树脂基复合摩擦材料摩擦磨损机理研究及有限元模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树脂基摩擦材料的组分大致可分四个部分,即粘接剂、增强材料、填料和摩擦调节剂,并分别由纤维、矿物填料、润滑材料和增摩材料为主体构成。
     在所有的组分中,粘接剂具有非常重要的地位,其中酚醛树脂(PF)基摩擦材料受到最广泛的关注和应用。然而酚醛树脂脆性较大且耐热性能有限,以其为基体的摩擦材料容易在350℃下产生较严重的热衰退和磨损。苯并噁嗪树脂(BZ)是一种新型的酚醛树脂,近年来在复合材料领域得到关注,以其为基体的复合材料有高强度、高模量和良好的耐热性能等较多优点,然而由于工艺上的原因,如固化温度过高、固化速度慢等,仍未在摩擦材料领域规模运用。本研究将采用酚醛树脂和丁腈橡胶(NBR)等对苯并噁嗪树脂改性,从而降低其固化温度并改善其热力学性能。聚合物的玻璃化转变会导致模量、强度和其它性能的变化,然而对于玻璃化转变对摩擦和磨损影响的却很少报道。本文研究了玻璃化转变对不同粘接体系的树脂基复合材料摩擦和磨损性能的影响,并建立了树脂热力学与摩擦学行为之间的内在联系。
     增强组分对材料强度和摩擦性能均有重要影响。可在摩擦材料中采用纤维、片状和纳米材料进行增强填充。然而由于这类材料单独应用存在性能缺陷,单一的增强方式很难同时满足摩擦系数的速度、温度和压力稳定性和较好耐磨性能的综合性能的要求,一般需要混杂两种以上的增强材料,以满足摩擦材料综合性能要求。研究表明,纤维复合的协同作用有助于降低材料的磨损率,以及更好地提高复合材料的力学性能。然而目前对采用多尺度、多形态的增强材料复合体系的研究尚较薄弱。为了进一步提高摩擦材料摩擦系数的稳定性、强度和耐磨损性能,本研究制备了微米-纳米复合增强陶瓷型摩擦材料,以及具有“微米和纳米”尺度、“一维(纤维)和二维(片状)”形态、“无机和有机”材质的以多尺度、多维度和多材质为特征的多维复合增强体系。通过各增强组分的优势互补,可达到一定的协同效应,从而得到综合性能较好的共增强体系结构。
     由于纳米材料填充改性的聚合物类复合材料结合无机材料和有机材料的优点,避免了大尺度复合材料的缺陷,具有较好的热学和力学性能,从而得到较广泛的应用。氧化锆具有高强度、高模量、耐磨损性能好和零热膨胀等一系列优良特点。为提高苯并噁嗪树脂的耐热性和耐磨性,我们在本研究领域首次采用纳米氧化锆对苯并噁嗪树脂复合,制备纳米氧化锆增强苯并噁嗪树脂复合材料,分别对氧化锆含量对复合材料玻璃化转变行为的影响,以及不同氧化锆含量复合材料的玻璃化转变对摩擦、磨损性能的影响进行研究并进行机理分析。
     由于要起到传动和制动作用,制动材料要求相对较高的摩擦系数。因此,一些具有磨削性质的材料如SiO2、Al2O3、ZrSiO4、MgO等被加入并在提高传动力和制动力的稳定性方面取得了良好的应用。然而,这类研究主要集中在磨削颗粒尺寸和含量对摩擦磨损性能的影响上,很少关注其颗粒形态。随着对球形化材料研究和应用的深入,纳米和微米球形颗粒填充的复合材料逐渐受到关注。其复合材料显示出很多优异特性,如较高的硬度、高屈服强度和好的耐磨损性能。然而却几乎没有针对采用球形颗粒作为增磨材料的研究。本文针对于此,研究了球形和无规则氧化硅用作增磨材料的应用,分析颗粒的形状对摩擦磨损性能的影响,此外还对球形氧化硅进行表面改性,研究改性对摩擦性能的影响。
     在摩擦材料中,摩擦系数的稳定性是一个非常重要的指标。摩擦材料的摩擦系数一般随速度的增加而降低,在高速制动下,该特征表现的更为明显。一系列的研究结果表明摩擦系数不但依赖于环境参数,还与材料自身的弹性、粘弹性和塑性等因素相关。尽管有大量模型用于研究摩擦学过程,由于接触条件、接触形貌和材料特征的复杂性,摩擦学模拟仍旧处于初级阶段。常用的摩擦学模型基于固定的接触距离,但事实上接触距离取决于较多条件,如相对运动速度和润滑特征,而不是一个固定值。相对于当前常用的基于接触距离的摩擦模型,我们提出了一个基于接触压力的摩擦模型。本模型中,接触对的法向接触距离将随着相对滑动速度的变化而变化,从而能用于模拟基于压力的接触摩擦系统并得出良好的模拟效果。
     本文对摩擦材料中的粘接、增强、填充、调节体系以及摩擦模型进行研究,并得出以下具有一定创新意义的成果:
     (1)加入PF和NBR能够降低BZ的固化温度,并提高其固化材料的耐热性。相应的,P-B-N共聚体系的tan δ宽度和峰值的增加与聚合物间与聚合物和填充增强材料之间更强的交联密度提高有关。玻璃化转变对摩擦磨损行为有明显的影响,测试过程中摩擦系数的明显升高的过程与树脂由玻璃态转变到高弹态的过程相对应。复合材料基体的玻璃化转变导致储能和损耗模量的变化进而对真实接触面积和接触区域的剪切力产生影响,从而导致摩擦力和磨损的变化。而P-B-N复合材料具有较高的玻璃化转变温度从而具有更稳定的摩擦系数和更低的磨损率。
     (2)相对于单一增强方式,钛酸钾晶须-陶瓷纤维共增强方式下材料具备更好的热稳定性、摩擦稳定性和耐磨损性能,该机理源于两种增强材料之间具备的协同效应。以玻璃纤维、铜纤维、矿物纤维、芳纶纤维、纳米钛酸钾晶须和片状蛭石等材料构成具有“微米和纳米”尺寸,“一维(纤维)和二维(片状)”形态,“无机和有机”材质等特点的多维复合增强汽车摩擦材料,各增强相之间的互补和协同效应,使这种多维增强结构能将局部应力以多种方式扩散吸收,材料力学和摩擦磨损性能从而得以提高。
     (3)加入少量的纳米氧化锆能很好的提高纳米氧化锆/苯并嗯嗪树脂复合材料的热、机械和摩擦磨损性能,且当加氧化锆入量为4%时,纳米复合材料具备较高的摩擦系数和最佳的耐磨性。摩擦系数的温度稳定性随压力的增加而降低。压力稳定性随温度变化,温度越高压力稳定性越差。在玻璃态和高弹态下,摩擦系数随速度的增加而降低,然而在玻璃化转变状态下,摩擦系数随速度的增加而增加。复合材料摩擦系数和压力、温度和速度稳定性与储能模量、损耗模量及基在玻璃化转变下的变化密切相关。这是由于摩擦表面形貌及其力学性质及粘弹性导致的能量耗散的温度依赖性所决定的。
     (4)球形和无规则氧化硅增强树脂基复合摩擦材料中,复合材料摩擦系数,衰退和恢复性能均随着氧化硅的增加而增加,相对于普通球形氧化硅,无规则和表面改性球形氧化硅均更有助于提高摩擦系数、改善摩擦系数的抗衰退和恢复能力。树脂基复合材料磨损率随着氧化硅含量的增加而增加,然而球形氧化硅填充复合材料比无规则氧化硅填充复合材料具有更好的耐磨性,而表面改性球形氧化硅填充复合材料具有最佳的耐磨性。无规则氧化硅虽然能够提高复合材料的摩擦系数、抗热衰退和恢复性能,但却导致材料磨损率的增加。而改性球形氧化硅不但能改善复合材料热衰退和恢复性能还能提高材料的耐磨性。
