare and safer as compared to quantum dots prepared in organic solvents. This procedure includes direct aqueous synthesis route that is environment friendly and produced high quality luminescent water-soluble quantum dots. Accordingly, polyimides were also prepared from water soluble precursor i.e., poly(amic acid) salt rather than conventional poly(amic acid). Conventional preparation technique of polyimides via poly(amic acid) precursor possess some drawbacks, such as, serious damage to the environment because of the toxic volatile polar solvents, elevated thermal imidization temperature and weak hydrolytic stability of poly(amic acid) precursors. To deal with these shortcomings, we selected the water soluble precursor i.e., poly(amic acid) salt. Another major reason was the better incorporation of the water soluble CdS quantum dots in polymer matrix. Water soluble CdS quantum dots were very well dispersed in the poly(amic acid) salt. CdS quantum dots were characterized by XRD, photoluminescence and ultraviolet-visible spectroscopic techniques. Characterization results confirmed the successful synthesis of stable and high quality photoluminescent CdS quantum dots of3-5nm. Next step was the dispersion of water soluble CdS in the polymer matrix. As stated earlier, poly (amic acid) salt precursor was selected for this purpose. Poly (amic acid) was prepared from PMDA/ODA and converted into poly(amic acid) salt by addition of triethylamine. Poly(amic acid) salt solution was precipitated into acetone and vacuum dried. Dried powder was thoroughly dissolved in water. CdS quantum dots solution were mixed with poly(amic acid) salt solution. Nanocomposites films were prepared by solution casting and thermally imidized at300℃. Nanocomposites films were characterized by photoluminescence (PL) measurements, XRD. TEM, Thermomechanical analysis. PL spectra of films showed that nanocomposite films are photoluminescent. PL spectra indicate that there is minor hypsochromic shift and PL peaks are broad as compared to that of pure CdS quantum dots solution. This might be due to the effect of the polymer matrix and presence of organic solvent traces which shift the PL spectra into blue region. TEM micrographs clearly show the presence very well dispersed CdS nanocrystals in films with size of3-5nm. WAXD studies also evidenced the amorphous nature of polyimide films and characteristics CdS nanocrystals peaks. Nanocomposite films were also characterized to evaluate their thermal and mechanical properties. Incorporation of CdS did disturb the mechanical strength and thermal properties. A small rise in glass transition temperature was observed with higher CdS contents. Thermal stability was also enhanced. This phenomenon is common when inorganics were well dispersed in polymer matrix. Results showed that high quality photoluminescent CdS/polyimide nanocomposite films were successfully synthesized. CdS/polyimide nanocomposite films maintained the excellent thermal property of the host polyimide films. This unique approach of preparation of nanocomposite films via water soluble polymer precursor and CdS quantum dots, can find novel applications in electrical and optical devices.
     Chapter3reports the synthesis and characterization of six-membered naphthalene dianhydrides based polyimide films and their significantly enhanced thermal and hydrolytic stabilities.4,4'-Binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BNTDA) and4,4'-Ketone binaphthyl-11',8,8'-tetracarboxylic dianhydride (KBNTDA) were prepared by the dehalogenation-coupling of4-bromo-1,8-naphthalic anhydride and insertion reactions respectively. The structures of BNTDA and KBNTDA were characterized by FTIR,1H-NMR and13C-NMR. A series of polyimides were successfully synthesized from BNTDA, KBNTDA, and various diamines such as4,4'-diaminodiphenyl ether (ODA),4.4'-diaminodiphenylmethane (MDA), and2,5-bis (4-aminophenoxy)-biphenyl (p-TPEQ). The higher molecular weight polyimides exhibited better solubility in common aprotic solvents. The thermal characterization of polyimides by DMA, DSC and TGA techniques, demonstrated super thermal stability of polyimides containing naphthalimide. Glass transition temperature (Tg) of the all polyimides were above326℃and the5%weight loss temperature was above525℃in air and545℃in N2. Hydrolytic stability of the polyimide films was evaluated by immersing the films into deionized water,10%NaOH and10%H2SO4aqueous solutions. Mechanical properties remained stable before and after treatment. Six-membered polyimides derived from KBNTDA and BNTDA, exhibited better hydrolytic stability than those with five-membered phthalic anhydrides.
引文
1. Bogert. M.T. and R.R. Renshaw.4-AMINO-0-PHTHALIC ACID AND SOME OF ITS DERIV ATIVES.1. Journal of the American Chemical Society,1908.30(7):p.1135-1144.
    2. Adrova. N.A., Polyimides. a new class of thermally stable polymers. Vol.7.1970:CRC Press.
    3. Sroog. C.E., Polyimides. Journal of Polymer Science:Macromolecular Reviews.1976. 11(1):p.161-208.
    4. Ghosh. M.K. and K.L. Mittal. Polyimides:fundamentals and applications. Vol.36.1996: CRC.
    5. De Abajo, J. and J. de la Campa. Processable aromatic polyimides. Progress in Polvimide Chemistry I.1999:p.23-59.
    6. Bilow,N. an d C. May. Resins for A erospace.1980.
    7. Lee. H., D. Stoffey. and K. Neville. New linear polymers.1967:McGraw-Hill.
    8. Alvino. W.M. and L.W. Frost. Synthesis and properties of new polyamide-imides. Journal of Polymer Science Part A-1:Polymer Chemistry.1971.9(8):p.2209-2224.
    9. Serafini, T.T., P. Delvigs, and G.R. Lightsey,Thermally stable polyimides from solutions of monomeric reactants. Journal of Applied Polymer Science.1972.16(4):p.905-915.
    10. Fakirov. S., In Handbook of Thermoplastics. Olabisi. O.. Ed.1997. Marcel Dekker:New York.
    11. Abadie. M.J.M. and B. Sillion. Polvimides and other high-temperature polymers: proceedings of the 2nd European Technical Symposium on Polyimides and High-Temperature Polymers (STEPI 2). Montpellier. France, June 4-7,1991.1991:Elsevier Science Ltd.
    12. Matsuura. T., M. Ishizawa. Y. Hasuda. and S. Nishi. Polvimides derived from 2.2'-bis (trifluoromethyl)-4,4'-diaminobiphenyl.2. Synthesis and characterization of polyimides prepared from fluorinated benzenetetracarboxylic dianhydrides. Macromolecules.1992. 25(13):p.3540-3545.
    13. Sachdev. H., M. Khojasteh. and C. Feger, Advances in polyimides and low dielectric polymers. Society of Plastic Engineers. Inc. Hopewell Junction. New York.1999.
    14. Feger, C., M.M. Khojasteh, S.E. Molis, and S.o.P.E.M.-H. Section, Polyimides:trends in materials and applications.1996:SPE.
    15. Sroog, C.E., A.L. Endrey, S.V. Abramo. C.E. Berr, W.M. Edwards, and K.L. Olivier, Aromatic polypyromellitimides from aromatic polyamic acids. Journal of Polymer Science Part A:General Papers,1965.3(4):p.1373-1390.
    16. Murray, E.W., Poly amide-acids, compositions thereof, and process for their preparation, 1965, US Patent 3.179.614.
    17. Murray, E. W., Aromatic polyimides and the process for preparing them,1965, US Patent 3,179,634.
    18. Gohlke, U., Advances in Polymer Synthesis. Hg. von B. M. Culbertson J. E. McGrath (Polymer Science and Technology Series. Vol.34). ISBN 0-306-42109-7. New York/London:Plenum Press 1985. XI,553 S., geb., US $ 85.00. Acta Polymerica,1987. 38(6):p.406-406.
    19. Bessonov, M.I. and V.A. Zubkov, Polyamic acids and polyimides:synthesis, transformations, and structure.1993:CRC.
    20. Kim. Y.J., T.E. Glass, G.D. Lyle, and J.E. McGrath, Kinetic and mechanistic investigations of the formation of polyimides under homogeneous conditions. Macromolecules.1993.26(6):p.1344-1358.
    21. Hodgkin, J.H., Reactivity changes during polyimide formation. Journal of Polymer Science:Polymer Chemistry Edition,1976.14(2):p.409-431.
    22. Zakoschikov, S.A., I.N. Ignat'eva, N.V. Nikolayeva, and K.P. Pomerantseva, Characteristics of the reactions of dianhydrides with diamines in the diffusion range. Polymer Science U.S.S.R.,1969.11(11):p.2828-2834.
