氟金云母/氟磷灰石玻璃陶瓷的制备及其摩擦性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玻璃陶瓷具有较高的力学性能、较好的耐磨性和化学稳定性等,在建筑、电子工业、航空航天、医学等领域有着广阔的发展前景。由于玻璃陶瓷主要以SiO2、MgO、Al2O3等氧化物为原料,原料来源广泛,并且在生产和使用过程中能耗和污染较小,因此近年来得到了广泛的研究开发和生产。其中氟金云母/氟磷灰石玻璃陶瓷有较好的可加工性能、生物活性和生物相容性,在牙科和骨科修复领域具备较大的应用潜力,同时,用于牙科和骨科修复领域时,通常要求材料具备良好的力学性能和摩擦磨损性能,使其既有承担一定静载荷的能力,又具备承担一定循环摩擦载荷的能力,但目前对该材料的研究主要集中在力学性能以及生物相容性方面,而对其摩擦磨损性能的研究较少,同时传统的摩擦制动材料常以磷灰石作为填料,而HA和氟磷灰石玻璃陶瓷都含有磷灰石,因此可能在摩擦制动领域具备一定的应用潜力。
     本文以硅酸盐相图为依据,设计氟金云母/氟磷灰石玻璃陶瓷的基体,采用熔铸法制备材料;借助x射线衍射、扫描电镜及能谱分析、热分析、透射电镜、原子力显微镜等检测手段对玻璃陶瓷的相组成和显微形貌进行分析和研究。研究了玻璃陶瓷主要晶化相及其含量与力学性能、摩擦磨损性能的关系;为了探索氟金云母/氟磷灰石玻璃陶瓷在工业摩擦领域应用的可能性,采用粉末冶金方法制备了玻璃陶瓷和HA复合材料,研究了两者的摩擦磨损性能,结果显示铜对稳定材料的摩擦状态有着重要作用,并且玻璃陶瓷基复合材料在高温下的摩擦磨损性能更好。本论文共包含图80幅、表14个、引用参考文献151篇。主要研究内容和结果如下:
     (1)采用熔铸法和阶梯形热处理方法制备了氟金云母/氟磷灰石玻璃陶瓷,其中氟金云母晶体呈片状和块状形貌,氟磷灰石呈针状形貌。
     (2)氟磷灰石的生长机理为螺型位错生长机制,氟磷灰石针状晶体的尖端为位错生长的台阶源,c晶面的生长速度较快,使得氟磷灰石具备典型的针状形貌。
     (3)随着氟磷灰石成分含量的增加,玻璃陶瓷的晶化度明显提高,力学性能也逐渐增加。当原料中氟磷灰石的理论含量达到40%时,玻璃陶瓷的抗弯强度、断裂韧性、显微硬度都达到最大值,分别为93.22MPa、3.74MPa·m1/2698MPa。
     (4)随着氟磷灰石含量的增加,玻璃陶瓷的摩擦系数升高并且波动逐渐减小。当氟磷灰石的理论含量增加到40%时,玻璃陶瓷的磨损率降至原来的1/3。
     (5)只含有氟金云母晶体时,材料力学性能较差,表面抗剪切能力较弱,摩擦系数较小,磨损率较大,摩擦表面的粗糙度较高。随着氟磷灰石成分含量的增加,材料的力学性能提高,表面抗剪切能力提高,摩擦系数增大,磨损率降低,摩擦表面的粗糙度降低。
     (6)氟磷灰石含量较低时,材料表面容易断裂剥落,磨屑中大尺寸颗粒比例较高,由于磨屑和摩擦表面的残余玻璃相含量较高,在摩擦热作用下,残余玻璃相出现软化和塑性变形,因此形成的磨屑具有一定的粘性,容易出现团聚。随着氟磷灰石含量的增加,磨屑粒度减小,团聚现象减少。
     (7)以HA、铜纤维、碳纤维、云母、钛酸钾为原料,采用热压工艺制备复合材料。定速摩擦实验表明,铜含量的增加时,有助于稳定材料的摩擦状态,降低磨损率。
     (8)以氟金云母/氟磷灰石玻璃陶瓷、铜纤维、碳纤维、钛酸钾、氮化硼、硫化锑等为原料,采用热压工艺制备玻璃陶瓷基复合材料。定速摩擦实验表明,在100-350℃度范围内,玻璃陶瓷复合材料的摩擦系数稳定在0.37左右,受温度的影响较小,耐磨性较好。
     (9)铜纤维的加入,提高了复合材料摩擦表面的塑性,使得摩擦过程中材料的表面形成一层摩擦膜,有助于稳定摩擦系数和降低磨损率。
Glass-ceramics have excellent properties such as high mechanical strength, good wear resistance and high chemical resistance, which make it have great prospect in architecture, electronics, space and aircraft, medicine, and so on. Glass-ceramics is prepared using oxide such as SiO2, MgO, Al2O3, etc. The source of the raw materials of glass-ceramics is widely, and the energy consumption and pollution during the process of produce and using of glass-ceramics is lower, therefore glass-ceramics has obtained great research and production. Fluorphlogopite/fluorapatite has good machinable property, bioactivity and biocompatibility, has obtained great developments as dental and orthopedics material, but in these fields, the material must has better mechanical and friction and wear behaviors. But recently, the researchs are mostly focus on the mechanical property and biocompatibility, less in research on friction and wear properties. Apatite is always used as filler in industrial friction material fields, and HA and fluorapatite glass-ceramics both contains apatite, so we believe there is possible that they can be used in industrial friction material fields.