     (5)建立了基于接触距离的动态有限元摩擦模型模拟玻璃化转变对摩擦系数的影响,通过材料的玻璃化转变特征解释了材料的摩擦和磨损机理。模拟结果表明接触距离和接触过程中的能量损耗都与玻璃化转变密切联系,接触距离随速度而增加,能量损耗随速度增加而降低,导致切向支反力和摩擦系数随速度的增加而降低。
Typical friction material is constructed by for parts, the binder, reforcement materials, filler and fricition additive materials, and made use of the advantage of fiber, miner and lubrications.
     The binders including phenolic (PF), benzoxazine (BZ) and nitrile (NBR) are studied in this paper. The effects of glass-to-rubber transition of resin matrix on the friction and wear characteristics of friction materials is examined, in relation to different types of thermosetting resins and blend resins.
     Tribological and thermal behavior of both micrometer-sized ceramic fiber and nanometer-sized potassium titanate whisker (PTV) reinforced automotive brake linings were investigated. The glass fiber, copper fiber, mineral fiber, Kevlar, potassium titanate whisker and vermiculite were used to prepare the multi-reinforced non-asbestos organic (NAO) automotive friction materials. The multi-reinforced materials have the various characters of micro and nano sized structures, one and two dimensions, inorganic and organic natures. The mechanical and friction properties of the automotive friction material were investigated to optimize the experimental condition. It is important to emphasize that the friction performances were studied under the application condition. The reinforcing mechanism was discussed based on the environment scanning electron microscopy observation.
     In the present work, nano ZrO2reinforced polybenzoxazine composites were produced. The friction behaviors of ZrO2-polybenzoxazine nanocomposites were evaluated on a Chase Friction Material Test Machine. An attempt was made to examine the effects of the glass-to-rubber transition on the friction and wear characteristics of ZrO2reinforced polybenzoxazine nanocomposites, in relation to the content of zirconium oxide. The thermal and tribological properties of the nanocomposites were measured by dynamic mechanical thermal analysis (DMA) and friction test, respectively. In addition, the friction mechanism of the nanocomposites were proposed based on the experimental and reference results.
     A high lever of firciont coefficient of frcion material is perfered. As result, materials such as SiO2, Al2O3, ZrSiO4and MgO were used to improve the firciont coefficient. To further improve the the fricion properties, the friction and wear behavior of friction materials filled with irregular and spherical silica particles is discussed in this paper. In addition, surface treated spherical silica powders were prepared and used as fillers to improve tribological properties of friction materials. Friction coefficient and wear tests in a DSM constant-speed tester were carried out and followed by SEM observations.
