氧化铝陶瓷人工关节股骨头的数控车削加工研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝生物陶瓷具有硬度高、耐磨损、良好的生物相容性和化学稳定性等特点,是制作人工关节的优良材料,但其脆硬特性却给加工带来了很大的困难,限制了在临床上的广泛应用。本文以氧化铝陶瓷人工关节股骨头经济、高效的制备工艺和加工方法作为研究目标,以期为产业化创造条件。采用数控车削方法,从材料的制备成型、加工工艺、自动编程、加工性能及切削用量优化等方面进行实验分析和研究。
     选择高纯超细α-Al_2O_3粉为原料,以MgO-ZrO_2(Y_2O3)为复合添加剂,采用氨水沉积包裹法配料,经脱水、烘干、煅烧处理,得到烧结活性良好的粉料。粉料经预模压后冷等静压成型,能得到均匀致密的陶瓷坯体。压制后的坯体经干燥和1150℃预烧,使之具备适宜的机加工强度,然后根据人工关节股骨头假体的尺寸设计图在数控车床上精密车削成型。成型后的坯体经1600℃保温2.5小时烧结,获得致密的烧结体,经研磨、抛光等后序工艺处理,最终能获得表面近似镜面光洁度并与股骨柄配合良好的氧化铝陶瓷股骨头。
     在基于计算机辅助设计与制造软件Pro/Engineer的平台上,开发了面向指定机床的数控自动编程系统,实现了设计与加工一体化。首先,由CAD建模和生成制造模型,系统提取其特征信息,自动生成加工轨迹;然后应用仿真功能,在虚拟环境下仿真加工的过程与结果;最后经后置处理生成特定机床的数控代码,实现自动编程。利用CAD/CAM一体化技术,能检验产品的正确性,提高机床利用率。
     分析了烧结工艺对氧化铝预烧坯体加工性能的影响。分别讨论了改变升降温速率、预烧温度和保温时间与坯体加工性能之间的关系;采用1150℃预烧,保温2小时,及分段控制升温速率的工艺,获得了适合机加工的坯体,能避免加工时的断裂、破碎或崩边。通过对1150℃预烧后的坯体进行加工实验,讨论了主轴转速、进给速度、背吃刀量等切削参数与加工成本之间的关系,并得出了以最低成本为目标的切削参数值。
    
    武汉理工大学硕士学位论文
     上述研究表明:从材料的制备与加工工艺、数控编程方法、加工成本等
    因素考虑,氧化铝陶瓷人工关节股骨头的数控加工技术能适应产业化的要求。
With high hardness, high abrasive resistance, good biocompatibility and chemistry stability and so on, alumina ceramic has been considered as an excellent material for making artificial joints. However, the extensive applications were limited due to its hard and brittle properties that brought great difficulties in manufacturing. In this paper, high efficiency and economic manufacturing means were studied for industrial production of the alumina ceramic femoral head prostheses. By the way of the numerical control machining, the optimization related to preparation, process, automatically programming and cutting parameter were studied.
    Firstly, high pure a-Al2O3 and MgO-ZrO2 (Y2O3) composite additives were mixed with the method of the ammonia precipitating-enwrapping. After dehydrating, drying and calcinating, the powder with good sintering activity was acquired. The ceramic green was shaped by pressing and cold isostatic pressure, then an uniform and compact ceramic green was produced. The ceramic green was pre-calcined at 1150 C to have proper strength for machining and then the femoral head prostheses on the basis of the required design drawing was shaped through precisely turning on the NC lathe. The shaped prostheses was sintered at 1600 C for 2.5 hours in an electrical furnace. Finally, the surface of the alumina femoral head was ground and polished, which made the surface reaching the degree of approximate mirror finish and matching the femoral stem well.
    Based on the Pro/Engineer-a software for Computer Aid Design and Manufacture the automatic programming system for the specific NC machine was developed, so the integration of design and machining can be realized. First of all, those features from CAD/CAM manufacturing model were chosen for generating machining track. Then the process and outcome were simulated on the screen. Finally the NC codes were generated after post process and the automatic programming was completed. NC Machine's utilization ratio as well as yield was enhanced by this CAD/CAM integration technique.
    The relationships between the presintering process including the ratio of heating-up, presintering temperature and holding time to alumina and the machining
    
