天津滨海耐盐植物筛选及植物耐盐性评价指标研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐渍土是制约农业生产和人居环境改善的重要因素之一。随着人口迅速增长,经济建设高速发展,开发和利用盐渍化土地,收集耐盐植物资源,掌握植物耐盐生理及耐盐机制已成为科研工作者的重要任务之一。
     本研究针对天津滨海盐碱地园林绿化植物紧缺的现状,利用实地调查,结合控制实验的方法,筛选出部分滨海盐碱地区耐盐植物,并对可应用于生产实践的植物耐盐性评价指标进行了研究,为丰富滨海地区绿化植物资源和改善生态环境奠定了基础。主要结论如下:
     1、天津大港水库周边地区土壤含盐量较高,人为干预较少,耐盐植物资源丰富。据调查,该区域有主要植物56种,隶属25科,其中最多的是禾本科、藜科,其次是豆科、蔷薇科、菊科等。特耐盐植物占统计的23.2%,有柽柳、罗布麻等,强耐盐植物占统计的16.1%,有白蜡、地肤等。该区域耐盐植物资源草本种类占绝对优势,木本种类较少,但柽柳、白蜡群落分布面积较大,野生和乡土耐盐植物资源较丰富,如盐地碱蓬、芦苇和白蜡、枣等,分布广泛。
     2、选择11种天津滨海盐碱地常用绿化植物,进行不同浓度NaCl(0%、0.2%、0.4%、0.6%)胁迫盆栽试验,对形态、生理生化指标进行综合测定,其中龙柏(Sabina chinensis cv. Kaizuka)为特耐盐植物;黄杨(Buxus sinica)、朝鲜黄杨(Buxus microphylla var.koreana)、福禄考(Phlox drummondii)为强耐盐植物;红王子锦带(Weigela florida cv. Red Prince)、矮牵牛(Petun ia hybrida)、金叶女贞(Ligustrum vicaryi)、金叶莸(Caryopteris clandonensis)、丁香(Syzygium aromaticum)为中度耐盐植物;小叶女贞(Ligustrum quihoui)、107杨(Pinus xeuramericana cv.'74/76')为轻度耐盐或不耐盐植物。
     3、盐胁迫过程中,苗木存活率、叶片盐害指数、相对生长量、生物量、含水量、细胞膜透性、丙二醛、脯氨酸、细胞内Na+K+Ca2+Mg2+的选择性吸收和运输等多个形态生理指标均随盐胁迫浓度增加和胁迫时间延长而发生变化,各个指标共同作用,综合反映品种耐盐性的强弱。叶片盐害指数随盐胁迫浓度的增加和胁迫时间的延长而增大,苗高相对增长量、总生物量、根、茎、叶鲜、干重随着NaCl浓度的增大都呈下降的趋势,在0.6%NaCl浓度胁迫下,小叶女贞、107杨植株含水量分别较对照下降19.82%和13.90%,而龙柏、朝鲜黄杨仅下降7.18%和7.73%,能维持较高的含水量,表现出较强的抗盐能力。叶片细胞膜相对透性随处理浓度的增大表现出逐渐上升的趋势,脯氨酸含量随胁迫浓度增加而逐渐增加,细胞膜透性和脯氨酸含量随盐胁迫浓度的变化均达到显著和极显著水平。丙二醛含量并不呈单一的变化趋势。植物体根、茎、叶内Na+总含量均随盐处理浓度的增大而增多。组织内K+含量随盐处理浓度的增大而减少。Ca2+含量在不同树种组织内的变化趋势不同,较耐盐树种组织内含量基本保持不变,耐盐性较差的树种,随盐胁迫浓度的增加而下降。盐胁迫对组织中Mg2+含量的影响较小,其变化趋势与Ca2+基本一致。总体上,植物生长和生理各项指标均随盐胁迫浓度增加和胁迫时间延长而发生变化,但这种变化在树种对盐胁迫的忍受范围内比较缓慢,超出临界点,变化比较剧烈,这种变化的幅度与树种的特性以及对胁迫的适应范围有关。脯氨酸对细胞膜具有较强的保护作用,能够减轻盐害,保证植物的生长,但不能有效消除丙二醛对细胞的伤害。
     4、单靠一个性状或一项指标的测定结果,难以准确反映品种耐盐性的强弱,必须对多个响应性状进行测评,以此综合评价品种耐盐性才更准确可靠。各个指标关联并协同发生变化,各因素在盐害中所起的作用和重要性不同。综合来看,叶片盐害指数、细胞膜透性、脯氨酸含量三个指标最能反映植物受胁迫程度和耐盐性强弱。在生产实践中,简单的进行耐盐性比较测定时,我们更倾向于使用可以观测的形态指标,在生理指标中,则可选择稳定性好、方便易测的细胞膜透性。
     本研究成果可为天津滨海地区绿化提供几种适生园林植物,为耐盐树种选择和树种耐盐性评价筛选合理的指标提供理论依据和技术支持。
Saline soil is one of the important factors in restricting agricultural production and improving living environment. With rapid growth of the population and the high-speed development of economic construction, exploitation and utilization of saline soil, collecting salt-tolerant plants resources and mastering the plant salt resistance physiology and mechanism has become one of the important tasks of researchers.