     Using dynamic finite simulations we investigate how the friction coefficient depends on the sliding speed. The load dependent model we developed is corresponds to common friction systems, which is based on the constant load where the friction couples are sliding under fixed load for various speeds. Here we study the effect of the sliding speed on the contact distance between two contacting bodies. By investigating the energy dissipation of the contact bodies during the sliding process, we show how the friction coefficient is affected by the sliding speed.
     Deatails are given follows:
     (1) The effects of the glass-to-rubber transition of resin matrices on the friction and wear characteristics of friction materials were investigated. Pure and blend thermosetting resins were examined in the paper. The experimental results revealed that adding PF resin and rubber could lower the curing temperature and improve glass transition temperature of BZ resin. Correspondingly, the increasing temperature and broadening width of tan5peaks for P-B-N resin based friction materials were owing to relatively stronger intermolecular interactions between relatively complete polymer crosslinking network and fibers and other ingredients. P-B-N based friction material occupied relatively higher glass-rubber transition temperature, resulting in better ability to stabilize the friction coefficient and wear rate under relatively higher braking temperature.
     (2) Multi-reinforced NAO automotive friction material has the various characters of micro and nano sized structures, one and two dimensions, inorganic and organic natures. The multi-reinforced material under the optimized condition possesses higher impact strength, better wear resistance and friction stability, resulting from the mix and synergistic effect of various reinforced materials. The results revealed that combined fiber-reinforced materials had higher impact strength, friction stability, and wear resistance than those with only one type of fiber.
     (3) Additing small amount of nano ZrO2increase the storage modulus and Tg values of the ZrO2-BZ nanocomposites, due to the exceptional mechanical strength of ZrO2particles and the interfacial adhesion between ZrO2and polymer to restrict the segmental motion of polymer. Comparable to the pure resin, the nanocomposites possessed relatively higher COF values with the increase of applied pressure under varying temperatures, which was resulted from the reinforcement of ZrO2resulting in the increased storage modulus and glass transition temperature. The nanocompistes containing4wt%ZrO2occupied relatively higher modulus and glass-rubber transition temperature, resulting in better capability to stabilize the friction coefficient and wear rate under the applied conditions. The results also revealed that the temperature and load sensitivity of nanocomposites increased with the increasing of load and temperature. This behavior was speculated to be due to the effect of the temperature dependence of modulus in the surface topography and strength. But speed sensitivity varies with the temperature, due to the effect of temperature dependence of viscoelastic response in the energy dissipation.
     (4) Compared to irregular silica, the spherical silica powders could improve the wear resistance but decrease the friction coefficient. The surface treated spherical silica powder is more effective in the improvement of the wear resistance, fade and recovery properties, but with the similar friction coefficient of irregular silica filled materials. This makes it possible to be used as friction-improving fillers in brake materials. Mechanisms for the improvement are also discussed in this paper.
     (5) Using dynamic finite simulations, we developed a load dependent model which is corresponds to common friction systems, and based on the constant load where the friction couples are sliding under fixed load for various speeds. The contact distance increased with the sliding speed. An increase of the sliding speed also leads to a decrease in the polymer chains response time to the contact stress and the increase in storage moduli. The dependence of the reaction force on sliding speed can be rationalized by assuming that the frequency dependence of the polymer chains relaxation times is affected by the damping effects of contact stress. The deformation volume and relaxation times decreased with the increase of the sliding speed, which result in the decrease of energy dissipation.
引文
[1]Kim Y.C., Cho M.H., Kim S.J. The effect of phenolic resin,potassium titanate,and cnsl on the tribological properties of brake friction materials. Wear,2008,204-210.
    [2]Bijwe J., Nidhi,N., Majumdar et al. Influence of modified phenolic resins on the fade and recovery behavior of friction materials. Wear,2005,259(7-12):1068-1078.
    [3]Lu S.R., Jiang Y.M., Wei C. Preparation and characterization of EP/SiO2 hybrid materials containing PEG flexible chain. Journal of Materials Science,2009,44 (15) 4047-4055.
    [4]Kang S., Hong S.Ⅱ. Choe C.R. et al. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process, Polymer,2001.42: 879-887
    [5]Mohanty S., Chugh Y.P. Development of fly ash-based automotive brake lining.tribology international,2007,40 (7):1217-1224.
    [6]Satapathy B.K., Bijwe J. Performance of friction materials based on variation in nature of organic fibres part ⅱ.optimisation by balancing and ranking using multiple criteria decision model(MCDM).Wear,2004,257(5-6):585-589.
    [7]Zhao Y.L., Lu Y.F., Maurice A.W. Sensitivity series and friction surface analysis of non-metallic friction materials. Materials&Design,2006,27 (10):833-838.
    [8]Drava G.., Leardi R., Portesani A., et al.Application of chemometrics to the production of friction materials:analysis of previous data and search of new formulations.Chemometrics and Intelligent Laboratory Systems,1996,32(2):245-255.
    [9]Luise G.H., Allan B., Georg T. Nielsen et al.Tribological properties of automotive disc brakes with solid lubricants.Wear,1999,232(2):168-175.
    [10]Kim S.J., Cho M.H.,Cho K.H., et al.Complementary effects of solid lubricants in the automotive brake lining.Tribology International,2007,40(1):15-25.
    [11]Lu Y.F. A combinatorial approach for automotive friction materials:effects of ingredients on friction performance.Composites Science and Technology,2006,66(3-4):591-598.