    
    
    performance of its presintered briquet were studied respectively. The alumina briquet was acquired which was presinetered at 1150 C, 2 hours holding time and heating-up curve with several heating-up ratios, and which could avoid rapture or breaking when machined. The machining experiment has been studied to the briquet presintered at 1150 C. The machining cost related to cutting parameters, such as shaft speed, feedrate and cutting depth has been discussed. Then the best cutting parameters have been obtained which led to the least cost.
    From above study, it would be concluded that the NC machining can meet the request of industrialization of femoral head prosthesis for alumina ceramic.
引文
[1] 任敬心,康仁科,史兴宽.难加工材料的磨削.国防工业出版社,1999
    [2] 周泽华.金属切削原理.上海科学技术出版社,1993.131~132
    [3] 郑文虎,张玉林,詹明荣.难切削材料加工技术问答.北京出版社,2001.43~44
    [4] B.H.Yan, F.Y.Huang, H.M.Chow. Study on the turning characteristics of alumina-based ceramics. Journal of Materials Processing Technology, 1995.54:341~347
    [5] G.unther Heimke, Stefan Leyen, Gerd Willmann. Knee arthoplasty: recently developed ceramics offer new solutions. Biomaterials, 2002.23:1539~1551
    [6] 王贵成,张银喜.精密与特种加工.武汉理工大学出版社,2001
    [7] Heath, P. J. Developments in applications of PCD tooling.Journal of Materials Processing Technology, 2001.116:31~38
    [8] Giampaolo E.D Errico, Roberto Calzavarini. Advanced ceramic tools: an experimental assessment in turning tests. Journal of Materials Processing Technology, 1995.54:34~39
    [9] S.Y.Luo, Y.S.Liao, Y.Y.Tsai. Wear characteristics in turning high hardness alloy steel by ceramic and CBN tools. Journal of Materials Processing Technology, 1999.88:114~121
    [10] Pei-Lum Tso, Yan-Gang Liu. Study on PCD machining. MACHINE TOOLS & MANUFACTURE, 2002.42:331~334
    [11] 邓建新.高速切削刀具材料的发展应用及展望.机械制造,2002.(2)
    [12] 肖诗纲.刀具材料及其合理选择.机械工业出版社,1990.8~11
    [13] 齐德新.BT20钛合金切削加工性研究:[硕士学位论文] .辽宁工程技术大学,2002
    [14] 于思远,林滨,林彬.国内外先进陶瓷材料加工技术的进展.金刚石与磨料磨具工程,2001.(4)
    [15] 于传跃,黄继锋.涂层刀具的切削特点及影响因素.机械工程师,2002.(9)
    [16] 詹捷,陈小安,王永刚等.工程陶瓷材料精密加工技术.机械工艺师.1998.(6)
    [17] 王瑞刚,潘伟,蒋蒙宁等.可加工陶瓷及工程陶瓷加工技术现状及发展.硅酸盐通报.2001.(3)
    [18] 黄春峰.工程陶瓷加工技术的发展与应用.机械.2000.34(2)
    [19] 杨继先,郭伟光,杨素梅等.陶瓷材料超声振动车削实验研究.兵工学报.1995.(1)
    [20] L.Iulianoa, L.Settineria, A.Gatto. High-speed turning experiments on metal matrix composites. Composites Part A, 1998.29:1501~1509
    