     Considering the shortage of tree species for landscaping on the Tianjin coastal saline-alkaline land, I used the method of field investigation and control experiment to select some salt-tolerant plants for the coastal area. And indexes of salinity tolerance assessment applying to production practice were studied,in order to enrich green plant resources in the coastal area and improve the ecological environment.The main results are as follows.
     1、Beacause of higher soil salinity and less human intervention,the plant species were rich in the investigation site in Tianjin Tanggu Area Dagang reservoir,with the total species of 56 under 25 families. Graminceae and Chenopodiaceae families are the important constructive and dominant species of Saline soil, followed by Leguminosae, Rosaceae and Compositae. Special salt-tolerant plants included Tamarix chinensis, Apocynum venetum and so on, about 23.2% of total. Strong salt-tolerant plants indluded Fraxinus chinensis, Kochia scoparia and so on, about 16.1% of total. There were the largest number of Grass communities and a few Woody community, but distribution of pewter and tamarix community was large. In addition,the region was rich in wild and local salt-tolerant plant resources,for example Suaeda salsa、Phragmites communis、Fraxinus chinensis、Ziziphus jujube and so on.
     2、Based on the vegetation investigation of the coastal saline-alkaline soils in Tianjin Tanggu Area Dagang reservoir,combined with common greening plants in Tianjin, The 11 tree species grown in pots have been studied on the growth,morphological,physiological and biochemical characters under different concentration NaCl stress. Through measuring the indexes of salt resistant capacity, it was concluded that Sabina chinensis cv. Kaizuka was special salt-tolerant plant, Buxus sinica, Buxus microphylla var.koreana and Phlox drummondii were strong salt-tolerant plants, Weigela florida cv. Red Prince, Petunia hybrida, Ligustrum vicaryi, Caryopteris clandonensis and Syzygium aromaticum were moderate salt-tolerant plants, Ligustrum quihoui and Pinus×euramericana cv.'74/76' were mild or no salt-tolerant plants.
     3、Indicators such as the survival capability,the symptoms of the leaves,the height,the biomass, the moisture content,the content of Pro and MDA,the content and the selective transportation of Na+、K+ Ca2+、Mg2+ were changing during the different stress period and the stress symptoms. A combination of growth rate and physiology indexes could be used for reflection of tree species salt-tolerant.The salt damage index of leaves of 11 tree species rise, at the same time, the height, the biomass and water content were inhibited and the difference among NaCl concentration were more significant with the stress time. Under 0.6% NaCl stress, the Moisture Content of Ligustrum quihoui and Pinus×euramericana cv.'74/76' reduced 19.82% and 13.90% over that of control in the experiment, however, Sabina chinensis cv. Kaizuka and Buxus sinica reduced only 7.18% and 7.73%. They two showed strong containing salt ability.The electrolyte leakage and the content of Pro increased and the difference was significant.To most tree species, the trends of the content of MDA were not obvious. Na+ content increased under the stress of NaCl in most species within the organization. The changing trends of K+ content was opposite to Na+.Ca2+ content was difference among these species, bsically unchanged in salt tolerance plants while decreased in salt-sensitive plants,the same as Mg2+ content. However,there were differences among the species in response time and concentration.The indexes changed slowly in salt stress endure range,but change was dramatic beyond the critical point.The differences had to do with Species characteristic and stress tolerance range.Pro could protect the cell membrane and reduce the damage of salt,and therefore insure plant growth. Nevertheless, Pro could not disarm injury from MDA to cells.