    23. Cassidy, P.E. and N.C. Fawcett, Polyimides. Kirk-Othmer Encyclopedia of Chemical Technology,1982.18:p.704-719.
    24. Ardashnikov. A.Y., I.Y. Kardash. and A.N. Pravednikov. The nature of the equilibrium in the reaction of aromatic anhydrides with aromatic amines and its role in synthesis of polyimides. Polymer Science U.S.S.R.,1971.13(8):p.2092-2100.
    25. Kolegov, V.I., The effect of side reactions on the molecular weight characteristics of polyamidoacids. Polymer Science U.S.S.R.,1976.18(8):p.1929-1938.
    26. Dine-Hart, R.A. and W.W. Wright, Preparation and fabrication of aromatic polyimides. Journal of Applied Polymer Science,1967.11(5):p.609-627.
    27. Hsu, T.C.J. and Z.L. Liu, Solvent effect on the curing of polyimide resins. Journal of Applied Polymer Science,1992.46(10):p.1821-1833.
    28. Volksen, W., Condensation polyimides:synthesis, solution behavior, and imidization characteristics. High Performance Polymers,1994:p.111-164.
    29. Koton, M.M., A study of the synthesis, structure and properties of polyimides (polyarimides). Polymer Science U.S.S.R.,1971.13(6):p.1513-1525.
    30. Searle, N. US Patent,2,444,536 July 6 (1948). in Chem. Abstr.1948.
    31. Roderick, W.R., The "Isomerism" of N-Substituted Maleimides. Journal of the American Chemical Society,1957.79(7):p.1710-1712.
    32. Wilson, D., HD Stenzenberger and PMHergenrother (Eds.). Polyimides,1990, Chapman and Hall. New York.
    33. Vinogradova, S.V., Y.S. Vygodskii, V.D. Vorob'ev, N.A. Churochkina, L.I. Chudina. T.N. Spirina. and V.V. Korshak, Chemical cyclization of poly(Amido-acids) in solution. Polymer Science U.S.S.R.,1974.16(3):p.584-589.
    34. Koton, M.M., T.K. Meleshko, V.V. Kudryavtsev, P.P. Nechayev, Y.V. Kamzolkina, and N.N. Bogorad, Investigation of the kinetics of chemical imidization. Polymer Science U.S.S.R.,1982.24(4):p.791-800.
    35. Sonnett, J.M. and T.P. Gannett, Chemistry and Kinetics of Polyimide Formation. PLASTICS ENGINEERING-NEW YORK-,1996.36:p.151-186.
    36. Takekoshi, T., J.E. Kochanowski, J.S. Manello. and M.J. Webber, Polyetherimides. II. High-temperature solution polymerization. Journal of Polymer Science:Polymer Symposia,2007.74(1):p.93-108.
    37. Vinogradova, S., Y.S. Vygodskii, and V. Korshak, Vysokomolekulyarnye Soedineniya. Seriya A,1970.12(9):p.1987.
    38. Clair, A.K.S., T.L.S. Clair, and L.R. Center. Soluble Aromatic Polyimides for Film Coating Applications.1986:ACS Publications.
    39. Kricheldorf, H.R. and K. Carter, Progress in polyimide chemistry. Vol.2.1999:Springer.
    40. Walsh, C.J. and B.K. Mandal, A new class of aromatic dianhydrides for thermostable polyimides. Chemistry of Materials,2001.13(8):p.2472-2475.
    41. Negi, Y.S., Damkale, and S. Ansari, Photosensitive Polyimides. Journal of Macromolecular Science, Part C:Polymer Reviews,2001.41(1-2):p.119-138.
    42. Liou, G.-S., S.-H. Hsiao, and H.-W. Chen, Novel high-Tg poly (amine-imide; s bearing pendent N-phenylcarbazole units:synthesis and photophysical, electrochemical and electrochromic properties. J. Mater. Chem.,2006.16(19):p.1831-1842.
    43. Wang, X., Y. Li. S. Zhang, T. Ma, Y. Shao, and X. Zhao, Synthesis and characterization of novel polyimides derived from pyridine-bridged aromatic dianhydride and various diamines. European Polymer Journal,2006.42(6):p.1229-1239.
    44. Liaw, D.-J., K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, and C.-S. Ha, Advanced polyimide materials:Syntheses, physical properties and applications. Progress in Polymer Science,2012.37(7):p.907-974.
    45. Bessonov, M., Polyimides--thermally stable polymers.1987:Consultants Bureau.
    46. Cella, J.A., Degradation and stability of polyimides. Polymer Degradation and Stability, 1992.36(2):p.99-110.
    47. Dine-Hart, R. and W. Wright, Makromol Chem 1972,153,237-254. Direct Link: Abstract PDF (802K) References.
    48. Denisov, V., V. Svetlichnyi, V. Gindin, V. Zubkov, A. Kol'tsov, M. Koton, and V. Kudryavtsev, The isomeric composition of poly (acid) amides according to< sup> 13 C-NMR spectral data. Polymer Science USSR,1979.21(7):p.1644-1650.
    49. Adrova, N.A., Polyimides--a new class of heat-resistant polymers.1969:Israel Program for Scientific Translations.
    50. Braun, T., K.F. Becker, M. Koch, V. Bader, R. Aschenbrenner, and H. Reichl, High-temperature reliability of Flip Chip assemblies. Microelectronics Reliability,2006.46(1): p.144-154.
    51. Pottiger, M.T., J.C. Coburn, and J.R. Edman, The effect of orientation on thermal expansion behavior in polyimide films. Journal of Polymer Science Part B:Polymer Physics,1994.32(5):p.825-837.
    52. Terui. Y., S.-I. Matsuda. and S. Ando, Molecular structure and thickness dependence of chain orientation in aromatic polyimide films. Journal of Polymer Science Part B: Polymer Physics,2005.43(15):p.2109-2120.
    53. Ishii, J., A. Takata, Y. Oami, R. Yokota, L. Vladimirov, and M. Hasegawa, Spontaneous molecular orientation of polyimides induced by thermal imidization (6). Mechanism of negative in-plane CTE generation in non-stretched polyimide films. European Polymer Journal,2010.46(4):p.681-693.
    54. Hasegawa, M., Y. Sakamoto, Y. Tanaka, and Y. Kobayashi, Poly(ester imide)s possessing low coefficients of thermal expansion (CTE) and low water absorption (III). Use of bis(4-aminophenyl)terephthalate and effect of substituents. European Polymer Journal,2010.46(7):p.1510-1524.
    55. Sensui, N., J. Ishii, A. Takata, Y. Oami, M. Hasegawa, and R. Yokota, Ultra-Low CTE and Improved Toughness of PMDA/PDA Polyimide-based Molecular Composites Containing Asymmetric BPDA-type Polyimides. High Performance Polymers,2008. 21(6):p.709-728.
    56. Hasegawa, M., K. Okuda, M. Horimoto, Y. Shindo, R. Yokota, and M. Kochi, Spontaneous Molecular Orientation of Polyimides Induced by Thermal Imidization.3. Component Chain Orientation in Binary Polyimide Blends. Macromolecules,1997. 30(19):p.5745-5752.
    57. Hasegawa, M., J. Ishii, and Y. Shindo, Polyimide/Polyimide Blend Miscibility Probed by Perylenetetracarboxydiimide Fluorescence. Macromolecules,1999.32(19):p.6111-6119.
    58. Ishii, J., N. Shimizu, N. Ishihara, Y. Ikeda, N. Sensui, T. Matano, and M. Hasegawa, Spontaneous molecular orientation of polyimides induced by thermal imidization (4): Casting- and melt-induced in-plane orientation. European Polymer Journal.2010.46(1): p.69-80.
    59. Hasegawa, M., N. Sensui, Y. Shindo, and R. Yokota, Structure and properties of novel asymmetric biphenyl type polyimides. Homo-and copolymers and blends. Macromolecules,1999.32(2):p.387-396.
    60. Kochi, M., C. Chen, R. Yokota, M. Hasegawa, and P. Hergenrother, Isomeric biphenyl polyimides. (II) Glass transitions and secondary relaxation processes. High Performance Polymers,2005.17(3):p.335-347.