    
    [21] 李湘钒.工程陶瓷零件的车削工艺探讨.苏州大学学报工学版,2002.(1)
    [22] 程伟,叶伟昌.切削加工和刀具技术的现状与发展.工具技术,2002.36(7)
    [23] 赵素勤.现代切削技术的发展趋势.华北航天工业学院学报,2002.(2)
    [24] 刘会英.切削加工的发展趋势.航空精密制造技术.2002.(3)
    [25] Lilley, Edward. Artificial joint bioprosthesis for mitigation of wear. United State Patent, 623/22.15, 5879406, March 9,1999
    [26] Fujikawa, Kentaro, Miyata et al. Ceramic femur head for artificial joint. United State Patent, 623/22.4, 6187049, February 13,2001
    [27] Jun Kusaka, Kazuto Takashima, Daisuke Yamane et al. Fundamental study for all-ceramic artificial hip joint. Wear, 1999.229:734~742
    [28] Ei.Mounayri H, Elbestawi M A, Spence A D et al. General geometric modeling approach for machining process simulation. The International Journal of Advanced Manufacturing Technology, 1997.(13):237~247
    [29] E.Medve dovski. Wear-resistant Aluamina ceramics. Interceram, 2000.49:106
    [30] 郭瑞松,陈玉如,杨正方等.利用复合烧结助剂改善氧化铝陶瓷力学性能初探.陶瓷学报,1999.20(1)
    [31] 谢根生.添加剂对高铝瓷烧结性质和力学性能的影响.现代技术陶瓷,2001.90(4):10~15
    [32] 王安英,张金泉,杨庆伟等.氧化物陶瓷增韧技术的研究.山东陶瓷,1998.21(4):9~15
    [33] Xue L A, Chen I.W. Low-temperature sintering of alumina with liqud-forming additives. J.Am.Ceramic Soc, 1991.74(8):2011
    [34] W.Z.AHV, M.YAN. Stability, of tetragonal phase in ZrO_2(2mol%Y_2O_3)ceramic sinterded in reducing atmosphere. Journal of Materials Science Letters, 1997.16:1540
    [35] 王欣宇.氧化铝陶瓷半髋关节股骨头材料的制备、性能及假体成型加工技术研究:[博士学位论文] .武汉理工大学,2003
    [36] 李世普.特种陶瓷工艺学.武汉工业大学出版社,1990.99~108
    [37] Kim.D.J, Becher.P.F, Hubbard.C.R. Effect of Nb_2O_5 alloying on thermal anisotropy of 2 mol%Y_2O_3-stabilized tetragonal ZrO_2. J.Am.Ceramic Soc, 1993.76(11):2904
    [38] Anze Shui, Zenji Kato. Sintering deformation caused by particle orientation in uniaxially isostatically pressed alumina compacts. Journal of the European Ceramic Society, 2002.22(3): 311~316
    [39] 钟根京.可加工陶瓷的加工.航天工艺,1996.(5)
    [40] 林朝平.数控加工工艺的要点说明.机械研究与应用,2002.15(3)
    
    
    [41] 周虹.CK0630数控车床的编程与加工.机电一体化,2002.(6)
    [42] 姚齐水,王桥医.数控加工中对刀问题的处理.现代制造工程,2002.(8)
    [43] Stig.Hansson. Surface roughness parameters as predictors of anchorage strength in bone: a critical analysis. JOURNAL OF BIOMECHANICS, 2000.33:1297~1303
    [44] Keren Y, Heisel U, Jovine F et al. Reconfigurable manufacturing systems. Annals of the CIRP, 1999.48(2): 1~14
    [45] 张宇,朱巧云.数控技术实践.机械工业出版社,2001.7~42
    [46] 李祥林,薛万夫,张日升.振动切削及其在机械加工中的应用.北京科学技术出版社,1985.58~64
    [47] 段广洪,雷年胜,刘丹等.虚拟制造环境下的CAM集成技术研究.清华大学学报,1999.39(2)
    [48] 杜志强,张毅,程广伟.二维零件数控加工图形自动编程技术.洛阳工学院学报,2001.21(1)
    [49] Cho J R, Yang D Y. Three-dimensional finite element simulation of a spider hot forging process using a new remeshing scheme[J] . Journal of Materials Processing Technology, 2000.99:219~225
    [50] A.D, Spence. Integrated Solid Modeller Based Solutions for Machining. Computer Aided Design, 2000.32
    [51] R.Rajkumar, J.Graham, M.Rac. Curve and surface optimization within the CAD/CAM environment. Journal of Engineering Design, 2002.13(2):121~139
    [52] Shang-Liang Chen, Wen-Tsai Wang. Computer aided manufacturing technologies for centrifugal compressor impellers. Journal of material processing technology, 2001.115(3): 284~293
    [53] 刘恩福,吕希敏.机械CAD/CAM的现状与发展趋势.河北工业科技,1999.16(1)
    [54] 王兰城.数控加工程序的通讯传输.机械制造与白动化,2002.(4):56~57
    [55] 韩杰.CAD/CAM一体化在数控加工中的应用.航天工艺,2000.(5)
    [56] 杨树海.基于Pro/Engineer软件的数控加工.航天制造技术,2003.(1)
    [57] 曾洪鑫,梁楚华,陈立新.一种数控加工自动编程系统方案研究.新疆工学院学报,2000.21(4)
    [58] Chetan Shukla, Michelle Vazquez, Chen F Frank. Virtual manfacturing: an overview[J] . Computer and Engineering, 1996.31(2)
    