    [12]Archard J.F. Wear theory and mechanisms, Wear, Handbook.1988,53:204-223.
    [13]乔端,周宝煜.不同摩擦条件下塑性压缩问题的有限元解.锻压技术.1984,(1):1-6.
    [14]周贤宾.板料成形接触摩擦过程的有限元模拟技术研究塑性工程学2000,18-21.
    [15]Gong, J.P., Kagata G., Iwasaki Y., et al. Surface friction of polymer gels 1. effect of interfacial interaction.Wear,2001,251:1183-1187.
    [16]Quinones-Cisneros S.E., Zeberg-Mikkelsen C.K., Stenby E.H. The friction theory (f-theory) for viscosity modeling. Fluid Phase Equilibria.2000,169:249-276.
    [17]Oehl K.H., Paul H.G. Brake linings for road vehicles:development and testing.landsberg/lech:Verlag Moderne Industrie AG& Co.,1991:5-63.
    [18]Rossouw P.E., Kamelchuk L.S., Kusy R.P. A fundamental review of variables associated with low velocity frictional dynamics. Seminars in Orthodontics,2003,9(4) 223-235.
    [19]Reitsma M.G., Cain R.G., Biggs S., et al.Observed transition from linear to non-linear friction-load behavior using a lateral force microscope.Applied Surface Science, 2006,252:4964-4968.
    [20]Kaleli H., Eyre T., Ghasripoor F. Effect of lubricant additives on the transition pressure from mild to severe wear for grey cast iron sliding pairs. Wear,1997,208(1-2):1-10.
    [21]Ostermeyer G.P. On the Dynamics of the friction coefficient. Wear.2003,254:852-858.
    [22]Chandrasekaran M., Batchelor A.W., Loh N.L. Frictional seizure of aluminium observed by x-ray imaging.Tribology International,2002,35:297-308.
    [23]Zum K.H. Wear by hard particles. Tribology International.1998,31:587-596.
    [24]Wilson W.R.D., Sheu S. Real area of contact and boundary friction in metal forming. Int. J. Mech. Sci.1988,30 (7):475-489.
    [25]Petersen S.B., Martins P.E.A., Bay N.B.Friction in bulk metal forming:a general friction model vs. the law of constant friction. Journal of Materials Processing Technology,1997. 186-194.
    [26]Meng Y.G. Finite element approach to piasto-hydrodynamic lubrication in colt forging. Wear,1993,160:163-170.
    [27]Tan X.C. Comparison of friction models in bulk metal forming. Tribology Internationale, 2002,35:385-393.
    [28]肖红生.温锻精密成形数值模拟关键技术及实验研究.上海交通大学博士论文.2000:80-102.
    [29]Wilson W.R.D. Friction models for metal forming in the boundary lubrication regime. Journal of Engineering Materials and Technology,1991,13(1):60-68.
    [30]Petersen S.B., Martins P.A.E., Bay N.An alternative ring-test geometry for the evaluation of friction under low normal pressure. Journal of Materials Processing Technology,1998,79: 14-24.
    [31]Kermouche G, Aleksy N., Loubet J.L., et al. Finite element modeling of the scratch response of a coated time-dependent solid. Wear,2009,267:1945-1953
    [32]Friedrich K., Karger-kocsis J. On the sliding wear performance of poly-ethernitrile composites. Wear,1992,158(l):157-170.
    [33]Bijwe J. On abrasive wear behaviour of fabric-rein-forced polyetherimide composites. Wear, 2002,253:768-777.
    [34]Hayer A.b., Neilsen G.T., Morgen P. Tribological properties of automotive disc brakes with solid lubricants. Wear,1999,232:168-175.
    [35]Andrew J., Gellman J.S.K., The current status of tribological surface science. Tribology Letters,2001,10(l-2):39-44.
    [36]Zmitrowicz A. A thermodynamical model of contact, Friction and Wear, II. Constitutive Equations for Materials and Linearized Theories. Wear,1987,114(2):169-197.
    [37]戴振东,王珉,薛群基.摩擦体系热力学引论.北京:国防工业出版社.2002.
    [38]英Hailing J.摩擦学原理.
    [39]李成贵,董申.三维表面微观形貌的表征趋势.中国机械工程.2000,11(5):488-491.
    [40]李成贵.三维表面微观形貌的二维功率谱表征.计量学报.2004,25(1):11-16.
    [41]Takeichi, T., Guo, Y. Rimdusit, S. Performance improvement of polybenzoxazine by alloying with polyimide:Effect of preparation method on the properties. Polymer.2005,46 (13),4909-4916.
    [42]Yagci, Y., Kiskan, B., Ghosh, N.N. Recent advancement on polybenzoxazine—A newly developed high performance thermoset. J. Polym. Sci. A 2009,47 (21),5565-5576.
    [43]Ishida, H., Allen, D.J. Gelation behavior of near-zero shrinkage polybenzoxazines. J. Appl. Polym. Sci.2001,79 (3),406-417.
    [44]Kiskan, B., Ghosh, N.N., Yagci, Y. Polybenzoxazine-based composites as high-performance materials. Polym. Int.2011,60 (2),167-177.
    [45]Song, H.J., Zhang, Z.Z., Luo, Z.Z. A study of tribological behaviors of the phenolic compositecoatingreinforced with carbon fibers. Mater. Sci. Eng. A 2007,593-599.