    61. Yokota, R., S. Yamamoto, S. Yano, T. Sawaguchi, M. Hasegawa, H. Yamaguchi, H. Ozawa, and R. Sato, Molecular design of heat resistant polyimides having excellent processability and high glass transition temperature.High performance Polymers,2001. 13(2):p. S61-S72.
    62. Miyauchi, M., K.-i. Kazama, T. Sawaguchi, and R. Yokota, Dynamic tensile properties of a novel Kapton-type asymmetric polyimide derived from 2-phenyl-4,4'-diaminodiphenyl ether. Polymer Journal,2011.
    63. Oishi, Y., K. Itoya, and Y. Imai, The Dynamic Mechanical Properties of Polyimide Copolymer Film Consisting of Semi-flexible and Rigid Rod Structures.1990.
    64. Yang, C.-P., J.-M. Wang, Y.-Y. Su, and S.-H. Hsiao, Thermally Stable, Organosoluble, and Colorless Poly(ether imide)s Having Ortho-Linked Aromatic Units in the Main Chain and Trifluoromethyl Pendent Groups. Macromolecular Chemistry and Physics, 2006.207(12):p.1049-1061.
    65. Ling, Q.-D., D.-J. Liaw, C. Zhu, D.S.-H. Chan, E.-T. Kang, and K.-G. Neoh, Polymer electronic memories:Materials, devices and mechanisms. Progress in Polymer Science, 2008.33(10):p.917-978.
    66. Lai, J.H., Polymers for electronic applications. Vol.93.1989:CRC Press Boca Raton, FL.
    67. Liang, T., Y. Makita, and S. Kimura, Effect of film thickness on the electrical properties of polyimide thin films. Polymer,2001.42(11):p.4867-4872.
    68. Rusanov, A.L., T.A. Stadnik, and K. Mullen, New condensation polymers having low dielectric constants. Russian chemical reviews,2007.68(8):p.685.
    69. Maier, G., Low dielectric constant polymers for microelectronics. Progress in Polymer Science,2001.26(1):p.3-65.
    70. Hasegawa, M., Semi-aromatic polyimides with low dielectric constant and low CTE. High Performance Polymers,2001.13(2):p. S93-S106.
    71. Rothman, L., Properties of thin polyimide films. Journal of the Electrochemical Society, 1980.127(10):p.2216-2220.
    72. RABILLOUD, G., High performance polymers:chemistry and applications Vol.3: polyimides in electronics.2000.
    73. Sugimoto, E., Applications of polyimide films to the electrical and electronic industries in Japan. Electrical Insulation Magazine, IEEE,1989.5(1):p.15-23.
    74. Mundhenke, R.F. and W.T. Schwartz, Chemistry and Properties of 4,4'-Oxydiphthalic Anhydride Based Polyimides. High Performance Polymers,1990.2(1):p.57-66.
    75. Kakimoto, M.-a., M.-a. Suzuki, T. Konishi, Y. Imai, M. Iwamoto, and T. Hino, Preparation of mono-and multilayer films of aromatic polyimides using Langmuir-Blodgett technique. Chemistry Letters,1986:p.823-826.
    76. Ohya, H., V. Kudryavsev, and S.I. Semenova, Polyimide membranes:applications, fabrications and properties.1997:CRC.
    77. Langsam, M., Polyimides for gas separation. PLASTICS ENGINEERING-NEW YORK-, 1996.36:p.697-742.
    78. Wang, Y.-C., S.-H. Huang, C.-C. Hu, C.-L. Li, K.-R. Lee, D.-J. Liaw, and J.-Y. Lai, Sorption and transport properties of gases in aromatic polyimide membranes. Journal of Membrane Science,2005.248(1):p.15-25.
    79. Vu, D.Q., W.J. Koros, and S.J. Miller, High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Industrial & Engineering Chemistry Research, 2002.41(3):p.367-380.
    80. Barsema, J., G. Kapantaidakis, N. Van der Vegt, G. Koops, and M. Wessling, Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide. Journal of Membrane Science,2003. 216(1):p.195-205.
    81. Niwa, M., H. Kawakami, T. Kanamori, T. Shinbo, A. Kaito, and S. Nagaoka, Surface orientation effect of asymmetric polyimide hollow fibers on their gas transport properties. Journal of Membrane Science,2004.230(1):p.141-148.
    82. Arkhireeva, A., A.M. Groth, and J.N. Hay, Entirely aqueous synthesis of polyimide-silsesquioxane nanocomposites. Polymer International,2007.56(3):p.350-356.
    83. Progar, D.J., V.L. Bell, and T.L.S. Clair, Polyimide adhesives,1977, Google Patents.
    84. Clair, A.K.S. and T.L.S. Clair, Elastomer toughened polyimide adhesives,1983, Google Patents.
    85. Progar, D.J. and L. Terry, Adhesive evaluation of bisimide additives in LARC-TPI. Journal of Adhesion Science and Technology,1991.5(9):p.711-726.
    86. Critchley, J.P., Aromatic fluoro-polyimide adhesives,1977. Google Patents.
    87. Sheiton, C.F., Polyimide covered conductor,1968. Google Patents.
    88. Sakumoto, Y., S. Yokoyama, A.Shibuya,and A.Koshimura,Adhesive tapes,1997, Google Patents.
    89. Hergenrother, P. and S. Havens, Adhesive Properties of LARC-CPI, A New Semi-Crystalline Polyimide. SAMPE J.,1988.24(4):p.13-18.
    90. Stoffel, N.C., Interdiffusion and adhesion of polyimides.1995:Cornell University. May.
    91. Gagliani, J., R. Lee, and U.A. Sorathia, Polyimide foams,1982, Google Patents.
    92. Lee. R., G.A. Ferro, and D.W. Okey, Polyimide foam and process for the preparation of same,1985, Google Patents.
    93. Lee, R., U.A. Sorathia, and G.A. Ferro, Polyimide of 2,2-bis (4-(4-aminophenoxy) phenyl)-hexafluoropropane and process for the preparation of same,1985, Google Patents.
    94. Long, J.V. and J. Gagliani, Forming techniques for shaping polyimide foams,1987, Google Patents.
    95. Long, J.V. and J. Gagliani, Steam resistant modified polyimide foams,1987, Google Patents.
    96. Wu, S., Polymer molecular-weight distribution from dynamic melt viscoelasticity. Polymer Engineering & Science,1985.25(2):p.122-128.
    97. Schmitz, L. and M. Ballauff, Characterization of a stiff-chain polyimide in solution. Polymer,1995.36(4):p.879-882.
    98. Volksen, W., P. Cotts, and D. Yoon, Molecular weight dependence of mechanical properties of poly (p, p'-oxydiphenylene pyromellitimide) films. Journal of Polymer Science Part B:Polymer Physics,1987.25(12):p.2487-2495.
    99. Salem, J., F. Sequeda, J. Duran, W. Lee, and R. Yang, Solventless polyimide films by vapor deposition. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1986.4(3):p.369-374.
    100. Feger, C., M.M. Khojasteh, and J.E. McGrath, Polyimides:materials, chemistry and characterization. Elesevier Science:Amsterdam,1989.
    101. Molis, S., In Polyimides:Materials, Chemistry and Characterization; Feger. C. Khojasteh. MM; McGrath, JE, Eds,1989, Elsevier:New York.
    102. Arnold, C., J. Summers, Y. Chen, T. Yoon, B. McGrath, D. Chen, J. McGrath, C. Feger, M. Khojasteh, and J. McGrath, Polyimides:Materials, Chemistry and Characterization. Ellenville, New York,1988:p.69.
    103. Kelley, K., Y. Ishino, and H. Ishida, Fourier transform IR reflection techniques for characterization of polyimide films on copper substrates. Thin Solid Films,1987.154(1): p.271-279.
    104. Kemp, R.B., Handbook of Thermal Analysis and Calorimetry:Applications to polymers and plastics. Vol.3.1998:Elsevier Science.
    105. Mittal, K.L. and S.o.P.E.M.-H. Section, Polyimides:synthesis, characterization, and applications.1984:Plenum.
    106. Kim, S., S. Pyo, and M. Ree, Investigation of glass transition behaviors in poly (amic acid) precursors of semiflexible polyimides by oscillating differential scanning calorimetry. Macromolecules,1997.30(25):p.7890-7897.