     The design of the glass matrix of fluorphlogopite/fluorapatite glass-ceramics is based on the silicate phase diagram, and the material was prepared by melting method, the phase compositions and microstructure of the glass-ceramics were analyzed by X-ray diffraction, scanning electronic microscopy and energy spectrum analysis, thermal analysis, transmission electron microscope, atomic force microscope. The relation between the crystalline phase and mechanical property, friction and wear property of the glass-ceramics were investigated. In order to investigate the feasibility of glass-ceramics were used in industrial fields, glass-ceramic and HA matrix composites were prepared by powder metallurgy method, the friction and wear behavior of the composites were investigated. It was found that copper is important to stabilize the friction state of the composites, and the glass-ceramic matrix composite has better friction and wear behavior under high temperature. The thesis contains80 pictures,14tables,151references. The main research contents and results are as follows.
     (1) The glass-ceramic was prepared by melting method and stepped heat treatment. Fluorphlogopite crystals showed a block or flake shaped morphology, fluorapatite crystals showed a needle-like morphology.
     (2) The growth mechanism of fluorapatite is screw dislocation growth. The conic tip of the needle is the growth source of the screw dislocation. The growth rate of the c crystal plane is faster than others, so that fluorapatite crystal shows a needle-like morphology.
     (3) With increasing of the raw material of fluorapatite in the glass-ceramics, the crystallinity of the glass-ceramics was increased markedly, and the mechanical property was improved. When the nominal content of fluorapatite come to40%, the mechanical behavior of the glass-ceramics, such as bending strength, fracture toughness, and micro-hardness reached to the top value, that was93.22MPa,3.74MPa-m1/2,698MPa.
     (4) With increasing fluorapatite, the friction coefficient of glass-ceramics increased and become stable. When the nominal content of fluorapatite increased to40%, the wear rate of the glass-ceramics was lowed to a third of the original.
     (5) When there was only fluorphlogopite crystal, the mechanical property is limited. The surface has poor anti-shear ability, so the friction coefficient was low and the wear rate was high, and the surface roughness is high. With increasing fluorapatite, the mechanical property is improved, and the anti-shear ability was also improved, so the friction coefficient increases and the wear rate decreased, and the surface roughness was reduced.
     (6) When low in fluorapatite, fracture and delamination were easy to happen on the surface, so most of the debris is big in size. The debris and surface is high in residual glass phase, under the effect of the energy accumulated during wear tests, the residual glass phase softened and showed plastic deformation, so the debris showed viscous and the agglomerate phenomena happened. With increasing fluorapatite, the size of the debris was reduced and the agglomerate phenomena were decreased.
     (7) HA based composite was fabricated by hot pressing with HA, copper fibers, carbon fibers, mica, and potassium titanate. The constant speed wear test showed that with increasing Cu, the friction coefficient was lowed and stabilized, and the wear rate is decreased.
     (8) Glass-ceramics based composite was fabricated by hot pressing with fluorphlogopite/fluorapatite glass-ceramics, copper fibers, carbon fibers, potassium fitanate, boron nitride, antimony sulfide. The constant speed wear test show that the friction coefficient tended to steady at0.37during100-350℃, and the composite showed a good wear resistance and free from interfere of temperature.
     (9) The adding of copper fibber could help to form a friction film on the surface of composites, which make contribution to the stable friction coefficient and the decreased wear rate.
引文
[1]Lin M.H., Wang M.C. Phase transformation and characterization of TiO2 and ZrO2 addition in the Li2O-Al2O3-SiO2 gels [J]. Journal of Materials Research, 1996,11(10):2611-2615.
    [2]Davis J.B., Marshall D.B., Housley R.M., et al. Machinable Ceramics Containing Rare-Earth Phosphates [J]. Journal of the American Ceramic Society,1998, 81(8):2169-2175.
    [3]姜建华.无机非金属材料工艺原理[M].化学工业出版社,北京,2005.