    
    [59] Chandra R, Devireddy, Kalyan Ghosh. Feature-based modeling and neural networks-based CAPP for integrated manufacturing. COMPUTER INTEGRATED MANUFACTURING, 1999.12:61~74
    [60] Sheu, Jinn-Jong. Three-dimensional CAD/CAM/CAE integration system of sculpture surface die for hollow cold extrusion. International Journal of Machine Tools & Manufacture, 1999.39(1):33~53
    [61] ROY U, XU Y. Computation of a geometric model of a machined part from its NC machined programs[J] . Computer-Aided Design, 1999.31:401~411
    [62] 上海市金属切削技术协会编.金属切削手册.上海科学技术出版社,1984.4.167~4.168
    [63] 李金有,蔡舒,葛志平,陈玉如.喷雾造粒粉末Z r O 2(Y2O3)烧结行为的研究.兵器材料科学与工程,2004.27(1)
    [64] 商美华.数控加工参数规范化及数据库的研究:[硕士学位论文] .西北工业大学,2001
    [65] M.V. Ribeiro, N.L.Coppini. An applied database system for the optimization of cutting conditions and tool selection. Journal of Materials Processing Technology, 1999.93:371~374
    [66] J.Paulo Davim. Design of optimisation of cutting parameters for turning metal matrix composites based on the orthogonal arrays. Journal of Materials Processing Technology, 2003.132:340~344
    [67] J.Paulo Davim. A note on the determination of optimal cutting conditions for surface finish obtained in turning using design of experiments. Journal of Materials Processing Technology, 2001.116:305~308
    [68] W.Yang, Y.Tarng. Design optimisation of cutting parameters for turning operations based on the Taguchi method. Journal of Materials Processing Technology, 2001. 116:305~308
    [69] B.Y.Lee, Y.S.Tarng, H.R.Lii. An investigation of modeling of the machining database in turning operations. Journal of Materials Processing Technology, 1998.84:122~129
    [70] 韩荣第,孙玉洁.非氧化物精细陶瓷及预烧陶瓷的精密切削加工.工具技术,1994.28(11)
    [71] 刘敦焰,邵华.基于切削参数和刀具状态的车削力模型.上海交通大学学报.2000.34(10)
    [72] J.P.Davim, A.M.Baptista. Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminium. Journal of Materials Processing Technology, 2000.100:417~423
    [73] Anselmo Eduardo Diniz, Ricardo Micaroni. Cutting conditions for finish turning process aiming:the use of dry cutting. MACHINE TOOLS & MANUFACTURE, 2002.42:899~904
    [74] 顾立志,张惠丽,袁哲俊.基于刀具使用寿命的切削用量优化.哈尔滨理工大学学报,2000.5(2)
    
    
    [75] 吉卫喜.机械制造技术.机械工业出版社,2001.109
    [76] M.A.Fleming, C.J.Valentine. PCBN hard turning and workpiece surface integrty[J] . IDR, 1998.58(4)
    [77] 周泽华.金属切削原理.上海科学技术出版社,1993.272
    [78] 顾崇衔.机械制造工艺学.陕西科学技术出版社,1990.299~302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700