    107. Sorai, M. and N.N. Gakkai, Comprehensive handbook of calorimetry and thermal analysis.2004:J. Wiley.
    108. Hasanain, F., P. Co, and C.U.D. Chemistry, Synthesis and Characterization of Functional and High Performance Polyimides.2008:Carleton University (Canada).
    109. Koton, M., V. Kudryavtsev, and L. Laius, Polyimides Thermally Stable Polymers,1987. Consultants Bureau:New York.
    110. Taylor, L.T., Mechanical and spectroscopic properties of metal-containing polyimides. 1983.
    111. Abadie, M.J. and A.L. Rusanov, Practical Guide to Polyimides.2007:iSmithers Rapra Publishing.
    1. Ree, M., High performance polyimides for applications in microelectronics and flat panel displays. Macromolecular Research,2006.14(1):p.1-33.
    2. Jiang, L.Y., Y. Wang, T.-S. Chung, X.Y. Qiao, and J.-Y. Lai, Polyimides membranes for pervaporation and biofuels separation. Progress in Polymer Science,2009.34(11):p. 1135-1160.
    3. Liaw, D.-J., K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, and C.-S. Ha, Advanced polyimide materials:Syntheses, physical properties and applications. Progr Polymer Sci, 2012.37(7):p.907-974.
    4. Ebisawa, S., J. Ishii, M. Sato, L. Vladimirov, and M. Hasegawa, Spontaneous molecular orientation of polyimides induced by thermal imidization (5). Effect of ordered structure formation in polyimide precursors on CTE. European Polymer Journal,2010.46(2):p. 283-297.
    5. urRehman, S., P. Li, H. Zhou, X. Zhao, G. Dang, and C. Chen, Thermally and hydrolytically stable polyimides containing naphthalimide units. Polymer Degradation and Stability,2012.97(9):p.1581-1588.
    6. Kuntman, A. and H. Kuntman, A study on dielectric properties of a new polyimide film suitable for interlayer dielectric material in microelectronics applications. Microelectronics Journal,2000.31(8):p.629-634.
    7. Maier, G., Low dielectric constant polymers for microelectronics. Progress in Polymer Science,2001.26(1):p.3-65.
    8. Mathews, A.S., I. Kim, and C.-S. Ha, Synthesis, characterization, and properties of fully aliphatic polyimides and their derivatives for microelectronics and optoelectronics applications. Macromolecular Research,2007.15(2):p.114-128.
    9. Ishii, J., A. Takata, Y. Oami, R. Yokota, L. Vladimirov, and M. Hasegawa, Spontaneous molecular orientation of polyimides induced by thermal imidization (6). Mechanism of negative in-plane CTE generation in non-stretched polyimide films. European Polymer Journal,2010.46(4):p.681-693.
    10. Maeda, S., A new thermally stable polyimide film for advanced microelectronics packaging. Journal of Photopolymer Science and Technology,2008.21(1):p.95-99.
    11. El-Tonsy, M.M., M.S. Meikhail, and R.M. Felfel, Automatic measurement of the absolute CTE of thin polymer samples. II. Effect of chain orientation on thermal expansion of drawn polymer films. Journal of Applied Polymer Science,2006.100(6):p.4452-4460.
    12. El-Tonsy, M.M.. Automatic measurement of the absolute CTE of thin polymer samples: I—effect of multiple processing on thermal expansion of polypropylene films. Polymer Testing,2004.23(3):p.355-360.
    13. Wei, C., D. Srivastava, and K. Cho, Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Letters,2002.2(6):p.647-650.
    14. Mukherjee, M., M. Bhattacharya. M.K. Sanyal, T. Geue, J. Grenzer, and U. Pietsch, Reversible negative thermal expansion of polymer films. Phys Rev E Stat Nonlin Soft Matter Phys,2002.66(6 Pt 1):p.061801.
    15. Miyazaki, T., K. Nishida, and T. Kanaya, Thermal expansion behavior of ultrathin polymer films supported on silicon substrate. Phys Rev E Stat Nonlin Soft Matter Phys, 2004.69(6 Pt 1):p.061803.
    16. Numata, S.i., S. Oohara, K. Fujisaki. J.I. Imaizumi, and N. Kinjo. Thermal expansion behavior of various aromatic polyimides. Journal of Applied Polymer Science,2003. 31(1):p.101-110.
    17. Hasegawa, M., T. Matano, Y. Shindo, and T. Sugimura, Spontaneous Molecular Orientation of Polyimides Induced by Thermal Imidization.2. In-Plane Orientation. Macromolecules,1996.29(24):p.7897-7909.
    18. Gu, A. and F.-C. Chang, A novel preparation of polyimide/clay hybrid films with low coefficient of thermal expansion. Journal of Applied Polymer Science,2001.79(2):p. 289-294.
    19. Ishii, J., N. Shimizu. N. Ishihara, Y. Ikeda. N. Sensui, T. Matano, and M. Hasegawa, Spontaneous molecular orientation of polyimides induced by thermal imidization (4): Casting- and melt-induced in-plane orientation. European Polymer Journal,2010.46(1): p.69-80.
    20. Gleskova, H., I.-C. Cheng, S. Wagner, J.C. Sturm, and Z. Suo, Mechanics of thin-film transistors and solar cells on flexible substrates. Solar Energy,2006.80(6):p.687-693.
    21. Jensen, R., J. Cummings, and H. Vora, Copper/polyimide materials system for high performance packaging. Components, Hybrids, and Manufacturing Technology, IEEE Transactions on,1984.7(4):p.384-393.
    22. Hasegawa, M., Semi-aromatic polyimides with low dielectric constant and low CTE. High Performance Polymers,2001.13(2):p. S93-S106.
    23. Anjoh, I., A. Nishimura, and S. Eguchi, Advanced IC packaging for the future applications. Electron Devices, IEEE Transactions on,1998.45(3):p.743-752.
    24. He, D., C. Zhang, D. Chiang, T. Zheng, A. Lucero, R. Stage, and V. Atluri. Comparison of thin film cracking and delamination for aluminum and copper silicon interconnects with organic packaging, in Electronic Components and Technology Conference,2005. Proceedings.55th. IEEE.
    25. Miwa, T., Y. Okabe, and M. Ishida, Effects of precursor structure and imidization process on thermal expansion coefficient of polymide (BPDA/PDA). Polymer,1997. 38(19):p.4945-4949.
    26. Miller, R.D., In search of low-k dielectrics. Science,1999.286(5439):p.421-423.
    27. Sullivan, L.M. and C.M. Lukehart, Zirconium Tungstate (ZrW208)/Polyimide Nanocomposites Exhibiting Reduced Coefficient of Thermal Expansion. Chemistry of Materials,2005.17(8):p.2136-2141.
    28. Mascia, L. and A. Kioul, Influence of siloxane composition and morphology on properties of polyimide-silica hybrids. Polymer,1995.36(19):p.3649-3659.
    29. Hsu, S.L.-C., U. Wang, J.-S. King, and J.-L. Jeng, Photosensitive poly(amic acid)/organoclay nanocomposites. Polymer,2003.44(19):p.5533-5540.
    30. Toiserkani. H., K. Saidi, and H. Sheibani, Synthesis and characterization of new soluble and thermally stable poly(amide-imide)s containing pendent benzimidazole moieties. Journal of Applied Polymer Science,2009.114(1):p.185-192.
    31. Sensui, N., J. Ishii, A. Takata, Y. Oami, M. Hasegawa, and R. Yokota, Ultra-Low CTE and Improved Toughness of PMDA/PDA Polyimide-based Molecular Composites Containing Asymmetric BPDA-type Polyimides. High Performance Polymers.2008. 21(6):p.709-728.
    32. Miyagawa, T., T. Fukushima. T. Oyama. T. Iijima. and M. Tomoi. Photosensitive fluorinated polyimides with a low dielectric constant based on reaction development patterning. Journal of Polymer Science Part A:Polymer Chemistry.2003.41(6):p.861-871.
    33. Niwa. M., S. Nagaoka. and H. Kawakami. Preparation of novel fluorinated block copolyimide membranes for gas separation. Journal of Applied Polymer Science.2006. 100(3):p.2436-2442.
    34. Nakano. T., S. Nagaoka. and H. Kawakami. Preparation of novel sulfonated block copolyimides for proton conductivity membranes. Polymers for Advanced Technologies. 2005.16(10):p.753-757.