    [4]周俊琪,范光伟,郑建军.氟金云母可切削玻璃陶瓷的研究[J].太原工业大学学报,1997,28(2):93-95.
    [5]王德平,黄文,周萘.多孔微晶玻璃作为缓释药物载体的体外实验研究[J].中国修复重建外科杂志,2002,16(5):322-324.
    [6]Nakamura T., Yamamuro T., Higashi S., et al. A new glass-ceramic for bone replacement:Evaluation of its bonding to bone tissue [J]. Journal of biomedical materials research,1985,19(6):685-698.
    [7]汤继文,张玉德,刘春梅.生物活性玻璃陶瓷人工骨材料的研究进展[J].山东医药,1997,37(5):45-46.
    [8]肖斌,周大利,杨为中等.磷灰石-硅灰石/β-磷酸三钙复合多孔支架材料的制备和表征[J].无机材料学报,2006,21(2):427-433.
    [9]金丹,裴国献,王前.骨髓基质细胞与钙磷陶瓷复合构建组织工程化骨组织[J].中华创伤杂志,2001,17(3):151-154.
    [10]俞耀庭.生物医用材料[M].天津:天津大学出版社,2000.
    [11]Habelitz S., Carl G., Russel C., et al. Mechanical properties of oriented mica glass ceramic [J]. Journal of Non-Crystalline Solids,1997,220(2-3):291-298.
    [12]Dukino R.D.,Swain M.V. Comparative Measurement of Indentation Fracture Toughness with Berkovich and Vickers Indenters [J]. Journal of the American Ceramic Society,1992,75(12):3299-3304.
    [13]Abe Y., Kasuga T., Hosono H., et al. Preparation of High-Strength Calcium Phosphate Glass-Ceramics by Unidirectional Crystallization [J]. Journal of the American Ceramic Society,1984,67(7):C-142-C-144.
    [14]张剑平,丁振亚.BaO-SrO-TiO2-SiO2系统压电微晶玻璃的研究[J].硅酸盐学报,1991,19(5):431-434.
    [15]Moisescu C., Jana C., Habelitz S., et al. Oriented fluoroapatite glass-ceramics [J]. Journal of Non-Crystalline Solids,1999,248(2-3):176-182.
    [16]Ashbee K. Anisotropic glass-ceramics produced by extrusion through opposed dies [J]. Journal of Materials Science,1975,10(6):911-917.
    [17]Beall G., ed. Advances in Nucleation and Crystallization in Glasses [M]. Columbus:The American Ceramic Society,1971.
    [18]Vogel W.,Holand W. Development, structure, properties and application of glass-ceramics for medicine [J]. Journal of Non-Crystalline Solids,1990,123(1): 349-353.
    [19]乔冠军,王永兰,金志浩等.以Ba云母为主晶相的可切削玻璃陶瓷[J].无机材料学报,1996,11(01):29-32.
    [20]Grossman D.G. Machinable Glass-Ceramics Based on Tetrasilicic Mica [J]. Journal of the American Ceramic Society,1972,55(9):446-449.
    [21]Mcmillan P.W.,王仞千译.微晶玻璃[M].中国建筑工业出版社,北京,1986.
    [22]Beall G. Microstructure of glass-ceramic and photosensitive glasses [J]. Ceramurgia,1978,8(5):249.
    [23]Holand W., Vogel W., Mortier W., et al. A new type of phlogopite crystal in machineable glass ceramics [J]. Glass technology,1983,24(6):318-322.
    [24]HSland W., Wange P., Naumann K., et al. Control of phase formation processes in glass-ceramics for medicine and technology [J]. Journal of Non-Crystalline Solids,1991,129(1-3):152-162.
    [25]Baik D.S., No K.S., Chun J.S., et al. Mechanical Properties of Mica Glass-Ceramics [J]. Journal of the American Ceramic Society,1995,78(5): 1217-1222.
    [26]Daniels W.H., Moore R.E. Crystallization of a Tetrasilicic Fluormica Glass [J]. Journal of the American Ceramic Society,1975,58(5-6):217-221.
    [27]Taruta S., Mukoyama K., Suzuki S.S. Crystallization process and some properties of calcium mica-apatite glass-ceramics [J]. Journal of Non-Crystalline Solids,2001,296(3):201-211.
    [28]肖汉宁,刘洋,时海霞.高炉渣含量与热处理制度对矿渣微晶玻璃性能的影响[J].中山大学学报(自然科学版),2003,42(6):107-110.
    [29]刘欣,李家科.钙长石/玻璃复合材料的制备和性能研究[J].山东陶瓷,2009,32(04):3-6.