     4、It was difficult to accurately reflect the strength of salt resistance only on one single character or an index of analytical results. It was necessary to use multiple indices in evaluating salt tolerance so that the result had veracity and reliability.Each factors in salt stress played the different part and importance. On the whole, three analytical indices could mostly reflect salt tolerent which included the salt damage of leaves, the electrolyte leakage and the content of Pro.If only simply to determine or compare salt tolerent among plants in production practice, we tend to use the morphological indexes which could be observed easily.meanwhile the electrolyte leakage as a physiological target was choosed because of steadiness and easy measure.
     The results not only afforded several suitable landscape plants for the coastal areas, but also help to provide the theoretical and technical support for selection of salt-tolerant tree species and evaluation indexes.
引文
[1]薄鹏飞,孙秀玲,孙同虎,等NaCl胁迫对海滨木槿抗氧化系统和渗透调节的影响[J].西北植物学报,2008,28(1):0113-0118.
    [2]柏新富,朱建军,张萍等.不同光照强度下三角叶滨藜光合作用对盐激胁迫的响应[J].干旱地区农业研究,2005,9(5):118-121.
    [3]曹帮华,郁万文,吴丽云,等.盐胁迫对刺槐无性系生长和离子吸收、运输、分配的影响[J].山东农业大学学报(自然科学版),2005,36(3):353-358.
    [4]陈坚,章宁,金桂英,等.高温及盐胁迫对萍体电解质与脯氨酸的影响及其与抗盐性的关系[J].福建省农科院学报,1994,9(2):28-33.
    [5]陈洁,林柄凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报,2003,21(2):177-182.
    [6]陈俊愉.中国花卉品种分类学[M].北京:中国林业出版社,2001.
    [7]陈平雁SPSS130统计软件应用教程[M].北京:人民卫生出版社,2006:233-243.
    [8]陈少良,李金克,尹伟伦,等.盐胁迫条件下杨树组织及细胞中钾、钙、镁的变化[J].北京林业大学学报,2002,24(5/6):84-88.
    [9]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1996,27(2):84-90.
    [10]陈晓亚,汤章城.植物生理与分子生物学[M].北京:高等教育出版社,2007:533-551.
    [11]陈有民.园林树木学[M].北京:中国林业出版社,1988.
    [12]冯广龙,刘昌明,王立.土壤水分对作物根系生长及分布的调控作用[J].生态农业研究,1996,4(3):5-9.
    [13]龚洪柱,魏庆莒,金子明,等.盐碱地造林学[M].北京:中国林业出版社,1986:41-42.
    [14]郭艳茹,詹亚光.植物耐盐性生理生化指标的综合评价[J].黑龙江农业科学,2006,(1):66-70.
    [15]胡小多,刘兴亮,石溪婵,等.盐胁迫对五叶地锦生理指标的影响[J].黑龙江生态工程职业学院学报,2008,7(4):10-11.
    [16]黄健,唐学玺,付萌.盐胁迫对海滨香豌豆叶片三种物质含量的影响[J].青岛海洋大学学报,1997,27(4):509-514.
    [17]韩金龙,徐立华,徐相波,等.盐胁迫下不同玉米品种在苗期叶片和根中Na+、K+、Ca2+及脯氨酸含量变化的研究[J].作物杂志,2010,1:49-52.
    [18]胡小多,刘兴亮,石溪婵,等.盐胁迫对五叶地锦生理指标的影响[J].黑龙江生态工程职业学院学报,2008,21(4):10-11.
    [19]姜虎生,张常钟,韩丽娟,等.碱茅抗盐性的研究[J].长春师范学院学报,2001,20(2):50-53.
    [20]金兰,罗桂花.盐胁迫对紫花苜蓿SOD、丙二醛及SOD同工酶的影响[J].明黑龙江畜牧兽医,2004,5:15-16.
    [21]康俊水,张淑英,李牧,等.滨海盐碱地耐盐地被植物引种开发的研究[J].山东林业科技,2003,4:1-7.
    [22]柯玉琴,潘廷国.NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响[J].植物生理学报,1999,25(3):229-233.
    [23]赖国毅,陈超SPSS17中文版统计分析典型实例精粹[M].北京:电子工业出版社,2010:176-184.
    [24]李国雷.盐胁迫下13个树种反应特性的研究[D].山东农业大学,004:87-97.