    35. Nakagawa. T.. T. Nishimura. and A. Higuchi. Morphology and gas permeability in copolyimides containing polydimethylsiloxane block. J Membr Sci.2002.206(1-2):p. 149-163.
    36. Bender. T.P. and Z.Y. Wang. Synthesis of polyimides and segmented block copolyimides by transimidization. J Polym Sci Part A Polym Chem.2000.38(21):p.3991-3996.
    37. Furukawa. N.. M. Yuasa. and Y. Kimura. Characterization of polysiloxane-block-polyimides with silicate group in the polysiloxane segments. Polymer.1999.40(7):p. 1853-1862.
    38. Li. N.. J. Liu. Z. Cui. S. Zhang, and W. Xing, Novel hydrophilic-hydrophobic multiblock copolvimides as proton exchange membranes:Enhancing the proion conductivity. Polymer.2009.50(19):p.4505-4511.
    39. Mohammadi-Rovshandeh, J., Synthesis and thermal properties of novel multiblock biodegradable copolymers derived from polyethylene glycol. epsilon-caprolactone and p-dioxanone. ScienceAsia.2008.34(2):p.207.
    40. Hedrick, J.L., J.W. Labadie. W. Volksen. and J.G. Hilborn. Nanoscopically engineered polyimides. in Macromolecular Architectures. J.G. Hilborn. Editor.1999. Springer-Verlag Berlin:Berlin. p.61-111.
    41. Berrada, M., F. Carriere, Y. Abboud, A. Abourriche, A. Benamara, N. Lajrhed, and M. Kabbaj, Preparation and characterization of new soluble benzimidazole-imide copolymers. Journal of Materials Chemistry,2002.12(12):p.3551-3559.
    42. Klaehn, J.R., T.A. Luther, C.J. Orme, M.G. Jones, A.K. Wertsching, and E.S. Peterson, Soluble N-Substituted Organosilane Polybenzimidazoles. Macromolecules,2007.40(21): p.7487-7492.
    43. Liu, X., G. Gao, L. Dong, G. Ye, and Y. Gu, Correlation between hydrogen-bonding interaction and mechanical properties of polyimide fibers. Polymers for Advanced Technologies,2009.20(4):p.362-366.
    44. Chuang, S.-W., S.L.-C. Hsu, and M.-L. Yang, Preparation and characterization of fluorine-containing polybenzimidazole/imidazole hybrid membranes for proton exchange membrane fuel cells. European Polymer Journal,2008.44(7):p.2202-2206.
    45. Chung, I.S., C.E. Park, M. Ree, and S.Y. Kim, Soluble polyimides containing benzimidazole rings for interlevel dielectrics. Chemistry of Materials,2001.13(9):p. 2801-2806.
    46. Chung, I.S. and S.Y. Kim, Synthesis and characterization of poly(amide imides) containing benzimidazole-rings. Polymer Bulletin,1997.38(6):p.627-634.
    47. Babu, G.N. and S. Samant, Synthesis and properties of copolyimides,2. Preparation and properties of polypyromellitimides from p-phenylenediamine and m-phenylenediamine. Die Makromolekulare Chemie,1982.183(5):p.1129-1136.
    48. Oishi, Y., K. Itoya, M.-a. Kakimoto, and Y. Imai, Preparation and Properties of Molecular Composite Films of Block Copolyimides Based on Rigid Rod and Semi-Flexible Segments. Polymer Journal,1989.21(10):p.771-780.
    49. Li, F., S. Fang, J.J. Ge, P.S. Honigfort, J.C. Chen, F.W. Harris, and S.Z.D. Cheng, Diamine architecture effects on glass transitions, relaxation processes and other material properties in organo-soluble aromatic polyimide films. Polymer,1999.40(16):p.4571-4583.
    50. Yang, C.-P. and S.-H. Hsiao. Synthesis and properties of copolypyromellitimides. Journal of Applied Polymer Science,1986.31(4):p.979-995.
    51. Ram, A. and A. Siegmarr, Intrinsic viscosity of polymer solutions at high shear rates. Journal of Applied Polymer Science,1968.12(1):p.59-69.
    52. Yang, C.-P. and S.-H. Hsiao. Effects of various factors on the formation of high molecular weight polyamic acid. Journal of Applied Polymer Science,1985.30(7):p. 2883-2905.
    53. Grenier-Loustalot, M.-F., F. Joubert, and P. Grenier, Synthesis, mechanisms. Kinetics and characterization of polyamic acid and polyetherimides. Makromolekulare Chemie. Macromolecular Symposia,1991.42-43(1):p.345-353.
    54. Hariharan, R. and M. Sarojadevi, Synthesis and properties of organosoluble polyimides derived from bis(4-amino-3,5-dimethyl phenyl) halo phenyl methane and various dianhydrides. Journal of Applied Polymer Science,2006.102(5):p.4127-4135.
    55. Terui, Y., S.-I, Matsuda, and S. Ando, Molecular structure and thickness dependence of chain orientation in aromatic polyimide films. Journal of Polymer Science Part B: Polymer Physics,2005.43(15):p.2109-2120.
    56. Hasegawa, M., Y. Sakamoto, Y. Tanaka. and Y. Kobayashi. Poly(ester imide)s possessing low coefficients of thermal expansion (CTE) and low water absorption (III). Use of bis(4-aminophenyl)terephthalate and effect of substituents. European Polymer Journal,2010.46(7):p.1510-1524.
    57. Hasegawa, M., K. Okuda, M. Horimoto, Y. Shindo, R. Yokota, and M. Kochi, Spontaneous Molecular Orientation of Polyimides Induced by Thermal Imidization.3. Component Chain Orientation in Binary Polyimide Blends. Macromolecules,1997. 30(19):p.5745-5752.
    58. Hasegawa, M., J. Ishii. and Y. Shindo, Polyimide/Polyimide Blend Miscibility Probed by Perylenetetracarboxydiimide Fluorescence. Macromolecules,1999.32(19):p.6111-6119.
    59. Loria-Bastarrachea, M.I. and M. Aguilar-Vega, Synthesis and gas transport properties of rigid block copolyaramides. Journal of Membrane Science,2011.369(1-2):p.40-48.
    60. Odian, G.G., Principles of Polymerization.4 ed.2004. New York:John Wiley and Sons. 32-33.
    61. Bernier. G.A. and D.E. Kline, Dynamic mechanical behavior of a polyimide. Journal of Applied Polymer Science,1968.12(3):p.593-604.
    62. Seo, J. and H. Han, Water sorption behaviour of polyimide thin films with various internal linkages in the dianhydride component. Polymer Degradation and Stability,2002. 77(3):p.477-482.
    63. Deligoz, H., T. Yalcinyuva, S. Ozgumus, and S. Yildirim, Electrical properties of conventional polyimide films:Effects of chemical structure and water uptake. Journal of Applied Polymer Science,2006.100(1):p.810-818.
    64. Krevelen, D.W., Properties of polymers. Properties of polymers,1990.
    65. Li, Q., R. He, J.O. Jensen, and N.J. Bjerrum, PBI-Based Polymer Membranes for High Temperature Fuel Cells- Preparation, Characterization and Fuel Cell Demonstration. Fuel Cells,2004.4(3):p.147-159.
    66. Li, Q., Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells. Solid State Ionics,2004.168(1-2):p.177-185.
    67. Zhang, Y., L. Yu, Q. Su, H. Zheng, H. Huang, and H.L.W. Chan, Fluorinated polyimide-silica films with low permittivity and low dielectric loss. Journal of Materials Science, 2011.47(4):p.1958-1963.
    68. Zhao, G., T. Ishizaka, H. Kasai, M. Hasegawa, T. Furukawa, H. Nakanishi, and H. Oikawa, Ultralow-Dielectric-Constant Films Prepared from Hollow Polyimide Nanoparticles Possessing Controllable Core Sizes. Chemistry of Materials,2009.21(2): p.419-424.
    1. Jordan, J., K.I. Jacob, R. Tannenbaum, M.A. Sharaf, and I. Jasiuk, Experimental trends in polymer nanocomposites—a review. Materials Science and Engineering:A,2005.393(1-2):p.1-11.
    2. Ramanathan, T., A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay. R.K. Prud'Homme, and L.C. Brinson. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology,2008.3(6):p.327-331.