    [30]Watanabe K., Giess E.A. Coalescence and Crystallization in Powdered High-Cordierite (2MgO-2A12O3-5SiO2) Glass [J]. Journal of the American Ceramic Society,1985,68(4):C-102-C-103.
    [31]Wang X., Padture N.P., Tanaka H., et al. Wear-resistant ultra-fine-grained ceramics [J]. Acta Materialia,2005,53(2):271-277.
    [32]Buchner S., Mikowski A., Lepienski C.M., et al. Mechanical and tribological properties of a sintered glass-ceramic compared to granite and porcelainized stoneware [J]. Wear,2011,271(5-6):875-880.
    [33]Chen Q.Z., Li Y., Jin L.Y., et al. Komesaroff P.A. A new sol-gel process for producing Na2O-containing bioactive glass ceramics [J]. Acta Biomaterialia, 2010,6(10):4143-4153.
    [34]赵鹏,张良莹,姚熹.复相功能玻璃陶瓷及其溶胶-凝胶法制备[J].功能材料,2000,31(01):15-17.
    [35]Bentivegna F., Ferre J., Nyvlt M., et al. Magnetically textured Fe2O3 nanoparticles in a silica gel matrix:Structural and magnetic properties [J]. Journal of Applied Physics,1998,83(12):7776-7788.
    [36]Chatzistavrou X., Esteve D., Hatzistavrou E., et al. Sol-gel based fabrication of novel glass-ceramics and composites for dental applications [J]. Materials Science and Engineering:C,2010,30(5):730-739.
    [37]del-Castillo J., Yanes A.C., Mendez-Ramos J., et al. Structure and up-conversion luminescence in sol-gel derived Er3+-Yb3+ co-doped SiO2:PbF2 nano-glass-ceramics [J]. Optical Materials,2009,32(1):104-107.
    [38]Li Bo, Zhenxing Y., Ji Z., et al. Low dielectric constant borophosphosilicate glass-ceramics derived from sol-gel process [J]. Materials Letters,2002,54(1): 25-29.
    [39]Sanada T., Yamamoto K., Kojima K., et al. Red luminescence in MgO-GeO2 gel glasses and glass ceramics doped with Mn ions prepared by sol-gel method [J]. Journal of Sol-Gel Science and Technology,2007,41(3):237-243.
    [40]Kamiya K., Mori N., Matsuoka J., et al. Sol-gel coating of the Cu2OAl2O34SiO2 glass-ceramics with SiO2 glass films for suppressing abnormal thermal expansion behaviour [J]. Journal of Materials Science Letters,1995,14(16):1102-1104.
    [41]Kundu T.K., Chakravorty D. Electrical properties of sol-gel derived films containing composites of glass-ceramics and nanocrystalline silver [J]. Journal of Materials Research,1996,11(1):200-203.
    [42]Abe Y., Hosoe M., Kasuga T., et al. High-Strength Ca(PO3)2 Glass-Ceramics Prepared by Unidirectional Crystallization [J]. Journal of the American Ceramic Society,1982,65(11):C-189-C-189.
    [43]程慷果,万菊林,梁开明.具有定向显微结构的高强云母微晶玻璃[J].材料研究学报,1997,11(3):309-311.
    [44]Sambell R.A.J., Briggs A., Phillips D.C., et al. Carbon fibre composites with ceramic and glass matrices. II. Continuous fibres [J]. Journal of Materials Science,1972,7(6):676-681.
    [45]Tulyaganov D.U., Agathopoulos S., Fernandes H.R., et al. Preparation and crystallization of glasses in the system tetrasilicic mica-fluorapatite-diopside [J]. Journal of the European Ceramic Society,2004,24(13):3521-3528.
    [46]Moisescu C., Hoche T., Carl G., et al. Influence of the Ca/P ratio on the morphology of fluorapatite crystals in SiO2-Al2O3-CaO-P2O5-K2O-F-glass-ceramics [J]. Journal of Non-Crystalline Solids,2001,289(1-3):123-134.
    [47]Henry J., Hill R.G. Influence of alumina content on the nucleation crystallization and microstructure of barium fluorphlogopite glass-ceramics based on 8SiO2-YAl2O34MgO2MgF2BaO Part I Nucleation and crystallization behaviour [J]. Journal of Materials Science,2004,39(7):2499-2507.
    [48]Henry J., Hill R.G. Influence of alumina content on the nucleation crystallization and microstructure of barium fluorphlogopite glass-ceramics based on 8SiO2-YAl2O34MgO2MgF2BaO Part II Microstructure, microhardness and machinability [J]. Journal of Materials Science,2004,39(7):2509-2515.
    [49]Alizadeh P., Marghussian V.K. The effect of compositional changes on the crystallization behaviour and mechanical properties of diopside-wollastonite glass-ceramics in the SiO2-CaO-MgO (Na2O) system [J]. Journal of the European Ceramic Society,2000,20(6):765-773.