    [25]李磊,赵檀方,胡延吉.大麦苗期耐盐性鉴定指标的研究[J].莱阳农学院学报,1998,15(4):253-257
    [26]李艳华,杨敏生,王海英,等.树木抗盐生理研究进展[J].河北林果研究,2000,15(2):189-196.
    [27]梁兴,王玉民,张红利.抗盐碱中华红叶杨在天津滨海新区栽植试验[J].园林绿化,2009,5:62-63.
    [28]林栖凤,李冠一.植物耐盐性研究进展[J].生物工程进展,2000,20(2):20-25.
    [29]刘会超,贾文庆等.盐胁迫对白三叶茎的POD、CAT的影响研究[J].吉林农业科学,2009,34(10):43-46.
    [30]刘会超,孙振元,彭镇华.盐碱土绿化植物的应用与评价[J].中南林学院学报,2003,10(5):30-33.
    [31]刘萍,魏雪莲.耐盐碱乔木在盐碱地环境中的应用概况[J].山东林业科技,2005(6):60-61.
    [32]刘一明,程凤枝,王齐等.四种暖季型草坪植物的盐胁迫反应及其耐盐闽值[J].草业学报,2009,6(3):192-199.
    [33]刘友良,毛才良,汪良驹.植物耐盐性研究进展[J].植物生理学通讯,1987,(4):1-7.
    [34]刘玉冬,杨静慧,刘艳军,等.文冠果和银合欢抗盐生理特性初探[J].安徽农业科学,2009,37(6):2378-2379.
    [35]卢树昌,苏卫国.重盐碱区耐盐植物筛选试验研究[J].西北农林科技大学学报(自然科学版),2004,11:19-24.
    [36]卢翔,黄超彬,楼炉焕,等.山菅等5种植物抗盐性试验初报[J].农业科技通讯,2009(1):72-73.
    [37]毛才良,刘友良.盐胁迫大麦苗体内的Na+、K+分配与叶片耐盐量[J].南京农业大学学报,1990,13(3):32-36.
    [38]毛桂莲,许兴,张渊等.NaCl胁迫对枸杞叶绿素荧光特性和活性氧代谢的影响[J].干旱地区农业研究,2005,9(5):118-121.
    [39]孟凡娟,王秋玉,王建中,等.四倍体刺槐的抗盐性[J].植物生态学报,2008,32(3):654-663.
    [40]邱收,于晓英,谢明亨等.盐胁迫对萱草细胞膜透性和渗透调节物质的影响[J].信阳农业高等专科学校学报,2008,6(2):115-117.
    [41]裘丽珍,黄有军,黄坚钦等.不同耐盐性植物在盐胁迫下的生长与生理特性比较研究[J].浙江大学学报(农业与生命科学版),2006,32(4):420-427.
    [42]曲元刚,赵可夫NaCI和Na2CO3对盐地碱蓬胁迫效应的比较[J].植物生理与分子生物学学报,2003,29(5):387-394.
    [43]阮成江,谢庆良.盐胁迫下沙棘的渗透调节效应[J].植物资源与环境学报,2002,11(2):45-47.
    [44]任天应,张乃生,张金发.黄花菜耐盐能力的研究与生产应用[J].山西农业科学,1991,(9):13-15.
    [45]宋丹,张华新,白淑兰,等.植物耐盐种质资源评价及滨海盐碱地引种研究与展望[J].内蒙古林业科技,2006(1):37-38.
    [46]宋丽华,周月君.盐胁迫对臭椿种子发芽的影响[J].种子,2008,9(9):22-25.
    [47]苏芳莉,王铁良,王政,等.不同浓度NaCl处理对芦苇和香蒲叶片某些生理特性的影响[J].林业科学研究,2009,3(20):302-306.
    [48]孙海菁.杭州湾海岸带防护林植物材料评价和选择研究[D].中国林业科学研究院,2007:81-82.
    [49]孙海菁,王树凤,陈益泰.盐胁迫对6个树种的生长及生理指标的影响[J].林业科学研究,2009,22(30):315-324.
    [50]孙景波,孙广玉,刘晓东.盐胁迫对桑树幼苗生长、叶片水分状况和离子分布的影响[J].应用生态学报,2009,20(3):543-548.
    [51]商学芳,董树亭,郑世英,等.玉米种子萌发过程中Na+.K+和Ca2+含量变化与耐盐性的关系[J].作物学报,2008,34(2):333-336.