    [46]Xu, H., Feng, Z., Chen, J., Zhou, H. Tribological behaviorofthe carbon fiber reinforced polyphenylene sulfide(PPS) composite coating under dry slidingand water lubrication. Mater. Sci. Eng. A 2006,416,66-73.
    [47]Yan, C., Fan, X.Y., Li, J.A., Shen, S.Z. Study of surface-functionalized nano-SiO2 /polybenzoxazine composites. J. Appl. Polym. Sci.2011,120 (3),1525-1532.
    [48]Al-Turaif, H. A. Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin. Prog. Org. Coat.2010,69,241-246.
    [49]Carrasco, F., Pages, P. Thermal degradation and stability of epoxy nanocomposites: Influence of montmorillonite content and cure temperature. Polym. Degrad. Stabil.2008,93 (5),1000-1007.
    [50]Wang, H., Lu, R., Huang, T., Ma, Y., Cong, P., Li, T. Effect of grafted polytetrafluoroethylene nanoparticles on the mechanical and tribological performances of phenol resin. Mater. Sci. Eng. A 2011,528,6878-6886.
    [51]Song, H.J., Zhang, Z.Z. Investigation of the tribological properties of polyfluo wax /polyurethane composite coatingfilled with nano-SiC or nano-ZrO2. Mater. Sci. Eng. A 2006, 426,59-65.
    [52]Ostermeyer, G. P. and Muller, M. Dynamic Interaction of Friction and Surface Topography in Brake Systems, Tribology International.2006,39:370-380.
    [53]Wu, Y. Q., Zeng, M., Yu, L. and Fan, L. R. Synergistic Effect of Nano-and Micro-meter Size Ceramic Fibers on the Tribological and Thermal Properties of Automotive Brake Lining, Journal of Reinforced Plastics and Composites.2010,29:2732-2743.
    [54]Gopal, P., Dharani, L. R. and Blum, F. D. Load, Speed and Temperature Sensitivities of a Carbon Fibre Reinforced Phenolic Friction Material. Wear.1995,181:913-921.
    [55]Rhee, S. K. Friction Properties of a Phenolic Resin Filled with Iron and Graphite-Sensitivity to Load, Speed and Temperature, Wear.1974,28:277-281.
    [56]Kolluri, D., Ghosh, A. K. and Bijwe, J. Analysis of Load-Speed Sensitivity of Friction Composites Based on Various Synthetic Graphites, Wear.2009,266:266-274.
    [57]Kikuchi, N. and Oden, J. T. Contact Problems in Elasticity:A Study of Variational Inequalities and Finite Element Methods, Studies in Applied Mathematics.1988.
    [58]Kliippel, M. and Heinrich, G. Rubber Friction on Self-Affine Road Tracks, Rubber Chemistry and Technology.2000,73:578-606.
    [59]Ogden, R. W. Large Deformation Isotropic Elasticity:On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids, Proceedings of the Royal Society of London A,1972,326:565-584.
    [60]Simo, J. C. On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects, Computer Methods in Applied Mechanics and Engineering.1987,60:153-173.
    [61]Reese, S. and Govindjee, S. A Theory of Finite Viscoelasticity and Numerical Aspects, International Journal of Solids and Structures.1998,35:3455-3482.
    [62]Wriggers, P. and Reinelt, J. Multi-Scale Approach for Frictional Contact of Elastomers on Rough Rigid Surfaces, Computer Methods in Applied Mechanics and Engineering.2009,198: 1996-2008.
    [63]Ma, J., Bai, M. Effect of ZrO2 nanoparticles additive on the tribological behavior of multialkylated cyclopentanes. Tribol. Lett.2009,36 (3),191-198.
    [64]Kim, K.S., Heo, J.C., Kim, K.W.:Effects of temperature on the microscale adhesion behavior of thermoplastic polymer film. Tribol. Lett.2010,38 (2),97-106.
    [65]Saffar, A., Shojaei, A., Arjmand, M. Theoretical and experimental analysis of the thermal, fade and wear characteristics of rubber-based composite friction materials. Wear.2010,269 (1-2),145-151.
    [66]Arjmand, M., Shojaei, A. Tribological characteristics of rubber-based friction materials. Tribol. Lett.2011,41 (2),325-336.
    [67]Ghoshl, N.N., Kiskan, B., Yagci, Y. Polybenzoxazines-new high performance thermosetting resins:synthesis and properties. Prog. Polym. Sci.2007,32 (11),1344-1391.
    [68]Deng, S., Hou, M., Yea, L. Temperature-dependent elastic moduli of epoxies measured by DMA and their correlations to mechanical testing data. Polym. Test.2007,26,803-813.
    [69]Fei, J., Li, H.J., Fu, Y.W., Qi, L.H., Zhang, Y.L. Effect of phenolic resin content on performance of carbon fiber reinforced paper-based friction material. Wear.2010,269, 534-540.
    [701 Ma, X., Rooij, M.B. de, Schipper, D.J. A load dependent friction model for fully plastic contact conditions. Wear.2010,269,790-796.
    [71]Greenwood, J.A., Williamson, J.B.P. Contact of nominally flat surfaces. Proc. R. Soc. London A 1966,295 (1442),300-319.
    [72]Elleuch, R., Elleuch, K., Abdelounis, H.B., Zahouani, H. Surface roughness effect on friction behaviour ofelastomericmaterial. Mater. Sci. Eng. A 2007,465,8-12.