    [50]Uno T., Kasuga T., Nakajima K. High-Strength Mica-Containing Glass-Ceramics [J]. Journal of the American Ceramic Society,1991,74(12): 3139-3141.
    [51]Yu B., Liang K., Gu S. Effect of the microstructure on the mechanical properties of CaO-P2O5-SiO2-MgO-F" glass ceramics [J]. Ceramics International,2003, 29(6):695-698.
    [52]Mukhopadhyay A., Chu B.T.T., Green M.L.H., et al. Understanding the mechanical reinforcement of uniformly dispersed multiwalled carbon nanotubes in alumino-borosilicate glass ceramic [J]. Acta Materialia,2010,58(7): 2685-2697.
    [53]Maiti P.K., Mallik A., Basumajumdar A., et al. Influence of barium oxide on the crystallization, microstructure and mechanical properties of potassium fluorophlogopite glass-ceramics [J]. Ceramics International,2012,38(1): 251-258.
    [54]Wang P., Yu L., Xiao H., et al. Influence of nucleation agents on crystallization and machinability of mica glass-ceramics [J]. Ceramics International,2009, 35(7):2633-2638.
    [55]Romero M., Rincon J.M., Acosta A. Development of Mica Glass-Ceramic Glazes [J]. Journal of the American Ceramic Society,2004,87(5):819-823.
    [56]Anstis G.R., Chantikul P., Lawn B.R., et al. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness:I, Direct Crack Measurements [J]. Journal of the American Ceramic Society,1981,64(9):533-538.
    [57]Wang P., Zhang L., Lu L., et al. Surface modification of lead silicate glass under X-ray irradiation [J]. Applied surface science,1995,84(1):75-83.
    [58]周俊琪,王立新.玻璃陶瓷在循环应力作用下的疲劳研究[J].太原重型机械学院学报,1997,18(2):174-178.
    [59]Okazaki M., McEvily A.J., Tanaka T. On the mechanism of fatigue crack growth in silicon nitride [J]. Metallurgical Transactions A (Physical Metallurgy and Materials Science),1991,22A(6):1425-1434.
    [60]乔冠军,王永兰,金志浩等.一种可切削玻璃陶瓷压痕裂纹在残余应力驱动下的非平衡扩展特性[J].无机材料学报,1995,10(3):288-292.
    [61]周俊琪,王灵卉.玻璃陶瓷疲劳断裂的宏观规律研究[J].材料科学与工艺,1998,1(018.
    [62]周俊琪,王永兰.玻璃陶瓷在不同介质中的静疲劳特性[J].太原重型机械学院学报,1997,18(1):54-59.
    [63]Tan Y., Liu Y., Grover L.M., et al. Wear behavior of light-cured dental composites filled with porous glass-ceramic particles [J]. Journal of the Mechanical Behavior of Biomedical Materials,2010,3(1):77-84.
    [64]Gupta P.K., Jubb N.J. Post-Indentation Slow Growth of Radial Cracks in Glasses [J]. Journal of the American Ceramic Society,1981,64(8):C-112-C-114.
    [65]White G.S., Freiman S.W., Wilson A.M. Indentation Determination of Crack Growth Parameters in Gallium Arsenide [J]. Journal of the American Ceramic Society,1991,74(2):419-421.
    [66]Kitaoka S., Tsuji T., Katoh T., et al. Tribological Characteristics of Si3N4 Ceramic in High-Temperature and High-Pressure Water [J]. Journal of the American Ceramic Society,1994,77(2):580-588.
    [67]Dong X., Jahanmir S. Wear transition diagram for silicon nitride [J]. Wear,1993, 165(2):169-180.
    [68]张建华,卢进标.耐磨损高硬度搪瓷中部槽的研制[C].兰州:1986年中国硅酸盐学会搪瓷专业委员会第三届年会兰州,1986.
    [69]江利,李植.金属表面玻璃—陶瓷复合涂层的磨粒磨损特性的研究[J].摩擦磨损,1989,2(21-26.
    [70]邓琪玲.玻璃陶瓷材料的磨蚀过程[J].建材新科技,19954):48-49.
    [71]薛群基,刘惠文.陶瓷摩擦学[J].摩擦学学报,1995,15(4):376-384.
    [72]谭业发,王耀华,于爱兵.氧化锆增韧莫来石复相陶瓷的摩擦磨损行为与磨损机制[J].摩擦学学报,2000,20(2):94-97.
    [73]Villegas M.A., Depablos A., Navarro J.M.F. Structural and microstructural study of glasses in the Li2O-TiO2-SiO2 system [J]. Journal of Materials Science,1995, 30(4):995-999.