    [52]石国亮,江萍.NaCl盐胁迫对锦鸡儿保护酶系的影响[J].安徽农业科学,2009,37(17):7963-7965.
    [53]王波,宋凤斌.燕麦对盐碱胁迫的反应和适应性[J].生态环境,2006,15(3):625-629.
    [54]天津滨海新区管理委员会.天津滨海盐生植物[M].北京:中国林业出版社,2007.
    [55]万贤崇,宋永俊.盐胁迫及其钙调节对竹子根系活力和丙二醛含量的影响[J].南京林业大学学报,1995,19(3):16-20.
    [56]王邦锡,孙莉,黄久常.渗透胁迫引起的膜损伤与膜脂过氧化和某些自由基的关系[J].中国科学(B辑),1992,4:364-368.
    [57]王宝山.生物自由基与植物膜伤害[J].植物生理学通讯,1989,(2):12-16.
    [58]王宝山.植物生理学.北京:科学出版社,2004:274-280.
    [59]王二林.天津滨海盐生植物[M].北京:中国林业出版社,2007.
    [60]王汉海,赵月玲.高抗盐大花营草的组培法筛选[J].潍坊学院学报,2003,3(2):12-13.
    [61]王贵斌,曹福亮,游庆方,等.盐胁迫对4树种叶片中K+和Na+的影响及其耐盐能力的评价[J].植物资源与环境学报,2001,10(1):30-34.
    [62]王金芬,刘雪梅.浅谈滨州市区立地盐碱条件下的绿化技术[J].北方园艺,2008(2):160-162.
    [63]王卫斌,李鹏宇.滨海盐碱地优良地被植物千屈菜[J].北方园艺,2008(5):161-162.
    [64]王宇超,王得祥,彭少兵,等.盐胁迫对木本滨藜植物细胞膜透性及生理特性的影响[J].干旱地区农业研究,2007,7(4):225-229.
    [65]王玉祥,刘静,乔来秋,等.41个引种树种的耐盐性评定与选择[J].西北林学院学报,2004,19(4):55-58.
    [66]王遵亲.中国盐渍土[M].北京:科学出版社,1993.
    [67]吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响[J].南京林业大学学报,2002,26(3):19-22.
    [68]武春霞,吴海燕,朱文碧,等.盐生植物在不同盐碱土壤中的生理反应及耐盐性[J].安徽农业科学,2008,36(20):8450-8452.
    [69]武维华.植物生理学[M].北京:科学出版社,2003:406-408.
    [70]谢福春,张文婷,刘富强,等.土壤盐胁迫对海州常山生理生化特性的影响[J].江西农业大学学报,2008,10(5):839-844.
    [71]谢小丁,邵秋玲,李扬.九种耐盐植物在滨海盐碱地的耐盐能力试验[J].湖北农业科学,2007,7(4):559-560.
    [72]徐炳成,山仑,黄瑾,等.柳枝稷和白羊草苗期水分利用与根冠比的比较[J].草业学报,2003,12(4):73-77.
    [73]徐恒刚.中国盐生植被及盐渍化生态治理[M].北京:中国农业科学技术出版社,2004.
    [74]徐鲜钧,沈宝川,祁建民,等.植物耐盐性及其生理生化指标的研究进展[J].亚热带农业研究,2007,11(4):275-280
    [75]阎艳霞,王玉魁,张东.不同枣品种对NaCl胁迫的适应性研究[J].河南农业大学学报,2008,8(4):398-401.
    [76]杨传平,焦喜才,刘文祥,等.树木的细胞膜透性与抗盐性[J].东北林业大学学报,1997,25(1):1-3.
    [77]杨帆,丁菲,杜天真,等.构树抗氧化酶系统对盐胁迫对的响应[J].浙江林业科学,2008,1(10):1-4.
    [78]杨升,张华新,张丽.植物耐盐生理生化指标及耐盐植物筛选综述[J].西北林学院学报2010,25(3):59-65.
    [79]杨树军,张柏习,张学利.美国皂角不同种源耐盐碱评价与筛选[J].防护林科技,2008(2):7-8,14.
    [80]杨秀玲,郁继华,李雅佳,等.NaCl胁迫对黄瓜种子萌发及幼苗生长的影响[J].甘肃农业大学学报,2004,39(1):629.
    [81]叶维杨.厦门地区10种园林植物的耐盐性研究[J].现代农业科学,2008,15(8):16-18.