    3. Crosby, A.J. and J.Y. Lee, Polymer nanocomposites:the "nano" effect on mechanical properties. Polymer reviews,2007.47(2):p.217-229.
    4. Bansal, A., H. Yang, C. Li, K. Cho, B.C. Benicewicz, S.K. Kumar, and L.S. Schadler, Quantitative equivalence between polymer nanocomposites and thin polymer films. Nature Materials,2005.4(9):p.693-698.
    5. Thostenson, E.T., Z. Ren, and T.-W. Chou, Advances in the science and technology' of carbon nanotubes and their composites:a review. Composites Science and Technology, 2001.61(13):p.1899-1912.
    6. Paul, D.R. and L.M. Robeson, Polymer nanotechnology:Nanocomposites. Polymer,2008. 49(15):p.3187-3204.
    7. Mattoussi, H., J.M. Mauro, E.R. Goldman, G.P. Anderson, V.C. Sundar, F.V. Mikulec, and M.G. Bawendi, Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. Journal of the American Chemical Society,2000. 122(49):p.12142-12150.
    8. Chen, J.L. and C.Q. Zhu. Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Analytica Chimica Acta,2005.546(2):p.147-153.
    9. Aboulaich, A., D. Billaud, M. Abyan, L. Balan, J.J. Gaumet, G. Medjadhi, J. Ghanbaja, and R. Schneider, One-pot noninjection route to CdS quantum dots via hydrothermal synthesis. ACS Appl Mater Interfaces.2012.4(5):p.2561-2569.
    10. Lee, J., V.C. Sundar, J.R. Heine, M.G. Bawendi, and K.F. Jensen, Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites. Advanced Materials,2000. 12(15):p.1102-1105.
    11. Hirai, T., M. Miyamoto, and I. Komasawa, Composite nano-CdS-polyurethane transparent films. Journal of Materials Chemistry,1999.9(6):p.1217-1219.
    12. Khanna, P.K. and N. Singh, Light emitting CdS quantum dots in PMMA:Synthesis and optical studies. Journal of Luminescence,2007.127(2):p.474-482.
    13. Tamborra, M., M. Striccoli, R. Comparelli, M.L. Curri, A. Petrella, and A. Agostiano, Optical properties of hybrid composites based on highly luminescent CdS nanocrystals in polymer. Nanotechnology,2004.15(4):p. S240-S244.
    14. Lin, Y., J. Zhang, E.H. Sargent, and E. Kumacheva, Photonic pseudo-gap-based modification of photoluminescence from CdS nanocrystal satellites around polymer microspheres in a photonic crystal. Applied Physics Letters,2002.81(17):p.3134-3136.
    15. Yao, J.X., G.L. Zhao, and G.R. Han, Synthesis and characterization of the thiourea-capped CdS nanoparticles. Journal of Materials Science Letters,2003.22(21):p.1491-1493.
    16. Li, Y., E.C.Y. Liu, N. Pickett, P.J. Skabara, S.S. Cummins, S. Ryley, A.J. Sutherland, and P. O'Brien, Synthesis and characterization of CdS quantum dots in polystyrene microbeads. Journal of Materials Chemistry,2005.15(12):p.1238-1243.
    17. Firth, A.V., D.J. Cole-Hamilton, and J.W. Allen, Optical properties of CdSe nanocrystals in a polymer matrix. Applied Physics Letters,1999.75(20):p.3120-3122.
    18. Rossetti, R., J.L. Ellison, J.M. Gibson, and L.E. Brus, Size effects in the excited electronic states of small colloidal CdS crystallites. The Journal of chemical physics,1984.80(9):p. 4464.
    19. Spanhel, L., M. Haase, H. Weller, and A. Henglein, Photochemistry of colloidal semiconductors.20. Surface modification and stability of strong luminescing CdS particles. Journal of the American Chemical Society,1987.109(19):p.5649-5655.
    20. Khanna, P.K., R.R. Gokhale, V.V.V.S. Subbarao, N. Singh, K.W. Jun, and B.K. Das, Synthesis and optical properties of CdS/PVA nanocomposites. Materials Chemistry and Physics,2005.94(2-3):p.454-459.
    21. Huang, J., K. Sooklal, C.J. Murphy, and H.J. Ploehn, Polyamine-quantum dot nanocomposites:linear versus starburst stabilizer architectures. Chemistry of Materials, 1999.11(12):p.3595-3601.
    22. Gerion, D., Pinaud,S.C. Williarns,W.J.Parak,D.Zanchet,S.Weiss,and A.P. Alivisatos, Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots. The Journal of Physical Chemistry B,2001. 105(37):p.8861-8871.
    23. Vossmeyer, T., L. Katsikas, M. Giersig, I.G. Popovic, K. Diesner, A. Chemseddine, A. Eychmueller, and H. Weller, CdS Nanoclusters:Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift. The Journal of Physical Chemistry,1994.98(31):p. 7665-7673.
    24. Rogach, A., L. Katsikas. A. Kornowski, D. Su, A. Eychmiiller, and H. Weller, Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Berichte der Bunsengesellschaft fur physikalische Chemie,1996.100(11):p.1772-1778.
    25. Gao, M., S. Kirstein. H. Mohwald, A.L. Rogach, A. Kornowski, A. Eychmuller, and H. Weller, Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification. The Journal of Physical Chemistry B,1998.102(43):p.8360-8363.
    26. Li, H., W.Y. Shih, and W.-H. Shih, Synthesis and Characterization of Aqueous Carboxyl-Capped CdS Quantum Dots for Bioapplications. Industrial & Engineering Chemistry Research,2007.46(7):p.2013-2019.
    27. Hsueh, H.-B. and C.-Y. Chen, Preparation and properties of LDHs/polyimide nanocomposites. Polymer,2003.44(4):p.1151-1161.
    28. Mascia, L. and A. Kioul, Influence of siloxane composition and morphology on properties ofpolyimide-silica hybrids. Polymer,1995.36(19):p.3649-3659.
    29. Magaraphan, R., W. Lilayuthalert, A. Sirivat, and J.W. Schwank, Preparation, structure, properties and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites. Composites Science and Technology,2001.61(9):p.1253-1264.
    30. Agag. T., T. Koga, and T. Takeichi, Studies on thermal and mechanical properties of polyimide-clay nanocomposites. Polymer,2001.42(8):p.3399-3408.
    31. Tyan, H.-L., Y.-C. Liu, and K.-H. Wei. Thermally and Mechanically Enhanced Clay/Polyimide Nanocomposite via Reactive Organoclay. Chemistry of Materials,1999. 11(7):p.1942-1947.
    32. Facinelli, J.V., S.L. Gardner, L. Dong, C.L. Sensenich, R.M. Davis, and J.S. Riffle, Controlled Molecular Weight Polyimides from Poly(amic acid) Salt Precursors. Macromolecules,1996.29(23):p.7342-7350.
    33. Ding, Y., B. Bikson, and J.K. Nelson, Polyimide membranes derived from poly (amic acid) salt precursor polymers.1. synthesis and characterization. Macromolecules,2002. 35(3):p.905-911.
    34. Cai, D., J. Su, M. Huang, Y. Liu, J. Wang, and L. Dai, Synthesis, characterization and hydrolytic stability of poly (amic acid) ammonium salt. Polymer Degradation and Stability,2011.96(12):p.2174-2180.
    35. Kreuz, J.A., A.L. Endrey, F.P. Gay, and C.E. Sroog, Studies of thermal cyclizations of polyamic acids and tertiary amine salts. Journal of Polymer Science Part A-1:Polymer Chemistry,1966.4(10):p.2607-2616.
    36. Ding, Y., B. Bikson, and J.K. Nelson, Polyimide Membranes Derived from Poly(amic acid) Salt Precursor Polymers.1. Synthesis and Characterization. Macromolecules,2001. 35(3):p.905-911.
    37. Ding, Y., B. Bikson, and J.K. Nelson, Polyimide Membranes Derived from Poly(amic acid) Salt Precursor Polymers.2. Composite Membrane Preparation. Macromolecules, 2001.35(3):p.912-916.
    38. Yang, J. and M.-H. Lee, A water-soluble polyimide precursor:Synthesis and characterization of poly(amic acid) salt. Macromolecular Research,2004.12(3):p.263-268.