    [74]段仁官,梁开明.玻璃分相形貌和玻璃陶瓷力学性能之间的关系[J].西南交通大学学报,1998,33(1):61-66.
    [75]Hintermann H.E. Adhesion, friction and wear of thin hard coatings [J]. Wear, 1984,100(1-3):381-397.
    [76]Rice R.W. Micromechanics of microstructural aspects of ceramic wear [C]. Proceedings of the 9th Annual Conference on Composites and Advanced Ceramic Materials:Ceramic Engineering and Science Proceedings, Wiley Online Library, Volume 6(7):940-958,2008.
    [77]Wu C.C., Rice R., Johnson D., et al. Grain size dependence of wear in ceramics [C]. Proceedings of the 9th Annual Conference on Composites and Advanced Ceramic Materials:Ceramic Engineering and Science Proceedings, Wiley Online Library, Volume 6(7):995-10112008.
    [78]Zum Gahr K.H., Bundschuh W., Zimmerlin B. Effect of grain size on friction and sliding wear of oxide ceramics [J]. Wear,1993,162-164, Part A (1): 269-279.
    [79]Cho S.-J., Hockey B.J., Lawn B.R., et al. Grain-Size and R-Curve Effects in the Abrasive Wear of Alumina [J]. Journal of the American Ceramic Society,1989, 72(7):1249-1252.
    [80]Cho S.-J., Moon H., Hockey B., et al. The transition from mild to severe wear in alumina during sliding [J]. Acta metallurgica et materialia,1992,40(1):185-192.
    [81]He C., Wang Y.S., Wallace J.S., et al. Effect of microstructure on the wear transition of zirconia-toughened alumina [J]. Wear,1993,162-164, Part A(0): 314-321.
    [82]Dumas T., Ramos A., Gandais M., et al. Role of zirconium in nucleation and crystallization of a (SiO 2, Al 2 O 3, MgO, ZnO) glass [J]. Journal of Materials Science Letters,1985,4(2):129-132.
    [83]Bertolotti R.Z. Fracture Toughness of Polycrystalline Al2O3 [J]. Journal of the American Ceramic Society,1973,56(3):172-172.
    [84]严宁,徐政.微组装基板材料的孔隙率与其抗折强度关系的研究[J].现代技术陶瓷,1999,20(3):5-9.
    [85]Liu Ning, Hu Zhenhua, Kun. C. Ti(C, N) based cermets and its fractal analysis of fracture surfaces. [J]. Trans Nonferr Met Soc China,1996,6(2):101-104.
    [86]Liu Ning, Hu Zhenhua, Kun. C. Mechanical properties and microstructures of Ti(C, N) based cermets. [J]. Trans Nonferr Met Soc China,1996,6(4):117-121.
    [87]Gautier P., Kato K. Wear mechanisms of silicon nitride, partially stabilized zirconia and alumina in unlubricated sliding against steel [J]. Wear,1993, 162-164(Part A):305-313.
    [88]Lange F.F., James M.R., Green D.J. Determination of residual surface stresses caused by grinding in polycrystalline A12O3 [J]. Journal of the American Ceramic Society,1983,66(2):C-16-C-17.
    [89]GB6569-86.工程陶瓷弯曲强度试验方法[S].北京:中国标准出版社,1986.
    [90]赵恒义.熔模铸造型壳抗弯弹性模量的研究[J].铸造技术,2004,25(6):443-444.
    [91]江筱玲.精细陶瓷材料断裂韧性的测定[J].硬质合金,1998,15(3):171-175.
    [92]http://www.crct.polymtl.ca7FACT/phase_diagram.php
    [93]马新沛,李光新,沈莲等.可切削微晶玻璃的热处理与微观结构[J].金属热处理,2001,26(12):3.
    [94]Henry J., Hill R.G. Influence of alumina content on the nucleation crystallization and microstructure of barium fluorphlogopite glass-ceramics based on 8SiO2YAl2O3-4MgO-2MgF2BaO Part II Microstructure, microhardness and machinability [J]. Journal of Materials Science,2004,39(7):2509-2515.
    [95]陈晓峰,张晓凯,滕立东等.氟磷灰石—氟金云母微晶玻璃的生物活性研究[J].硅酸盐学报,1993,21(3):247-255.
    [96]Wu Y., Liu H., Shen B., et al. The friction and wear of electroless Ni-P matrix with PTFE and/or SiC particles composite [J]. Tribology International,2006, 39(6):553-559.
    [97]向其军.氟金云母/氟磷灰石玻璃陶瓷的制备及性能研究[D].长沙:中南大学,2007.