    [73]Kumar, M., Bijwe, J. NAO friction materials with various metal powders:Tribological evaluation on full-scale inertia dynamometer. Wear 2010,269,826-837.
    [74]Brizmer, V., Kligerman, Y., Etsion, I. Elastic-plastic spherical contact under combined normal and tangential loading in full stick. Tribol. Lett.2007,25,61-70.
    [75]Vyazovkin S,, Sbirrazzuoli N., Drancal I. Variation in activation energy of the glass transition for polymers of different dynamic fragility, Macromo. Chem. Phys.2006,207 (13): 1126-1130.
    [76]Patra S., Ali S.M., Sahoo P. Elastic-plastic adhesive contact of rough surfaces with asymmetric distribution of asperity heights, Wear 2008,265:554-559.
    [77]Eriksson M., Bergman F., Jacobson S. On the nature of tribological contact in automotive brakes, Wear.2002,252:26-36.
    [78]Johnson K.L., Kendall K., Roberts A.D. Surface energy and the contact of elastic solids, Proc. Roy. Soc. Lond. A 1971,324:301-313.
    [79]Grosch K.A., The relation between the friction and the visco-elastic properties of rubber, Proc. Roy. Soc. Lond. A 1963,274:21-39.
    [80]Pinnington R.J. Rubber friction on rough and smooth surfaces, Wear.2009,267 (9-10): 1653-1664.
    [81]Heinrich G., Kluppel M., Rubber friction, tread deformation and tire traction, Wear.2008, 265:1052-1060.
    [82]Ma X., De Rooij M.B., Schipper D.J. A load dependent friction model for fully plastic contact conditions, Wear.2010,269 (11-12):790-796.
    [83]Denny D.F. The influence of load and surface roughness on the friction of rubber-like materials, Proc. Phys. Soc. B 1953,66 (9):721-727.
    [84]Andersson, S., Soderberg, A. and Olofsson, U. A Random Wear Model for the Interaction Between a Rough and a Smooth Surface, Wear.2008,264:763-769.
    [85]Goryacheva, I. and Makhovskaya, Y. A Model of the Adhesive Component of the Sliding Friction Force, Wear.2011,270:628-633.
    [86]Pelletier, H., Gauthier, C. and Schirrer, R. Influence of the Friction Coefficient on the Contact Geometry During Scratch onto Amorphous Polymers. Wear.2010,268:1157-1169.
    [87]Vijaywargiya, R. and Green I. A Finite Element Study of the Deformations, Forces, Stress Formations, and Energy Losses in Sliding Cylindrical Contacts, International Journal of Non-Linear Mechanics.2007,42:914-927.
    [88]Jacko M.G, Tsang P.H.S., Rhee S.K. Automotive friction materials evolution during the past decade. Wear.1984,100:503-515.
    [89]Rhee S.K. Wear mechanisms at low-temperatures for metal reinforced phenolic resins. Wear. 1973,23:261-263.
    [90]Roubicek V., Raclavska H., Juchelkova D., Filip P. Wear and environmental aspects of composite materials for automotive braking industry. Wear.2008,265:167-175.
    [91]Gu J.W., Zhang Q.Y., Li H.C., Tang Y.S., Kong J., Dang J. Study on Preparation of SiO2/Epoxy Resin Hybrid Materials by Means of Sol-Gel. Polymer Plast Tech Eng.2007,46 (12):1129-1134.
    [92]Cho M.H., Bahadur S., Pogosian A.K. Friction and wear studies using Taguchi method on polyphenylene sulfide filled with a complex mixture of MoS2, A12O3, and other compounds. Wear.2005,258(11-12):1825-1835.
    [93]Hu X.L., Li Y.J., Wang W.H., Xie P.H., Dong Y.M. Structure and Wear Properties of Nano-Silicon Dioxide Modified Polyacrylate Composites. Adv Mate Res.2009,79-82: 429-432.
    [94]Wu Y.Q., Zeng M., Jin H.Y., Xu Q.Y., Lu L.Y., Wang J., Hou S.E. Effects of Glass-to-Rubber Transition on the Friction Properties of ZrO2 Reinforced Polybenzoxazine Nanocomposites. Tribol Lett.2012,47 (3):389-398.
    [951 Su F.H., Zhang Z.Z., Wang K., Jiang W., Men X.H., Liu W.M. Friction and wear properties of carbon fabric composites filled with nano-A12O3 and nano-Si3N4. Compos Part A.2006, 37(9):1351-1357
    [96]Jin H.Y., Song N. Preparation of low radioactivity spherical silicon oxide powders via chemical-flame spheroidizing Process. Colloid Surface A 2011,381 (1):13-16.
    [97]Deptula A., Lada W., Olczak T., Borello A., Alvani C., Dibartolomeo A. Preparation of spherical powders of hydroxyapatite by sol-gel process. J Non-Cryst Solids.1992,147-148: 537-541.
    [98]Moon Y.T., Park H.K., Kim D.K., Kim C.H., Seog I.S. Preparation of Monodisperse and Spherical Zirconia Powders by Heating of Alcohol-Aqueous Salt Solutions. J Am Ceram Soc.1995,78 (10):2690-2694.
    [99]Speerschneider C.J., Li C.H. The role of filler geometrical shape in wear and friction of filled PTFE. Wear 1962,5 (5):392-399.