    [82]袁琳,克热木·伊力,张利权.NaCl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响[J].植物生态学报,2005,29(6):985-991.
    [83]余叔文,汤章城.植物生理与分子生物学(第二版)[M].北京:科学出版社,1998,754-755.
    [84]张宝泽.田菁和碱苋菜耐盐性能的研究[J].山东师大学报,1997,12(3):308-310.
    [85]张川红,沈应柏,尹伟伦,等.盐胁迫对几种苗木生长及光合作用的影响[J].林业科学,2002,3(2):27-31.
    [86]张风娟,陈凤新,徐兴友.河北省昌黎县黄金海岸几种单子叶植物叶耐盐碱结构的研究[J].草业科学,2006,9:19-23.
    [87]张桂荣,刘艳芳,王瑞兵,等.不同盐分胁迫对3种胡枝子萌发的影响[J].辽宁林业科技,2008(4):30-33.
    [88]张华新,宋丹,刘正祥.盐胁迫下11个树种生理特性及其耐盐性研究[J].林业科学研究,2008,21(2):168-175.
    [89]张华新,刘正祥,刘秋芳.盐胁迫下树种幼苗生长及其耐盐性[J].生态学报,2009,29(5):2263-2272
    [90]张建峰.盐碱生态修复原理与技术[M].北京:中国林业出版社,2008.
    [91]张玲菊,黄胜利,周纪明,等.常见绿化造林树种盐胁迫下形态变化及耐盐树种筛选[J].江西农业大学学报,2008,10(5):833-838.
    [92]张明艳.杜仲对盐胁迫反应的研究[D].甘肃农业大学,2000:18-19.
    [93]张云起,刘世琦,杨凤娟,等.耐盐西瓜砧木筛选及其耐盐机理的研究[J].西北农业学报,2003,12(4):105-108.
    [94]张秀玲.盐碱植物罗布麻的栽培技术[J].中国林副特产,2005,8(4):5-6.
    [95]张臻,陈勇,吕芝香,等.NaCl对碱谷幼苗无机盐离子含量和生长的影响[J].植物资源与环境,1996,5(2):19-22.
    [96]张志良,瞿伟菁.植物生理学实验指导[M].高等教育出版社,2003:274-277.
    [97]赵可夫,范海.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社,2005.
    [98]赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1999.
    [99]赵可夫,李法曾.中国盐生植物[M].北京:中国林业出版社,2007.
    [100]郑安俭,叶晓青,梅新彭NaCl胁迫对3个高羊茅品种发芽的影响[J].江苏农业科学,2008,(4):165-167.
    [101]周滈,卓丽环,张荻等.NaCl胁迫对偃伏梾木幼苗生理的影响[J].东北林业大学学报,2007,6(6):13-15.
    [102]邹轶,顾洪如,钟小仙,等.海盐胁迫对海滨雀稗生长及植株体内阳离子含最的影响[J].草业科学, 2009,4:117-120.
    [103]BallM C, Farquhar G P. Photosynthetic and stomatal response of the mangrove, Avicennia marina, to transient salinity conditions[J]. Plant Physiology,1984,11:74-72.
    [104]BozhkoM, Riegel R,Schubert R,et al. A cyclophilin gene marker confirming geographical differentiation of Norway spruce populations and indicating viability response on excess soil-born salinity[J].Molecular Ecology,2005,12:3147-3155.
    [105]Clenmens J,Cmapbell L C,Nurisjahs.Germination,growth and mineral ion concentration of Casurina species under saline condition[J]. Australian Journal of Botany,1983,31:1-9.
    [106]Corney H J,Sasse J M,Ades P K. Assessment of salt tolerance in eucalypt chlorophyll fluorescence attributes[J]. New Forests,2003,26(3):233-246.
    [107]Cramer G R,Lauchli A,Polito V S. Displacement of Ca2+by Na+from the plasmalemma of root cells[J].Plant Physiol,1985,79:207-211.
    [108]Cramer G R,Epstein E and Lauchli A.Effects of sodium,potassium salt-stressed barely Growth analysis[J].Plant Physiol,1990,80:93-97.
    [109]FLOWERS T J. The Mechanism of Salt Tolerance in halophytes [J]. Ann,Rev.Plant Physiology, 1977,28:89-212.
    [110]Kenneth K. Agricultural Salinity Assessment and Managemen [M].New York:American Society of Civil Engineers,1990.