    [98]Chen X., Hench L.L., Greenspan D., et al. Investigation on phase separation, nucleation and crystallization in bioactive glass-ceramics containing fluorophlogopite and fluorapatite [J]. Ceramics international,1998,24(5): 401-410.
    [99]丁子上,王民权,潘守彝.硅酸盐物理化学[M].杭州:浙江大学出版社,1979.
    [100]单小宏.生物玻璃陶瓷复合材料的研究[D].长沙:中南大学,2004.
    [101]Hoche T., Moisescu C., Avramov I., et al. Microstructure of SiO2-Al2O3-CaO-P2O5-K2O-F-Glass Ceramics.1. Needlelike versus Isometric Morphology of Apatite Crystals [J]. Chemistry of Materials,2001,13(4): 1312-1319.
    [102]Holand W., Rheinberger V., Frank M. Mechanisms of nucleation and controlled crystallization of needle-like apatite in glass-ceramics of the SiO2-Al2O3-K2O-CaO-P2O5 system [J]. Journal of Non-Crystalline Solids,1999, 253(1):170-177.
    [103]陆佩文.无机材料科学基础[M].武汉:武汉工业大学出版社,1996.
    [104]俞冰,梁开明,顾守仁.CaO-P2O5-MgO-SiO2-F系可切削生物微晶玻璃的制备[J].硅酸盐学报,2002,30(1):77-80.
    [105]Mcmillan P.W.微晶玻璃[M].北京:中国建筑工业出版社,1986.
    [106]郑燕青,施尔畏,李汶军等.晶体生长理论研究现状与发展[J].无机材料学报,1999,14(3):321-332.
    [107]魏钟晴,马培华.溶液系统中的晶须生长机理[J].盐湖研究,1995,3(4):57-65.
    [108]仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社,1999.
    [109]Baik D., No K., Chun J., et al. Effect of the aspect ratio of mica crystals and crystallinity on the microhardness and machinability of mica glass-ceramics [J]. Journal of materials processing technology,1997,67(1):50-54.
    [110]Becher P.F., Sun E.Y., Plucknett K.P., et al. Microstructural Design of Silicon Nitride with Improved Fracture Toughness:I, Effects of Grain Shape and Size [J]. Journal of the American Ceramic Society,1998,81(11):2821-2830.
    [111]Zuo K.H., Zeng Y.P., Jiang D. The mechanical and dielectric properties of Si3N4-based sandwich ceramics [J]. Materials & Design,2012,35(1):770-773.
    [112]Wang H.L., Zhang C.Y., Liu Y.S., et al. Temperature dependency of interlaminar shear strength of 2D-C/SiC composite [J]. Materials & Design, 2011,36(0):172-176.
    [113]Ar H. Fibre reinforced glass and ceramic composites [J]. Materials & Design, 1989,10(1):29-35.
    [114]Davidge R.W. Mechanical behavior of ceramics [M]. Cambridge:Cambridge University Press,1979.
    [115]Baik D.S., No K.S., Chun J.S., et al. Mechanical Properties of Mica Glass-Ceramics [J]. Journal of the American Ceramic Society,2005,78(5): 1217-1222.
    [116]Wei G.C., Becher P.F. Improvements in Mechanical Properties in SiC by the Addition of TiC Particles [J]. Journal of the American Ceramic Society,1984, 67(8):571-574.
    [117]徐芝纶.弹性力学[M].北京:高等教育出版社,1982.
    [118]温诗铸,黄平.摩擦学原理(第2版)[M].北京:清华大学出版社,2002.2-5.
    [119]Bowden F P, D T. The Friction and Lubrication of Solid [M]. Oxford: Clarenden Press,1964.
    [120]邵荷生,张清.金属的磨料磨损与耐磨材料[M].北京:机械工业出版社,1988.
    [121]桑可正.碳化硅复相陶瓷的摩擦磨损行为和机理[M].西安:西安交通大学,2000.
    [122]关庆丰,李晓宇,李光玉.炭纤维增强摩阻材料的摩擦磨损特性研究[J].摩擦学学报,1999,19(1):87-90.
    [123]赵运才.耐磨铝硅酸盐微晶玻璃的制备及其摩擦学特性研究[D].长沙:湖南大学,2003.
    [124]Li J.N., Song Y., Zhang S.X., et al. In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy [J]. Biomaterials,2010,31(22):5782-5788.
    [125]Venkatesan P., Puvvada N., Dash R., et al. The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer [J]. Biomaterials,2011,32(15):3794-3806.
    [126]Chakraborty S., Das T., Banerjee S., et al.175Yb-labeled hydroxyapatite:a potential agent for use in radiation synovectomy of small joints [J]. Nuclear Medicine and Biology,2006,33(4):585-591.
    [127]Leukers B., Gulkan H., Irsen S., et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing [J]. Journal of Materials Science:Materials in Medicine,2005,16(12):1121-1124.