    [100]Xing X.S., Li R.K.Y. Wear behavior of epoxy matrix composites filled with uniform sized sub-micron sphericalsilica particles. Wear.2004,256 (1-2):21-26.
    [101]Jia Q.M., Zheng M., Xu C.Z., Chen H.X. The mechanical properties and tribological behavior of epoxy resin composites modified by different shape nano fillers. Polym Advan Technol.2006,17 (3):168-173.
    [102]Jin H.Y., Yang Y.Q., Xu L., Hou S.E. Effects of spherical silica on the properties of an epoxy resin system. J Appl Polym Sci.2011,121 (2):648-653.
    [103]Yi G.W., Yan, F.Y. Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers. Wear 2007,262:121-129.
    [104]Vishwanath B., Verma A.P., Rao C.V.S.K., Gupta R.K. Effect of different matrices on wear characteristics of glass woven roving/polymer composites. Compos Part A 1993,24 (4): 347-353,
    [105]Liu Y.Q., Fan Z.Q., Ma H.Y., Tan Y.G., Qiao J.L. Application of nano powdered rubber in friction materials. Wear.2006,261 (2):225-229.
    [106]Wu Y.Q., Zeng M., Xu Q.Y., Hou S.E., Jin H.Y., Fan L.R. Effects of glass-to-rubber transition of thermosetting resin matrix on the friction and wear properties of friction materials. Tribol Int.2012,54:51-57.
    [1071 Zhang S.Y., Wang F.P., Comparison of friction and wear performancesof brake materials containing different amounts of ZrSiO4 dry sliding against SiCp reinforced Al matrix composites. Mat Sci Eng A.2007,443:242-247.
    [108]Jang H., Koa K., Kim S.J., Basch R.H., Fash J.W. The effect of metal fibers on the friction performance of automotive brake friction materials. Wear.2004,256:406-414.
    [109]Flannery M., McGloughlin T., Jones E., Birkinshaw C. Analysis of wear and friction of total knee replacements Part 1. Wear assessment on a three station wear simulator. Wear. 2008,265:999-1008.
    [110]Li Y.Q., Pan Q.Y., Li M, Fu S.Y. Preparation and mechanical properties of novel polyimide/T-silica hybrid films. Compos Sci Technol.2007,67 (1):54-60.
    [111]Fang L., Kong X.L., Su J.Y., Zhou Q.D. Movement patterns of abrasive particles in three-body abrasion. Wear.1993,162-164:782-789.
    [112]Kabir A., Jasti V.K., Higgs III C.F., Lovell M. An evaluation of the explicit finite element method approach for modelling dense flows of discrete grains in a coquette shear cell. I Mech E.2008,222:715-23.
    [113]Fang L., Zhou Q.D., Li Y.J. An explanation of the relation between wear and material hardness in three-body abrasion. Wear.1991,151 (2):313-321.
    [114]Fang L., Kong X.L., Zhou Q.D. A wear tester capable of monitoring and evaluating the movement pattern of abrasive particles in three-body abrasion. Wear.1992,159 (1): 115-120.
    [115]Satapathy B.K., Bijwe J. Wear data analysis of friction materials to investigate the simultaneous influence of operating parameters and compositions. Wear.2004,256: 797-804.
    [116]Hee K.W., Filip P. (2005). Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings, Wear.2005,259:1088-1096.
    [117]Jacko M.G., Tsang P.H.S., Rhee S.K. Automotive friction materials evolution during the past decade, Wear.1984,100:503-515.
    [118]Suresha B., Chandramohan G., Samapthkumaran P., Seetharamu S., Vynatheya S. Friction and wear characteristics of carbon-epoxy and glass-epoxy woven roving fiber composites, Journal of Reinforced Plastics and Composites.2006.25:771-782.
    [119]Thorpe A., Harrison R.M. Sources and properties of non-exhaust particulate matter from road traffic:a review, Science of the Total Environment.2008,400:270-282.
    [120]Satapathy B.K., Bijwe J. Influence of operating parameters on the performance of friction composites based on combinations of rock fibers and organic fibers, Journal of Reinforced Plastics and Composites.2005,24:579-595.
    [121]Talegaonkar R.P., Gopinath K. Influence of alumina fiber content on properties of non-asbestos organic brake friction material, Journal of Reinforced Plastics and Composites. 2009,28:2069-2081.
    [122]Gopal P., Dharani L.R., Blum F.D. Fade and wear characteristics of a glass-fiber-reinforced phenolic friction material, Wear.1994,174:119-127.
    [123]Kim S.K., Cho M.H., Lim, D.S., Jang, H. Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material, Wear.2001,251:1484-1491.
    [124]Kuo S.W., Chan S.C., Chang, F.C. Effect of hydrogen bonding strength on the microstructure and crystallization behavior of crystalline polymer blends, Macromolecules. 2003,36:6653-6661.
    [125]Zeng M., Zhang L., Kennedy J.F. Intermolecular interaction and properties of cross-linked materials from poly(ester-urethane) and nitrochitosan, Carbohydrate Polymers.2005,60: 399-409.
    [126]Ma Y., Martynkova G. S., Valaskova M., Matejka V., Lu Y. Effects of ZrSiO4 in non-metallic brake friction materials on friction performance, Tribology International.2008, 41:166-174.