    [111]KOVDA V A. Loss of productivel and due to salinazation [J].Ambio,1983,10(2):91-93.
    [112]Kurben H,Sananka H,Nehira K,Adilla R,et al.Effect of salinity on growth,photosynthesis and mineral composition in legtmfinous plent Alhagi pseudoalhagi[J].Soil Science Plant Nutrient,1999,45:851-862.
    [113]Grattan S R,Grieve C M.Mineral element acquisition and growth response of plant grown in saline environment[J].Agric Ecosyst Environ,1992,38:275-300.
    [114]Greenway H,Munns R.Mechanisms of salt tolerance in nonhalophytes[J].Ann Rev Plant Physiol, 1980,31:149-190.
    [115]Gregory P J.Root,rhizosphere and soil:the route to a batter understanding of soil science[J].Europe an Journal of Soil Science,2005,56:1-11.
    [116]Haro R,Mari A,Banuelos et al.Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae[J].Plant Physiol,1993,89:868-874.
    [117]Larcher W.Plant ecological physiology[M].Beijing:ChineseAgricultural University Press,1997
    [118]Lee G J,Carrow R N,Duncan R R.Growth and water relations responses to salt stress in halophytic seashore paspalum ecotypes[J].Science Horticulture,2004,104:221-236.
    [119]Levitt J.Response of Plants to Environmental Stress[M].NewYork:Academic Press,1980:100-105.
    [120]Liu J,Zhu J K.Proline accumulation and salt-stress-induced gene expression in salt hypersensitive mutant of Arabidopsis[J].Plant Physiol,1997,114 (2):591-596.
    [121]Michael D Peel,Blair L Waldron.Kevin B Jensen,et al.Screening for Salinity Tolerance in Alfalfa: A Repeatable Method [J].Crop Science,2004,11:2049-2053.
    [122]Muhammad Ashraf.Some important physiological selection criteria for salt tolerance in plants[J]. Flora,2005,199:361-376.
    [123]Munns R.Comparative physiology of salt and water stress[J].Plant,Cell and Environment,2002,25: 239-250.
    [124]Munns R.Physiological process linting plant growth in saline soils:some dogmas and hypotheses [J].Plant anvironment,1993,16:15-24.
    [125]Munns R,Termaat A.Whole plant response to salinity[J].Plant physiol,1986,13:143-160.
    [126]Niknam S R.McComb Jen. Salt tolerance screening of selected Australian woody species——a review. Forest Ecology and Management,2000, (139):1~19.
    [127]Niu X,Bressan R A,Hasegawa P M,Pardo J M. Ion homeostasis in NaCl stress environments [J]. Plant Physiology,1995,109:735-742.
    [128]Pitman M G.Transport across the root and shoot/root Interaction.in:Salinity Tolerance in Plants (Staples R C and G A Toennisson eds.) [J].Wiley,1984,93-123.
    [129]Pushpam R,Rangasamy S R S. Variations in chlorophyll contents of rice in relation to salinity [J]. Crop Research,2000,20(2):197-200
    [130]Rickauer M,Tanner W.Effects of Ca2+ on amino acid transport and accumulation in roots of Phaseolus vulgaris[J].Plant Physiol,1986,82:41-46.
    [131]Ruiz D,Martinez V,Cerda A.Citrus response to salinity:growth and nutrient uptake[J].Tree Physiol,1997,17:141-150.
    [132]SANADA Y,VEDA H,KURIBA YASHI K,et al.Novel light-dark change of proline levels in halophyte (Mesembry-anthemum crystallinum L.)and glyeophytes (Hordeum vulgare L. and Triticum aestivum L.) leaves and roots under salt stress[J].Plant Cell Physiol,1995,36(6):965-970.
    [133]Santa-Cruz A,Acosta M,Rus A,et al.Short-term salt tolerance mechanisms in differentially salt tolerant tomato species[J].Plant Physiology Biochemistry,1999,37(1):65-71.
    [134]Sharma A D.Salt-stress-induced proline accumulation in germinating embryos:Evidence suggesting a roof proline inseed germination [J].Journal of Arid Environments,2005,62:517-523.
    [135]Takahama U,Oniki T.A peroxidase,phenolics,ascorbate system can scavenge hydrogen peroxide in plant cells[J].Physiol Plant,1997,101:845-852.
    [136]Tester M,Davenport R.Na+tolerance and Na+transport in higher plants [J].Annals of Botany,2003, 91:503-527

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700