    [128]Mobasherpour I., Solati Hashjin M., Razavi Toosi S.S., et al. Effect of the addition ZrO2-A12O3 on nanocrystalline hydroxyapatite bending strength and fracture toughness [J]. Ceramics International,2009,35(4):1569-1574.
    [129]Niu Z.W., Li Z.Y., Li L. Study on the grinding of Hydroxyapatite-SiCw composite bioceramics material. Frontiers Design Manufacturing, Riverwood, 2006.
    [130]Wang J., Li M.Q., Wen G.W. Preparation and properties of short carbon fiber reinforced hydroxtapatite biocomposites [J]. Rare Metal Materials and Engineering,2007,36(1):86-89.
    [131]Zhang Y., Tan S., Yin Y. C-fibre reinforced hydroxyapatite bioceramics [J]. Ceramics International,2003,29(1):113-116.
    [132]With.G D., A.J C. Metal fibre reinforced hydroxy-apatite ceramics [J]. Journal of Materials Science,1989,24(9):3411-3415
    [133]Suchanek W., Yashima M., Kakihana M., et al. Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whiskers [J]. Biomaterials,1996,17(17):1715-1723.
    [134]Murthy V.S.R., Kobayashi H., Tamari N., et al. Effect of doping elements on the friction and wear properties of SiC in unlubricated sliding condition [J]. Wear,2004,257(1-2):89-96.
    [135]Shakhvorostov D., Jian L., Nold E., et al. Influence of Cu Grain Size on Running-in Related Phenomena [J]. Tribology Letters,2007,28(3):307-318.
    [136]Zhan Y.Z., Zhang G.D. Friction and wear behavior of copper matrix composites reinforced with SiC and graphite particles [J]. Tribology Letters,2004,17(1): 91-98.
    [137]Ma W., Lu J. Effect of Sliding Speed on Surface Modification and Tribological Behavior of Copper-Graphite Composite [J]. Tribology Letters,2011,41(2): 363-370.
    [138]Liu G., Li X., Qin B., et al. Investigation of the Mending Effect and Mechanism of Copper Nano-Particles on a Tribologically Stressed Surface [J]. Tribology Letters,2004,17(4):961-966.
    [139]Zhang Y.J., Lu J.J. A mild and efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent [J]. Crystal Growth & Design,2008,8(7):2101-2107.
    [140]Jevtic M., Mitric M., Skapin S., et al. Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation [J]. Crystal Growth & Design,2008,8(7):2217-2222.
    [141]Reid J.V., Schey J.A. The effect of surface hardness on friction [J]. Wear,1987, 118(1):113-125.
    [142]Menezes P.L., Kishore, Kailas S.V., et al. Role of Surface Texture, Roughness, and Hardness on Friction During Unidirectional Sliding [J]. Tribology Letters, 2011,41(1):1-15.
    [143]Wieleba W. The statistical correlation of the coefficient of friction and wear rate of PTFE composites with steel counterface roughness and hardness [J]. Wear, 2002,252(9-10):719-729.
    [144]Ran S., Winnubst L., Blank D.H.A., et al. Dry-sliding self-lubricating ceramics: CuO doped 3Y-TZP [J]. Wear,2009,267(9-10):1696-1701.
    [145]Zhan Y., Zhang G. Friction and Wear Behavior of Copper Matrix Composites Reinforced with SiC and Graphite Particles [J]. Tribology Letters,2004,17(1): 91-98.
    [146]Moore M.A., King F.S. Abrasive wear of brittle solids [J]. Wear,1980,60(1): 123-140.
    [147]De Barros M.I., Bouchet J., Raoult I., et al. Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses [J]. Wear,2003, 254(9):863-870.
    [148]Liu Y., Liu S., Hild W., et al. Friction and adhesion in boundary lubrication measured by microtribometers [J]. Tribology International,2006,39(12): 1674-1681.
    [149]Wan D.T., Hu C.F., Bao Y.W., et al. Effect of SiC particles on the friction and wear behavior of Ti3Si(Al)C2-based composites [J]. Wear,2007,262(7-8): 826-832.
    [150]Yang Z.L., Ouyang J.H., Liu Z.G., et al. Wear mechanisms of TiN-TiB2 ceramic in sliding against alumina from room temperature to 700℃ [J]. Ceramics International,2010,36(7):2129-2135.
    [151]Zum Gahr K.H., Voelker K. Friction and wear of SiC fiber-reinforced borosilicate glass mated to steel [J]. Wear,1999,225(885-895.
    [152]Tewari A., Basu B., Bordia R.K. Model for fretting wear of brittle ceramics [J]. Acta Materialia,2009,57(7):2080-2087.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700