    [127]Dureja N., Bijwe J., Gurunath P.V. Role of type and amount of resin on performance behavior of non-asbestos organic (NAO) friction materials, journal of reinforced plastics and composites.2009,28:489-497.
    [128]Qi H.S., Day A.J. Investigationof disc/pad interfacetemperatures in friction braking, Wear. 2007,262:505-513.
    [129]Zeng M., Zhang L. Effects of Temperature on Morphology and Properties of Films Prepared from Poly(ester-urethane) and Nitrochitosan, Macromolecular Materials and Engineering.2006,291:148-154.
    [130]Filip P., Weiss Z., Rafaja D. On Friction layer formation in polymer matrix composite materials for brake applications, Wear.2002,252:189-198.
    [131]Bijwe J. Composites as friction materials:recent developments in nonasbestos fiber reinforced friction materials-a review, Polym. Compos.1997,18(3):378-396.
    [132]Ball A. On the importance of work hardening in the design of wear resistant materials. Wear,1983,9:201-207.
    [133]Bijwe J., Kumar M. Optimization of steel wool contents in non-asbestos organic (NAO) friction composites for best combination of thermal conductivity and tribo-performance. Wear.2007,263:1243-1248.
    [134]Chan D., Stachowiak GW. Review of automotive brake friction materials. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.2004, 218(9):953-966.
    [135]徐欣,程光旭,刘飞清.剑麻纤维的改性及其在摩擦材料中的应用.复合材料学报.2006,23(1):129-134.
    [136]曹献坤,闻荻江,姚安佑.1-2-3型摩擦制动复合材料的研究.复合材料学报.2000,17(2):94-97.
    [137]吕亚非.组合摩擦材料研究.世界科技研究与发展.2004,26(3):22-26.
    [138]郑学晶,何嘉松.LCP微球对LCP/尼龙6共混体系力学性能的影响.复合材料学报.2009,26(2):47-53.
    [139]赫玉欣,马建中,张丽,等.纳米OMMT/EVA-g-PU复合材料.复合材料学报.2009,26(2):54-58.
    [140]冯新,吕家桢,陆小华,等.钛酸钾晶须在复合材料中的应用.复合材料学报,1999,16(4):1-7.
    [141]方开泰,马长兴.正交与均匀试验设计.科学出版社,2001.
    [142]闫建伟,何林,管琪明,等.制动摩擦材料混杂纤维的配方设计及优化.润滑与密封,2007,32(5):73-75.
    [143]刘震云,黄伯云,苏堤,等.汽车摩擦材料增强纤维的选用.粉未冶金材料科学与工程,1998,3(3):184-189.
    [144]刘震云,黄伯云,苏堤,等.增强纤含量对汽车摩擦材料性能的影响.摩擦学学报,1999,19(4):322-326.
    [145]Eriksson M., Jacobson S. Tribological surfaces of organic brake pads. Tribol Int.2000,33: 817-827.
    [146]Kim S.J., Jang H. Friction and wear of friction material containing two different phenolic resins reinforced with aramid pulp. Tribol Int.2000,33:477-84.
    [147]Gopal P., Dharani L.R., Blum D. Fade and wear characteristics of a glass-fiber-reinforced phenolic friction material. Wear.1994:174 (1-2):119-127.
    [148]Sinha S.K., Biswas S.K. Friction and wear behavior of continuous fiber as cast kevlar phenolic resin composite. J Mater Sci.1992,27 (11):3085-3091.
    [149]Patnaik A., Kumar M., Satapathy B.K., Tomar B.S. Performance sensitivity of hybrid phenolic composites in friction braking:Effect of ceramic and aramid fibre combination. Wear 2010,269 (11-12):891-899.
    [150]Hong U.S., Jung S.L., Cho K.H., Cho M.H., Kim S.J., Jang H. Wear mechanism of multiphase friction materials with different phenolic resin matrices. Wear.2009,266 (7-8): 739-744.
    [151]Kim S.J., Jang H. Friction and wear of friction materials containing two different phenolic resins reinforces with aramid pulp. Tribol Int.2000,33 (7):477-484.
    [152]Rimdusit S., Ishida H. Synergism and multiple mechanical relaxations observed in ternary systems based on benzoxazine, epoxy, and phenolic resins. J Polym Sci. Part B 2000,38 (13): 1687-1698.
    [153]Jang J., Soe D. Performance improvement of rubber modified polybenzoxazine. J Appl Polym Sci.1998,67:1-10.
    [154]Ghosh 1 N.N., Kiskan B., Yagci Y. Polybenzoxazines—New high performance thermosetting resins:Synthesis and properties. Prog Polym Sci.2007,32 (11):1344-1391.
    [155]Reghunadhan Nair C.P. Advances in addition-cure phenolic resins. Prog Polym Sci.2004, 29 (5):401-498.
    [156]Zeng M., Zhang L.N., Zhou Y.X. Effects of solid substrate on structure and properties of casting waterborne polyurethane/carboxymethylchitin films. Polymer.2004,45 (10): 3535-3545.
    [157]Droste D.H., Dibenedetto A.T. The glass transition temperature of filled polymers and its effect on their physical properties. J Appl Polym Sci.1969,13 (10):2149-2168.
    [158]Friedrich K., Reinicke P. Friction and wear of polymer composites (Composite materials series 1). Elsevier science publishers BV, Amsterdam, the Netherlands,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700