    39. Ha, Y., M.-C. Choi, N. Jo, I. Kim, C.-S. Ha, D. Han, S. Han, and M. Han, Polyimide multilayer thin films prepared via spin coating from poly (amic acid) and poly(amic acid) ammonium salt. Macromolecular Research,2008.16(8):p.725-733.
    40. Bhardwaj, R.K., H.S. Kushwaha, J. Gaur, T. Upreti, V. Bharti, V. Gupta, N. Chaudhary, G.D. Sharma, K. Banerjee, and S. Chand, A green approach for direct growth of CdS nanoparticles network in poly(3-hexylthiophene-2,5-diyl) polymer film for hybrid photovoltaic. Materials Letters,2012.89:p.195-197.
    41. Rong, M.Z., M.Q. Zhang, H.C. Liang, and H.M. Zeng, Surface derivatization of nano-CdS clusters and its effect on the performance of CdS quantum dots in solvents and polymeric matrices. Applied Surface Science,2004.228(1-4):p.176-190.
    42. Lien, V.T.K.. C.V. Ha; L.T. Ha, and N.N. Dat, Optical properties of CdS and CdS/ZnS quantum dots synthesized by reverse micelle method. Journal of Physics:Conference Series,2009.187:p.012028.
    43. Vaia, R.A. and E.P. Giannelis, Polymer Nanocomposites:Status and Opportunities. Mrs Bulletin,2001.26(05):p.394-401.
    44. Pandey, J.K., K.R. Reddy, A.P. Kumar, and R.P. Singh, An overview on the degradability of polymer nanocomposites. Polymer Degradation and Stability,2005.88(2):p.234-250.
    45. Kim, H., A.A. Abdala, and C.W. Macosko, Graphene/Polymer Nanocomposites. Macromolecules,2010.43(16):p.6515-6530.
    46. Rittigstein, P., R.D. Priestley, L.J. Broadbelt, and J.M. Torkelson, Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nature Materials,2007.6(4):p.278-282.
    47. Trindade, T., P. O'Brien, and X.-m. Zhang, Synthesis of CdS and CdSe Nanocrystallites Using a Novel Single-Molecule Precursors Approach. Chemistry of Materials,1997.9(2): p.523-530.
    48. Tamborra, M., M. Striccoli, R. Comparelli, M.L. Curri, A. Petrella, and A. Agostiano, Optical properties of hybrid composites based on highly luminescent CdS nanocrystals in polymer. Nanotechnology,2004.15(4):p. S240.
    49. Farmer, S.C. and T.E. Patten, Photoluminescent Polymer/Quantum Dot Composite Nanoparticles. Chemistry of Materials,2001.13(11):p.3920-3926.
    50. Esteves, A.C.C., L. Bombalski, T. Trindade. K. Matyjaszewski, and A. Barros-Timmons, Polymer Grafting from CdS Quantum Dots via AGET ATRP in Miniemulsion. Small, 2007.3(7):p.1230-1236.
    51. Baker, D.R. and P.V. Kamat, Photosensitization of TiO2 Nanostructures with CdS Quantum Dots:Particulate versus Tubular Support Architectures. Advanced Functional Materials.2009.19(5):p.805-811.
    52. Gurin. V.S. and M.V. Artemyev, CdS quantum dots in colloids and polymer matrices: electronic structure and photochemical properties. Journal of Crystal Growth,1994. 138(1-4):p.993-997.
    53. Levine. K.L., J.O. Iroh, and P.B. Kosel, Synthesis and properties of the nanocomposite of zink oxide and poly(amic acid). Applied Surface Science.2004.230(1-4):p.24-33.
    54. Hsu, S.-C., W.-T. Whang, C.-H. Hung, P.-C. Chiang, and Y.-N. Hsiao, Effect of the Polyimide Structure and ZnO Concentration on the Morphology and Characteristics of Polyimide/ZnO Nanohybrid Films. Macromolecular Chemistry and Physics,2005.206(2): p.291-298.
    55. Somwangthanaroj, A., C. Phanthawonge, S. Ando, and W. Tanthapanichakoon, Effect of the origin of ZnO nanoparticles dispersed in polyimide films on their photoluminescence and thermal stability. Journal of Applied Polymer Science,2008.110(4):p.1921-1928.
    56. Lin, J.Q., J.H. Shi, J. Leng, M.H. Xia, and Q.G. Chi. Electroluminescence Properties of ZnO Nano-Particles Embedded in Polyimide. in Materials Science Forum.2011. Trans Tech Publ.
    57. Mu, S., D. Wu, S. Qi, and Z. Wu, Preparation of Polyimide/Zinc Oxide Nanocomposite Films via an Ion-Exchange Technique and Their Photoluminescence Properties. Journal of Nanomaterials,2011.2011.
    58. Nedeljkovic, J. Nanoengineering of inorganic and hybrid composites. in Materials science forum.2000. Trans Tech Publ.
    59. Li, F., J.J. Ge, P.S. Honigfort, S. Fang, J.-C. Chen, F.W. Harris, and S.Z.D. Cheng, Dianhydride architectural effects on the relaxation behaviors and thermal and optical properties of organo-soluble aromatic polyimide films. Polymer,1999.40(18):p.4987-5002.
    60. Li, F.,S. Fang, J.J. Ge, P.S. Honigfort, J.C. Chen, F.W. Harris, and S.Z.D. Cheng, Diamine architecture effects on glass transitions, relaxation processes and other material properties in organo-soluble aromatic polyimide films. Polymer,1999.40(16):p.4571-4583.
    61. Park, C., Z. Ounaies, K.A. Watson, R.E. Crooks, J. Smith Jr, S.E. Lowther, J.W. Connell, E.J. Siochi, J.S. Harrison, and T.L.S. Clair, Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chemical Physics Letters,2002.364(3-4):p. 303-308.
    62. Huang, J.-c., C.-b. He, Y. Xiao, K.Y. Mya, J. Dai, and Y.P. Siow, Polyimide/POSS nanocomposites:interfacial interaction, thermal properties and mechanical properties. Polymer,2003.44(16):p.4491-4499.
    63. Fragiadakis,D., P. Pissis, and L.Bokobza,Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites. Polymer,2005.46(16):p.6001-6008.
    64. Russo, P., D. Acierno, A. Corradi, and C. Leonelli, Dynamic-Mechanical Behavior and Morphology of Polystyrene/Perovskite Composites:Effects of Filler Size. Procedia Engineering,2011.10(0):p.1017-1022.
    1. Kricheldorf, H., Liquid-Crystalline Polyimides,Progress in Polyimide Chemistry II, H. Kricheldorf, Editor.1999, Springer Berlin/Heidelberg. p.83-188.
    2. Liaw, D.-J., K.-L. Wang, F.-C. Chang, K.-R. Lee, and J.-Y. Lai, Novel poly(pyridine imide) with pendent naphthalene groups:Synthesis and thermal, optical, electrochemical, electrochromic, and protonation characterization. Journal of Polymer Science Part A: Polymer Chemistry,2007.45(12):p.2367-2374.
    3. Sroog, C.E., Polyimides. Progress in Polymer Science,1991.16(4):p.561-694.
    4. Takekoshi, T., Polyimides, New Polymer Materials.1990, Springer Berlin/Heidelberg. p. 1-25.
    5. Volksen, W., Condensation polyimides:Synthesis, solution behavior, and imidization characteristics, High Performance Polymers, P. Hergenrother, Editor.1994, Springer Berlin/Heidelberg. p.111-164.
    6. Chen. S., Y. Yin. K. Tanaka, H. Kita. and K.-i. Okamoto, Synthesis and properties of novel side-chain-sulfonated polyimides from bis[4-(4-aminophenoxy)-2-(3-sulfobenzoyl)Jphenyl sulfone. Polymer,2006.47(8):p.2660-2669.
    7. Ding, M., Isomeric polyimides. Progress in Polymer Science,2007.32(6):p.623-668.
    8. Shin, T.J., H.K. Park, S.W. Lee, B. Lee, W. Oh, J.S. Kim, S. Baek, Y.T. Hwang, H.C. Kim, and M. Ree, Synthesis and characterization of new aromatic polyimides containing well-defined conjugation units. Polymer Engineering & Science,2003.43(6):p.1232-1240.
    9. Deiasi, R., Thermal regeneration of the tensile properties of hydrolytically degraded polyimide film. Journal of Applied Polymer Science,1972.16(11):p.2909-2919.
    10. Delasi, R. and J. Russell, Aqueous degradation of polyimides. Journal of Applied Polymer Science,1971.15(12):p.2965-2974.
    11. Pawlowski, W.P.. D.D. Coolbaugh, C.J. Johnson, and M.J. Malenda, Etch rate studies of base catalyzed hydrolysis of polyimide film. II. Journal of Applied Polymer Science,1991. 43(7):p.1379-1383.
    12. Scala, L.C. and W.M. Hickam, The behavior of polypyromellitimide resins at high temperatures. Journal of Applied Polymer Science,1965.9(1):p.245-266.
    13. Fang, J., X. Guo. S. Harada. T. Watari. K. Tanaka. H. Kita. and K.-i. Okamoto, Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application.1. Synthesis, Proton Conductivity, and Water Stability of Polyimides from 4.4'-Diaminodiphenyl Ether-2,2'-disulfonic Acid. Macromolecules,2002.35(24):p.9022-9028.
    14. Chen, X., Synthesis and Characterization of Novel Sulfonated Polyimides Derived from Naphthalenic Dianhydride. High Performance Polymers,2006.18(5):p.637-654.
    15. Miyatake, K., H. Zhou, and M. Watanabe, Proton Conductive Polyimide Electrolytes Containing Fluorenyl Groups:Synthesis, Properties, and Branching Effect. Macromolecules,2004.37(13):p.4956-4960.
    16. Watari, T., J. Fang, K. Tanaka, H. Kita, K.-i. Okamoto, and T. Hirano, Synthesis, water stability and proton conductivity of novel sulfonated polyimides from 4,4'-bis (4-aminophenoxy)biphenyl-3,3'-disulfonic acid. Journal of Membrane Science,2004.230(1-2):p.111-120.
    17. Yin, Y., Y. Suto, T. Sakabe, S. Chen, S. Hayashi, T. Mishima, O. Yamada, K. Tanaka, H. Kita, and K.-i. Okamoto, Water Stability of Sulfonated Polyimide Membranes. Macromolecules,2006.39(3):p.1189-1198.
    18. Zhai, F., X. Guo, J. Fang, and H. Xu, Synthesis and properties of novel sulfonated polyimide membranes for direct methanol fuel cell application. Journal of Membrane Science,2007.296(1-2):p.102-109.
    19. Sek, D., P. Pijet, and A. Wanic, Investigation of polyimides containing naphthalene units: 1. Monomer structure and reaction conditions. Polymer,1992.33(1):p.190-193.
    20. Fang, J., X. Guo, H. Xu, and K.-i. Okamoto, Sulfonated polyimides:Synthesis, proton conductivity and water stability. Journal of Power Sources,2006.159(1):p.4-11.
    21. Genies, C., R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, and M. Pineri, Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer,2001.42(12):p.5097-5105.
    22. Li, Y., R. Jin, Z. Wang, Z. Cui, W. Xing, and L. Gao, Synthesis and properties of novel sulfonated polyimides containing binaphthyl groups as proton-exchange membranes for fuel cells. Journal of Polymer Science Part A:Polymer Chemistry,2007.45(2):p.222-231.
    23. Einsla, B.R., Y.S. Kim; M.A. Hickner, Y.-T. Hong, M.L. Hill, B.S. Pivovar, and J.E. McGrath, Sulfonated naphthalene dianhydride based polyimide copolymers for proton- exchange-membrane fuel cells:II. Membrane properties and fuel cell performance. Journal of Membrane Science,2005.255(1-2):p.141-148.
    24. Yan, J.. C. Liu, Z. Wang, W. Xing, and M. Ding, Water resistant sulfonated polyimides based on 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BNTDA) for proton exchange membranes. Polymer,2007.48(21):p.6210-6214.
    25. Yin, Y., O. Yamada, S. Hayashi, K. Tanaka, H. Kita, and K.-l. Okamoto, Chemically modified proton-conducting membranes based on sulfonated polyimides:Improved water stability and fuel-cell performance. Journal of Polymer Science Part A:Polymer Chemistry,2006.44(12):p.3751-3762.
    26. Li, N., Z. Cui, S. Zhang, and W. Xing, Sulfonated polyimides bearing benzimidazole groups for proton exchange membranes. Polymer,2007.48(25):p.7255-7263.
    27. Rusanov, A., Novel bis(naphthalic anhydrides) and their polyheteroarylenes with improved processability, Polymer Synthesis.1994, Springer Berlin/Heidelberg. p.115-175.
    28. Lee, C.H., H.B. Park, Y.S. Chung, Y.M. Lee, and B.D. Freeman, Water Sorption, Proton Conduction, and Methanol Permeation Properties of Sulfonated Polyimide Membranes Cross-Linked with N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic Acid (BES). Macromolecules.2005.39(2):p.755-764.
    29. Watari, T., H. Wang, K. Kuwahara, K. Tanaka, H. Kita, and K.-i. Okamoto, Water vapor sorption and diffusion properties of sulfonated polyimide membranes. Journal of Membrane Science,2003.219(1-2):p.137-147.
    30. Gao, J.P. and Z.Y. Wang, Synthesis and properties of polyimides from 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride. Journal of Polymer Science Part A:Polymer Chemistry, 1995.33(10):p.1627-1635.
    31. Yamada, Y. and N. Furukawa, Preparation and Properties of Silicon-Modified Polynaphthalimides. High Performance Polymers,1997.9(2):p.135-143.
    32. Takaho K., H.D.. Masahiro U.,Tadahiro H., Preparation of 3,3',4,4'-biphenyltetracarboxylic acid salt.:Japan.
    33. Wada. H. and K. Sato, Method for dimerization of aromatic halide compounds, MITSUBISHI CHEM IND LTD Japan.
    34. Calderazzo, F., Synthetic and Mechanistic Aspects of Inorganic Insertion Reactions. Insertion of Carbon Monoxide. Angewandte Chemie International Edition in English, 1977.16(5):p.299-311.
    35. Rusanov, A., A. Berlin, S.K. Fidler, G. Mironov, Y.A. Moskvichev, G. Kolobov, and V. Korshak, Synthesis of polynaphthoylene benzimidazoles based on dianhydrides of keto-and sulphone-bis-(4,5-dicarboxy-1-naphthyl). Polymer Sci.,1981.23(7):p.1753-1760.
    36. Rao, X., H. Zhou, G. Dang, C. Chen, and Z. Wu, New kinds of phenylethynyl-terminated polyimide oligomers with low viscosity and good hydrolytic stability. Polymer,2006. 47(17):p.6091-6098.
    37. Noack, K. and F. Calderazzo, Carbon monoxide insertion reactions V. The carbonylation of methylmanganese pentacarbonyl with 13CO. Journal of Organometallic Chemistry, 1967.10(1):p.101-104.
    38. Chen, K., X. Chen, K. Yaguchi, N. Endo, M. Higa, and K.-i. Okamoto, Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for fuel cell application. Polymer,2009.50(2):p.510-518.
    39. Qiu, Z., S. Wu, Z. Li, S. Zhang, W. Xing, and C. Liu, Sulfonated Poly(arylene-co-naphthalimide)s Synthesized by Copolymerization of Primarily Sulfonated Monomer and Fluorinated Naphthalimide Dichlorides as Novel Polymers for Proton Exchange Membranes. Macromolecules,2006.39(19):p.6425-6432.
    40. Alvarez-Gallego, Y., B. Ruffmann, V. Silva, H. Silva, A.E. Lozano, J.G. de la Campa, S.P. Nunes, and J. de Abajo, Sulfonated polynaphthalimides with benzimidazole pendant groups. Polymer,2008.49(18):p.3875-3883.
    41. Mingyuan, Y.J.D.Q.H., Study of Mechanism of Heterogenous Palladium-Catalyzed Dehalogenation-Dimerization Reaction of Aryl Halide [J]. Advances in Fine Petrochemicals,2002.7:p.1-17.
    42. Wilson, K.R. and R.E. Pincock, Thermally induced resolution of racemic 1,1'-binaphthyl in the solid state. Journal of the American Chemical Society,1975.97(6):p.1474-1478.
    43. Jang, W., C. Lee, S. Sundar, Y.G. Shul, and H. Han, Thermal and hydrolytic stability of sulfonated polyimide membranes with varying chemical structure. Polymer Degradation and Stability,2005.90(3):p.431-440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700